Test of WLA532-US Wireless LAN Access Point

To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: JNIP03-U2 Rev A

Test of WLA532-US Wireless LAN Access Point

to

To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: JNIP03-U2 Rev A

<u>Note:</u> this report contains data with regard to the 5,150 to 5,250 MHz bands for Juniper Networks, WLA532-US Wireless Access Point. 2.4 and 5.8 GHz test data are reported in MiCOM Labs test report JNIP03-U1

This report supersedes None

Applicant: Juniper Networks, Inc 1194 North Mathilda Avenue Sunnyvale California 94089, USA

Product Function: Wireless LAN Access Point

Copy No: pdf Issue Date: 15th October 2011

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

TEST CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:3 of 108

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: Issue Date: Page:

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A 15th October 2011 4 of 108

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	5
	TESTING ACCREDITATION	5
	RECOGNITION	
	PRODUCT CERTIFICATION	
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	11
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1. Technical Details	12
	3.2. Scope of Test Program	13
	3.3. Equipment Model(s) and Serial Number(s)	15
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports	
	3.6. Test Configurations	
	3.7. Equipment Modifications	17
	3.8. Deviations from the Test Standard	
	3.9. Subcontracted Testing or Third Party Data	
4.	TEST SUMMARY	
5.	TEST RESULTS	20
	5.1. Device Characteristics	
	5.1.1. 26 dB and 99 % Bandwidth	
	5.1.2. Transmit Output Power	
	5.1.3. Peak Power Spectral Density	
	5.1.4. Peak Excursion Ratio	
	5.1.5. Frequency Stability	
	5.1.6. Maximum Permissible Exposure	
	5.1.7. Radiated Emissions 5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
6.	PHOTOGRAPHS	
0.		
	6.1. Conducted Test Setup	
-	6.2. Radiated Test Setup > 1 GHz	
7.	TEST EQUIPMENT DETAILS	107

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: Serial #: Issue Date: Page:

WLA532-US Wireless LAN Access Point Title: FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A 15th October 2011 5 of 108

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. available MiCOM Labs test schedule is at the following URL: http://www.a2la.org/scopepdf/2381-01.pdf

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:6 of 108

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	тсв	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	210
	VCCI			No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	US0159
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	050159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:7 of 108

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

USA Telecommunication Certification Body (TCB) - TCB Identifier - US0159

Industry Canada Certification Body - CAB Identifier – US0159

European Notified Body - Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB) - RCB Identifier - 210

DOCUMENT HISTORY

	Document History				
Revision	Date	Comments			
Draft					
Rev A	15 th October 2011	Initial release.			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: To: Serial #: Issue Date: Page:

WLA532-US Wireless LAN Access Point FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A 15th October 2011 9 of 108

1. TEST RESULT CERTIFICATE

Applicant:	Juniper Networks, Inc 1194 North Mathilda Avenue Sunnyvale California 94089, USA	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200 Pleasanton California, 94566, USA
EUT:	802.11a/b/g/n Product Description	Tel:	+1 925 462 0304
Model:	WLA532-US	Fax:	+1 925 462 0306
S/N:	JC0211322570, JC0211322566		
Test Date(s):	7th July to 14th September '11	Website:	www.micomlabs.com

STANDARD(S)

FCC 47 CFR Part 15.407 & IC RSS-210 (Frequency Band 5,150 – 5,250 MHz Only)

EQUIPMENT COMPLIES

TEST RESULTS

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

TEST CERTIFICATE #2381.01

ACCREDITED

Gordon Hurst Rresident & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:10 of 108

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.407	2010	Code of Federal Regulations
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order
(iii)	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
(iv)	Industry Canada RSS-210	2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment
(v)	Industry Canada RSS-Gen	2010	General Requirements and Information for the Certification of Radiocommunication Equipment
(vi)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(vii)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(viii)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(ix)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(x)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(xi)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy
(xii)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: Issue Date: Page:

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A 15th October 2011 11 of 108

2.2. **Test and Uncertainty Procedures**

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:12 of 108

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details	
Details	Description
Purpose:	Test of the WLA532-US Wireless LAN Access Point in
	the frequency range 5,150 to 5,250 MHz to FCC Part
	15.407 and Industry Canada RSS-210 regulations.
Applicant:	Juniper Networks, Inc
	1194 North Mathilda Avenue
	Sunnyvale
	California 94089, USA
Manufacturer:	As applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	JNIP03-U2 Rev A
Date EUT received:	2nd July 2011
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210
Dates of test (from - to):	7th July to 14th September '11
No of Units Tested:	1
Type of Equipment:	802.11a/b/g/n Wireless Access Point, 3x3 Spatial
	Multiplexing MIMO configuration
Applicants Trade Name:	Wireless Access Point
Model(s):	
Location for use:	
Declared Frequency Range(s):	5,250 to 5,350 and 5,470 to 5,725 MHz
Software Release	7.6.1.0
Type of Modulation:	Per 802.11 – OFDM
Declared Nominal Output Power:	802.11a: Legacy +19 dBm
(Average Power)	802.11n: HT-20 +19 dBm
	802.11n: HT-40 +18 dBm
EUT Modes of Operation:	Legacy 802.11a, 802.11n HT-20, HT-40
Transmit/Receive Operation:	Time Division Duplex
System Beam Forming:	WLA532-US has no beam forming capability
Rated Input Voltage and Current:	POE 48 Vdc 0.625 A
Operating Temperature Range:	Declared range -20° to +55°C 802.11a 18M8D1D
ITU Emission Designator:	802.11a 18M8D1D 802.11n HT-20 19M9D1D
	802.11n HT-20 19M9D1D 802.11n HT-40 36M7D1D
Equipment Dimensions:	6.0 (Diameter) x 2.5 (H) inches
	15 (Diameter) x 6.35 (H) cm
Weight:	1 lb (0.454 Kg)
Primary function of equipment:	Wireless Access Point for transmitting data and voice.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:13 of 108

3.2. Scope of Test Program

Juniper Networks WLA532-US Access Point RF Testing

The scope of the test program was to test the Juniper Networks WLA532-US 802.11a/b/g/n Wireless Access Point, 3x3 Spatial Multiplexing MIMO configurations in the frequency range 5,150 to 5,250 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

<u>WLA532 Models</u> WLA532-US (for US distribution) WLA532-WW, WLA532-XX (where –XX can be any alphanumeric, for world wide distribution)

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; *Emissions Testing of Transmitters with Multiple Outputs in the Same Band*

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:14 of 108

WLA532-US 802.11 a/b/g/n Wireless Access Point

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:15 of 108

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	802.11a/b/g/n Wireless Access Point	Juniper Networks	WLA532-US	JC0211322570, JC0211322566
Support	Laptop PC	IBM	Thinkpad	None

3.4. Antenna Details

• Integral Dual Band: Gain 2.4 GHz 2 dBi / 5GHz 3 dBi

3.5. Cabling and I/O Ports

Number and type of I/O ports

- 1. 1 x 10/100/1000 Ethernet
- 2. dc Power In (48 Vdc POE)

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:16 of 108

3.6. <u>Test Configurations</u>

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

Operational Mode(s) (802.11)	Variant	Data Rates with Highest Power	Frequencies (MHz)
	Legacy	6 MBit/s	5180, 5200, 5240
a,n	HT-20	6.5 MCS	, ,
	HT-40	13.5 MCS	5190, 5230

Antenna Test Configurations for Radiated Emissions and Band-Edge

The following measurements were performed on all antenna configurations identified in Section 3.4 Antenna Details.

Spurious Emission Test Strategy Band 5 250 – 5 350

Dana 3,230 – 3,330					
11a	11n HT-20	11n HT-40			
SE 5180	SE 5180	SE 5190			
SE 5200	SE 5200				
SE 5240	SE 5240	SE 5230			
Pk 5200					

KEY:-

SE – Spurious Emissions

BE - Band-Edge

PK - Peak Emission

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. The Output Power was reduced to meet the conducted power and peak power spectral density limits.

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:18 of 108

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210.and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	5.1.1
15.407(a) A9.2(2) 4.6	Transmit Output Power	Power Measurement	Conducted	Complies	5.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	5.1.3
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	5.1.4
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	5.1.5
15.407(f) 5.5	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Conducted	Complies	5.1.6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:19 of 108

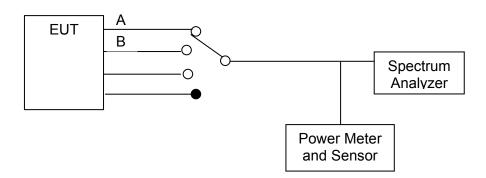
List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2) 4.7	Radiated Emissions		Radiated		5.1.7
4.7	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.7.1
	Radiated Band Edge	Band edge results		Complies	5.1.7.1
Industry Canada only RSS-Gen §4.10, §6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.7.2
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	5.1.7.3
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Complies	5.1.8

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:20 of 108

5. TEST RESULTS


- 5.1. Device Characteristics
- 5.1.1. 26 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.407(a) Industry Canada RSS-210 § A9.2(2) Industry Canada RSS-Gen 4.4

Test Procedure

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test Measurement Set up

Measurement set up for 26 dB and 99 % bandwidth test

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Default Power

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Ambient conditions.Temperature: 17 to 23 °CRelative humidity: 31 to 57 %Pressure: 999 to 1012 mbar

TABLE OF RESULTS – 802.11a Legacy 5150 – 5250 MHz

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to 42
Variant:	802.11a	Ambient Temp. (°C):	19	to 22
TPC:	HIGH	Pressure (mBars):	998	to 1003
Modulation:	ON	Duty Cycle (x):	100	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	3 0	lBi
Applied Voltage:	48.0 Vdc			
Notes 1:				
Notes 2:				

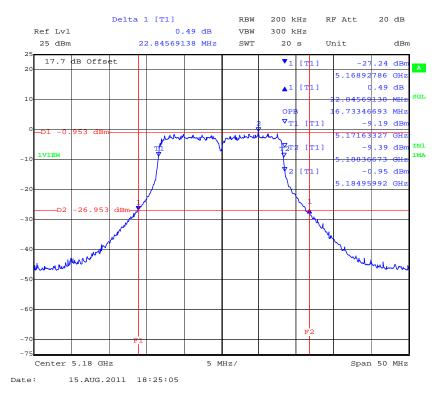
26 dB Bandwidth

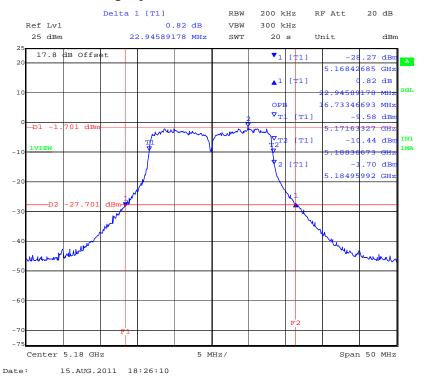
Test Frequency	26 dB Bandwidth MHz			Minimu Bandwid	ım 6dB ith Limit	Margin	
MHz	а	b	с	d	kHz MHz		MHz
5180	22.846000	22.946000	23.246000				-22.346000
5200	22.445000	22.946000	23.347000		500 0.5		-21.945000
5240	23.547000	23.647000	23.848000				-23.047000

99% Bandwidth

		99 % Bandwidth				
Test Frequency	MHz					
MHz	а	b	с	d		
5180	16.733000	16.733000	16.834000			
5200	16.733000	16.733000	16.834000			
5240	16.733000	16.834000	16.934000			

Measurement uncertainty:	±2.81 dB
--------------------------	----------

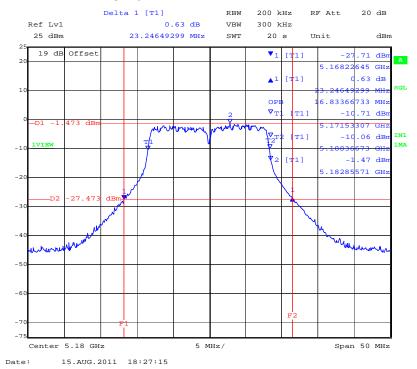

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:22 of 108

PORT A 5,180 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

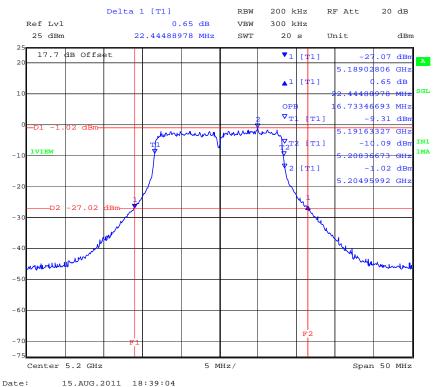
PORT B 5,180 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

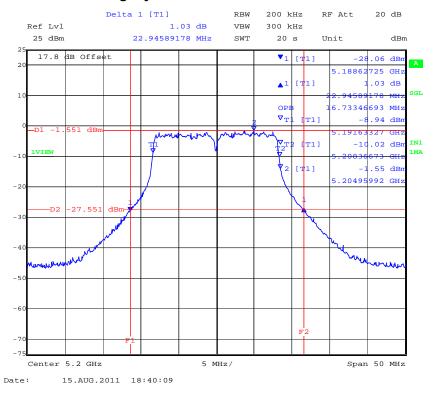


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:23 of 108

PORT C 5,180 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

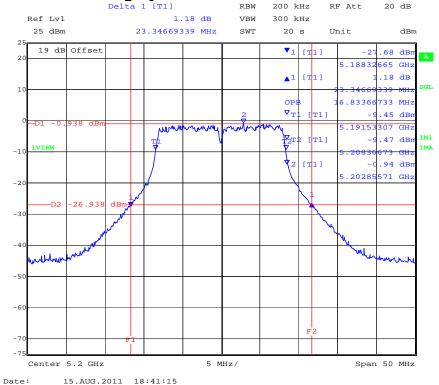

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


To: Serial #: Issue Date: Page:

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 rial #: JNIP03-U2 Rev A Date: 15th October 2011 Page: 24 of 108

PORT A 5,200 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

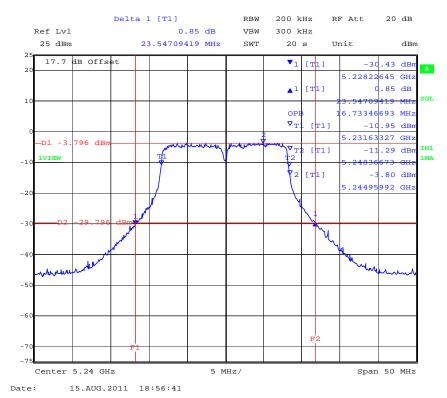
PORT B 5,200 MHz 802.11a Legacy 26 dB and 99 % Bandwidth



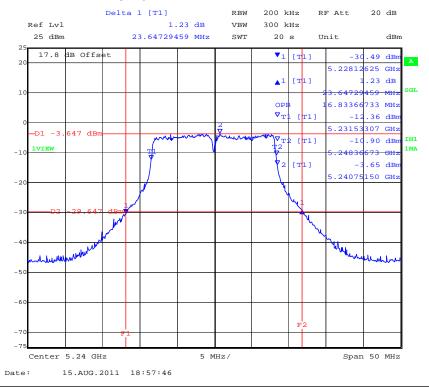
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:25 of 108

PORT C 5,200 MHz 802.11a Legacy 26 dB and 99 % Bandwidth



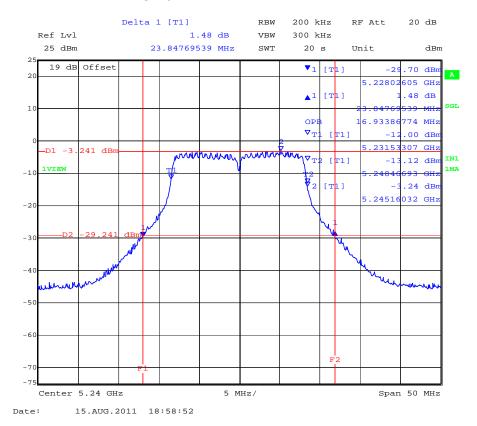
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:26 of 108

PORT A 5,240 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,240 MHz 802.11a Legacy 26 dB and 99 % Bandwidth



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:27 of 108

PORT C 5,240 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS - 802.11n HT-20 5150 - 5250 MHz

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	3	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

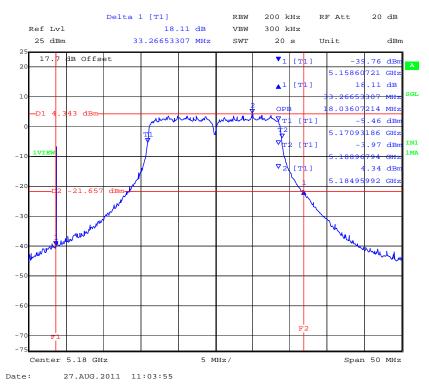
26 dB Bandwidth

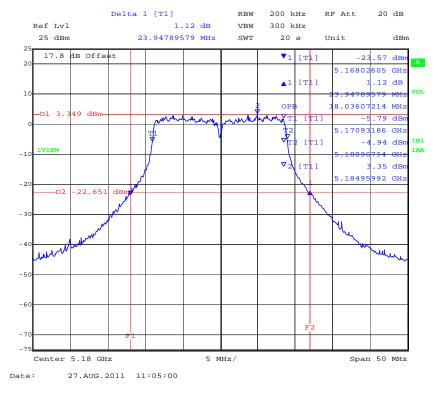
Test Frequency	26 dB Bandwidth MHz			Minimu Bandwid		Margin	
MHz	а	b	с	d	kHz MHz		MHz
5180	33.267000	23.948000	24.549000				-23.448000
5200	23.547000	23.447000	24.248000		500 0.5		-22.947000
5240	23.347000	23.948000	24.549000				-22.847000

99% Bandwidth

		99 % Bandwidth					
Test Frequency	MHz						
MHz	а	b	с	d			
5180	18.036000	18.036000	18.036000				
5200	17.936000	17.836000	18.036000				
5240	17.936000	18.136000	17.936000				

Measurement uncertainty:	±2.81 dB
--------------------------	----------

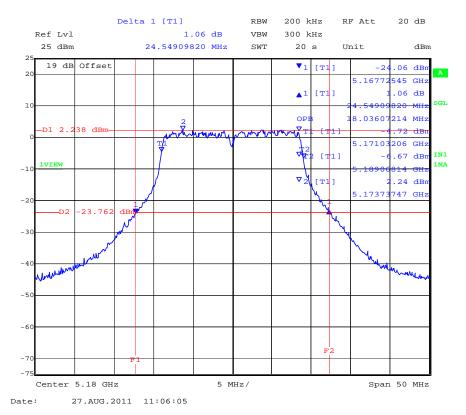

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:29 of 108

PORT A 5,180 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

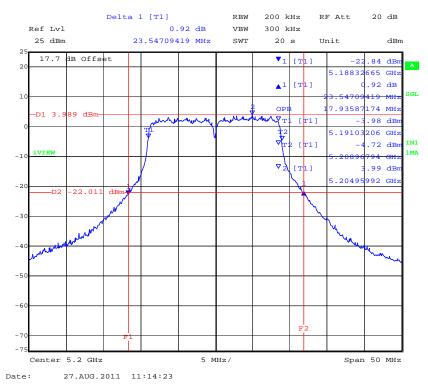
PORT B 5,180 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

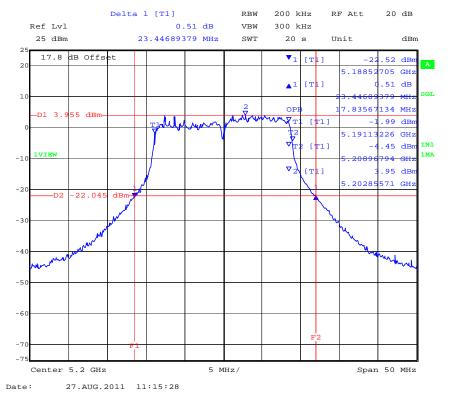

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: Issue Date: Page:

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A 15th October 2011 30 of 108

PORT C 5,180 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

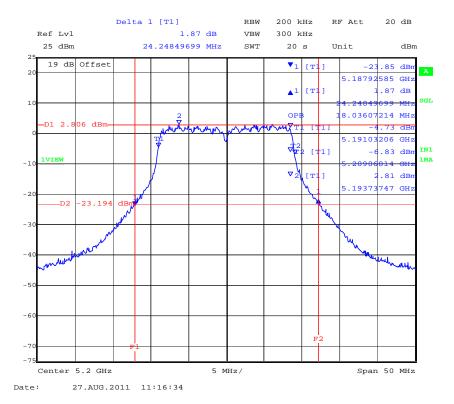

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:31 of 108

PORT A 5,200 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

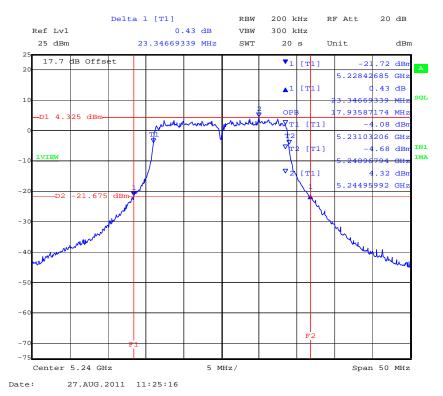
PORT B 5,200 MHz 802.11n HT-20 26 dB and 99 % Bandwidth



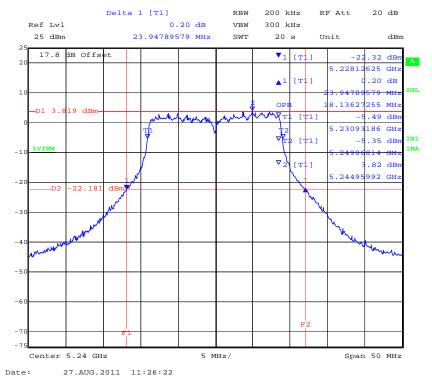
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:32 of 108

PORT C 5,200 MHz 802.11n HT-20 26 dB and 99 % Bandwidth



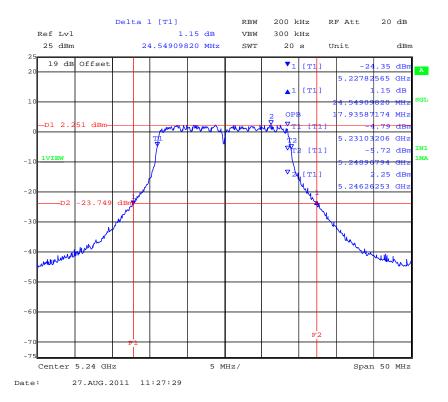
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:33 of 108

PORT A 5,240 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,240 MHz 802.11n HT-20 26 dB and 99 % Bandwidth



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:34 of 108

PORT C 5,240 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS - 802.11n HT-40 5150 - 5250 MHz

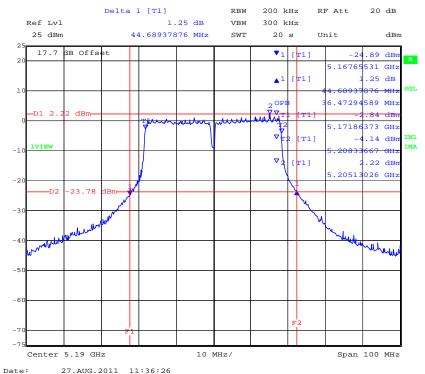
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35 t	o 42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19 t	o 22
TPC:	HIGH	Pressure (mBars):	998 t	o 1003
Modulation:	ON	Duty Cycle (x):	100	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	3 dl	Зi
Applied Voltage:	48.0 Vdc			
Notes 1:				
Notes 2:				

26 dB Bandwidth

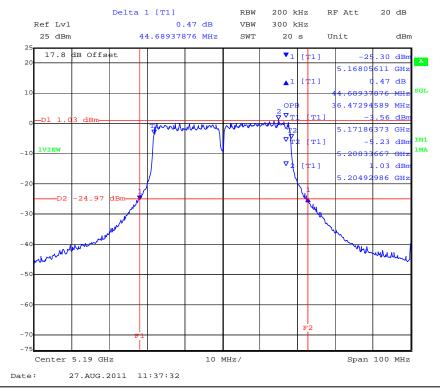
	26 dB Bandwidth			Minimu	ım 6dB		
Test Frequency	MHz			Bandwidth Limit Margin			
MHz	а	b	с	d	kHz	MHz	MHz
5190	44.689000	44.689000	47.094000		500	0.5	-44.189000
5230	44.489000	46.493000	46.092000		500	0.5	-43.989000

99% Bandwidth

	99 % Bandwidth MHz					
Test Frequency						
MHz	а	b	с	d		
5190	36.473000	36.473000	36.473000			
5230	36.473000	36.473000	36.473000			


Measurement uncertainty:	±2.81 dB
measurement uncertainty.	12.01 00

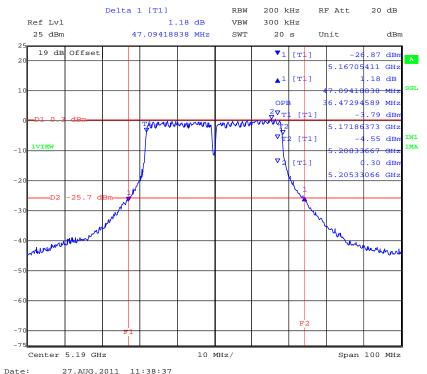
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:36 of 108

PORT A 5,190 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

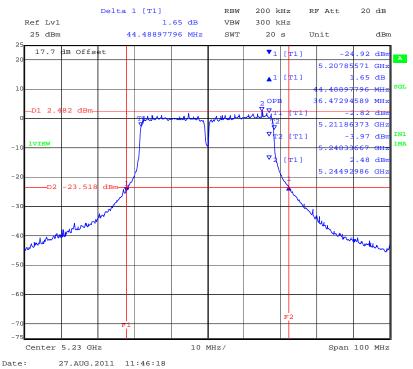
PORT B 5,190 MHz 802.11n HT-40 26 dB and 99 % Bandwidth



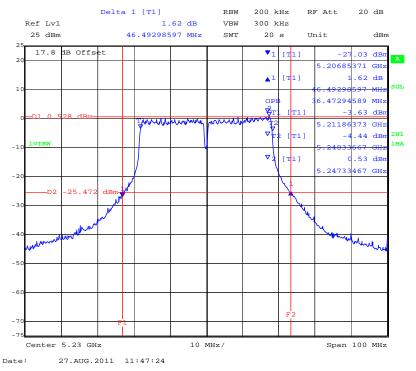
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:37 of 108

PORT C 5,190 MHz 802.11n HT-40 26 dB and 99 % Bandwidth



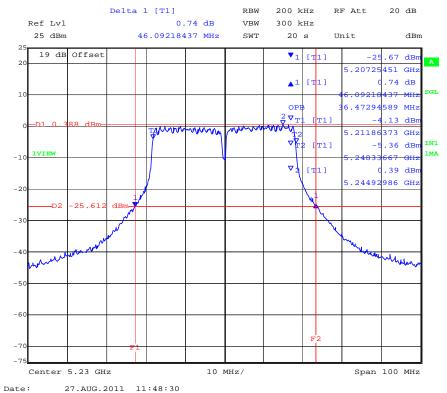
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:38 of 108

PORT A 5,230 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,230 MHz 802.11n HT-40 26 dB and 99 % Bandwidth



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:39 of 108

PORT C 5,230 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:40 of 108

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Spectrum Measurement

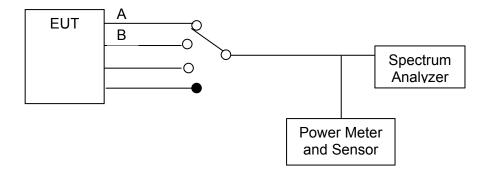
Measurement uncertainty ±2.81 dB

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:41 of 108


5.1.2. Transmit Output Power

FCC, Part 15 Subpart C §15.407(a) Industry Canada RSS-210 §9.9(2) Industry Canada RSS-Gen 4.6

Test Procedure

The transmitter terminal of EUT was connected to the input of an average power meter. Measurements were made while EUT was operating in a continuous transmission mode i.e. 100 % duty cycle at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result.

Test Measurement Set up

Measurement set up for Transmitter Output Power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Maximum Transmit (Conducted) Power, FCC Limits and Industry Canada Limits

Bands 5150 – 5250 MHz

FCC Limits

Conducted Power Limit lesser of: 50 mW or 4 dBm + 10 log (B) dBm. B is the 26 dB emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	4 + 10 Log (B) (dBm)	Limit (dBm)
а		23.94	+17.79	+17.00
HT-20	5150 – 5250	33.27	+19.22	+17.00
HT-40		47.09	+20.73	+17.00

Industry Canada Limits

EIRP Limit 5150 – 5250 MHz: Lesser of 200 mW (+23 dBm) or 10 + 10 Log (B) dBm. B is the 99% emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Maximum 99 % Bandwidth (MHz)	4 + 10 Log (B) (dBm)	EIRP Limit (dBm)
а		16.93	+22.29	+23.00
HT-20	5150 – 5250	18.03	+22.56	+23.00
HT-40		36.47	+25.62	+23.00

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Antenna Beam and Non-Beam Forming Power Levels

15. 407 (a)(1), (a) (2) Operation with directional antenna gains greater than 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Further FCC KDB 662911 D01 Multiple Transmitter Output v01 requires that the gain of antennas transmitting the same data (legacy 802.11a mode) must be increased by 10 * Log (N) when N is the number of antenna elements.

Operating Frequency Band 5150-5250 MHz

MIMO Operation

Antenna	Gain	Max. Allowable Conducted Peak Power (dBm)		Maximum EIRP
(dB)	(dBi)	Non-Beam Forming	Beam Forming	(dBm)
Integral	3.0	+17.0	+15.23	+23.0

Non-MIMO Operation (Legacy)

Antenna	Gain dBi	Increased Gain V's No. Antenna Ports				Total Gain	Max. Allowable Conducted Peak Power	Maximum EIRP
(dB)		Ports dB		dBi	(dBm)	(dBm)		
Integral	3	3	4.77	7.77	+15.23	+23.0		

Measurement Results for Transmit Output Power

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

EUT parameters. Power Level: Maximum Duty Cycle: 100% Temperature: Ambient

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS – 802.11a Legacy

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	Total Power (c		ver (dBm)	Limit	Margin			
Frequency		RF Port	(dBm)					
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	8.36	7.68	8.08		N/A	12.82	15.23	-2.41
5200	8.39	8.31	8.67		N/A	13.23	15.23	-2.00
5240	6.74	6.54	6.93		N/A	11.51	15.23	-3.72

Measurement uncertainty:	±1.33 dB	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS - 802.11n HT20

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power			Total Power (dBm)		Limit	Margin	
Frequency		RF Port	(dBm)					.
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	12.29	11.33	11.02		N/A	16.35	17.00	-0.65
5200	12.17	11.52	11.46		N/A	16.50	17.00	-0.50
5240	12.41	11.38	11.15		N/A	16.45	17.00	-0.55

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

TABLE OF RESULTS - 802.11n HT40

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test Measured Peak Power					Total Power (dBm)		Limit	Margin
Frequency	RF Port (dBm)						J.J. J.	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5190	12.51	11.68	11.83		N/A	16.79	17.00	-0.21
5230	11.70	11.59	11.77		N/A	16.46	17.00	-0.54

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Issue Date:

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: JNIP03-U2 Rev A 15th October 2011 Page: 47 of 108

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:48 of 108

5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.407(a) Industry Canada RSS-210 § A9.2(2)

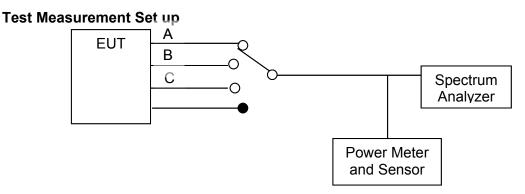
Test Procedure

The transmitter output was connected to a spectrum analyzer and the peak power spectral density measured. Method 2 Sample Detection and power averaging, specified in FCC document DA 02-2138 (Normative Reference (ix) Section 2.1 "Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices") was used to determine the peak power spectral density of the emission for each antenna port. The Peak Power Spectral Density is the highest level found across the emission in a 1 MHz resolution bandwidth.

Emissions Testing of Transmitters with Multiple Outputs in the Same Band

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)

(1) Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs [i.e., for a device with N transmitter outputs, if the spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value (in watts or milliwatts) in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the Nth output to obtain the value for the first frequency bins is computed in the same way.


The summed spectral values were calculated on a computer and the results read as a data file by the spectrum analyzer to produce plot of total power density across the spectra.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:	WLA532-US Wireless LAN Access Point
	FCC 47 CFR Part 15.407 & IC RSS-210
Serial #:	JNIP03-U2 Rev A
Issue Date:	15th October 2011
	49 of 108

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

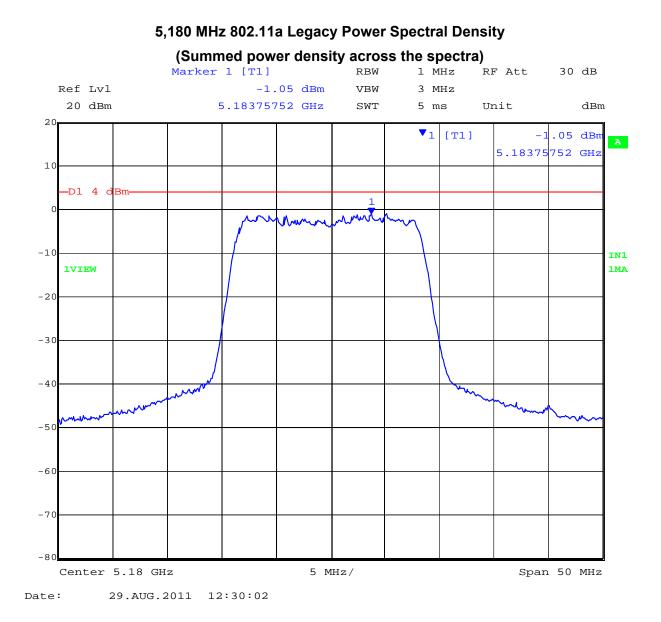
Measurement Results for Peak Power Spectral Density

Ambient conditions.		
Temperature: 17 to 23 °C	Relative humidity: 31 to 57 %	Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Default Power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

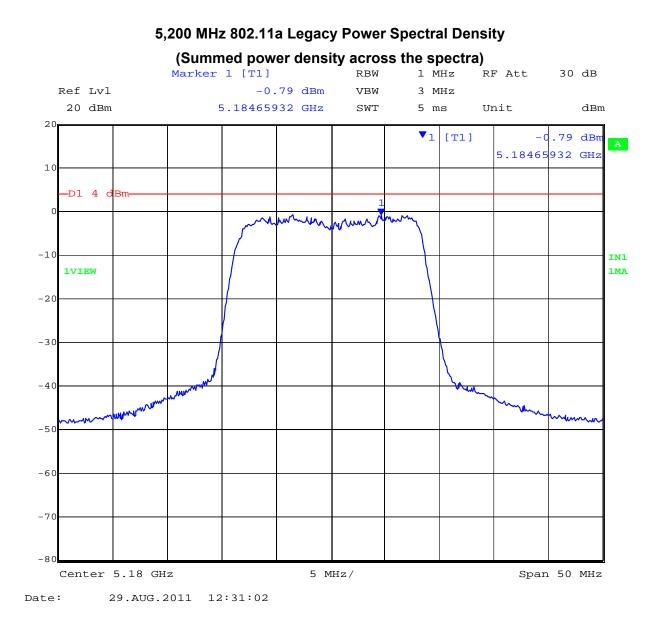
TABLE OF RESULTS - 802.11a Legacy 5150 - 5250 MHz


Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc	Antenna Ports (N):		3	
Notes 1:					
Notes 2:					

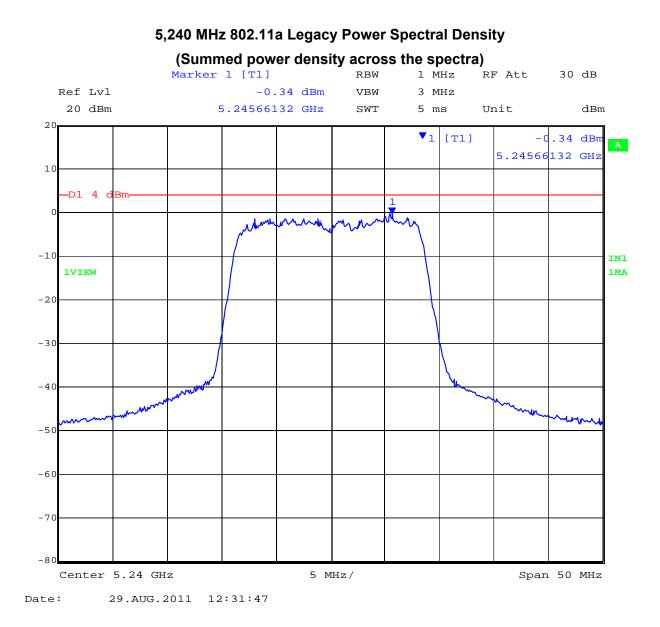
Test Frequency	Measured Peak Power RF Port (dBm)			Correction factor	Peak Power Spectral Density	Limit	Margin	
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5180.00	-4.96	-4.68	-5.74			-1.05	4.00	-5.05
5200.00	-4.78	-4.22	-4.32			-0.79	4.00	-4.79
5240.00	-4.99	-4.74	-4.28			-0.34	4.00	-4.34

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:52 of 108

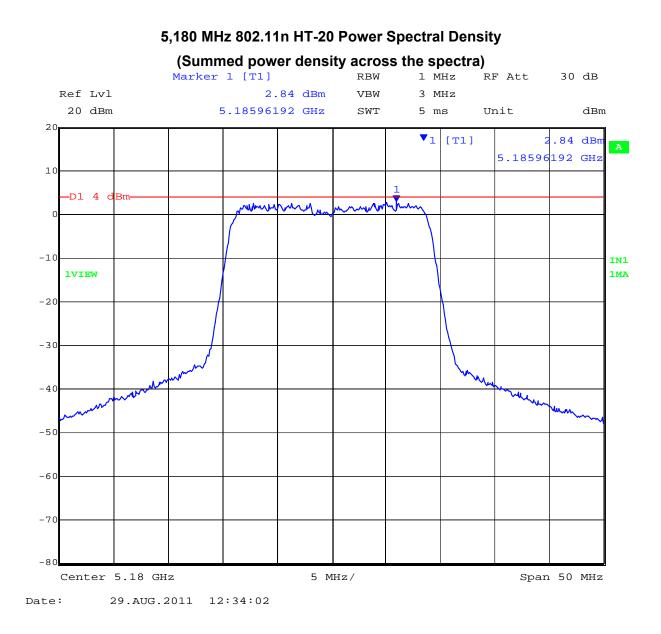
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:53 of 108

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

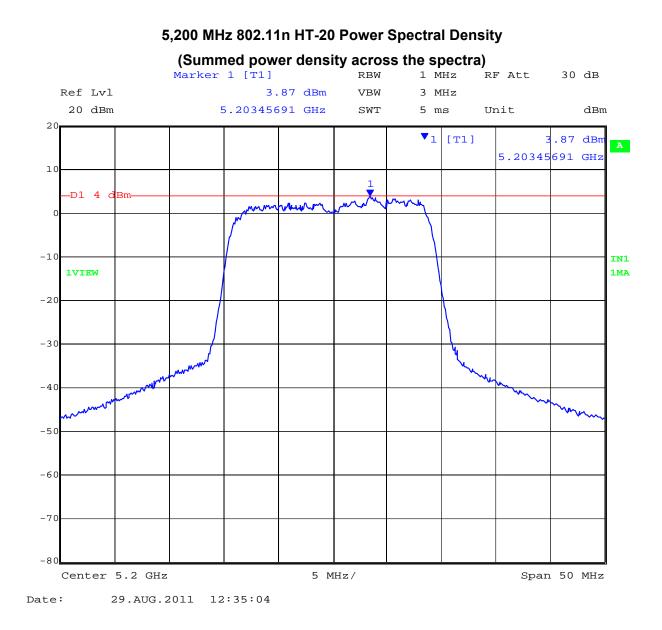
TABLE OF RESULTS - 802.11n HT-20 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc	Antenna Ports (N):		3	
Notes 1:					
Notes 2:					


Test Frequency	Measured Peak Power RF Port (dBm)			Correction factor	Peak Power Spectral Density	Limit	Margin	
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5180.00	-0.47	-1.93	-1.11			2.84	4.00	-1.16
5200.00	-0.42	0.07	-1.14			3.87	4.00	-0.13
5240.00	-0.08	0.05	-1.68			3.65	4.00	-0.35

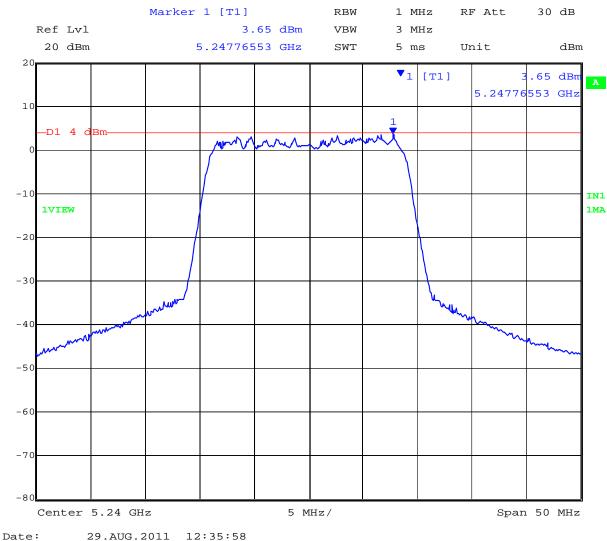
Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:55 of 108

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:56 of 108



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5,240 MHz 802.11n HT-20 Power Spectral Density

(Summed power density across the spectra)

29.AUG.2011 12:35:58

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

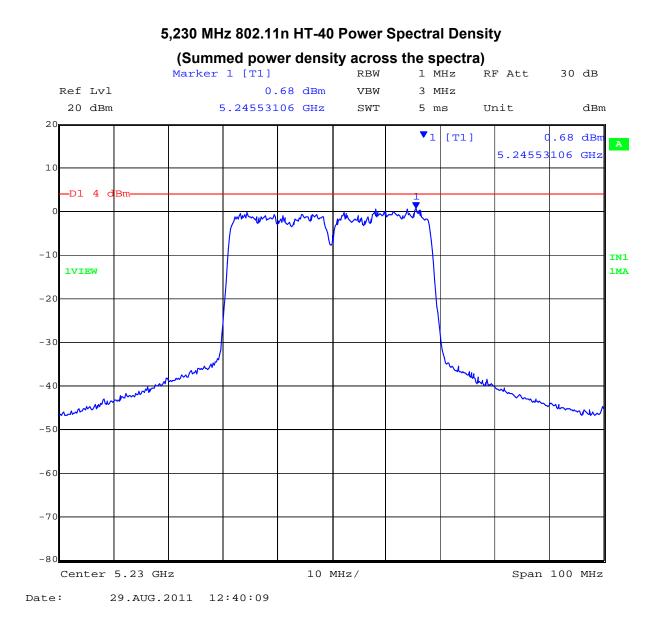
TABLE OF RESULTS - 802.11n HT-40 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc	Antenna Ports (N):		3	
Notes 1:					
Notes 2:					

Test	Μ	leasured Po	eak Power		Peak Correction Power		Limit	Margin
Frequency	RF Port (dBm)			factor	Spectral Density	Linit	margin	
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5190.00	-2.49	-4.27	-3.02			0.45	4.00	-3.55
5230.00	-2.34	-3.79	-3.45			0.68	4.00	-3.32

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:59 of 108

5,190 MHz 802.11n HT-40 Power Spectral Density (Summed power density across the spectra) Marker 1 [T1] RBW 1 MHz RF Att 30 dB Ref Lvl 0.45 dBm VBW 3 MHz dBm 20 dBm 5.25352705 GHz SWT 5 ms Unit 20 **v**1 [T1] .45 dBm Α 5.25352705 GHz 10 -D1 4 dBm man where MM -10IN1 **1VIEW 1MA** -20 -30 them where -40 -50 -60 -70 -80 Center 5.24 GHz 10 MHz/ Span 100 MHz Date: 29.AUG.2011 12:39:19

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:60 of 108

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:61 of 108

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2) 5150 – 5250 MHz (a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.
5250 – 5350 MHz & 5470 – 5725 MHz (a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.
Industry Canada RSS-210 § A9.2(1), A9.2(2) 5150 – 5250 MHz § A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band
5250 – 5350 MHz & 5470 – 5725 MHz § A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

Laboratory Measurement Uncertainty for Spectral Density

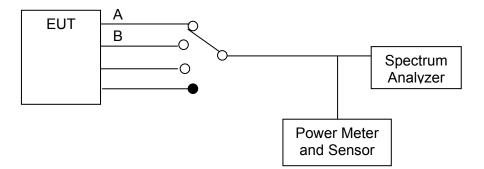
Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:62 of 108


5.1.4. Peak Excursion Ratio

FCC, Part 15 Subpart C §15.407(a)(6)

Test Procedure

Normative Reference (xi) Section 2.1 Measurement Procedure DA 02-2138 "Measurement Procedure Updated for Peak Transmit Power in the UNII Bands" was implemented to determine the Peak Excursion Ratio. This is a conducted measurement using a spectrum analyzer. The Peak Excursion Ratio is the difference in amplitude (dB) between the two traces.

Test Measurement Set up

Measurement set up for Peak Excursion Ratio

Measurement Results for Peak Excursion Ratio

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57% Pressure: 999 to 1012 mbar

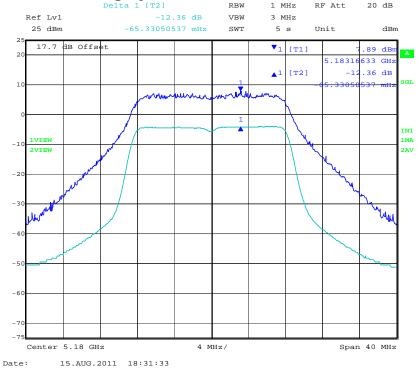
Radio Parameters Duty Cycle: 100% Output: Modulated Carrier Power: Maximum Default Power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

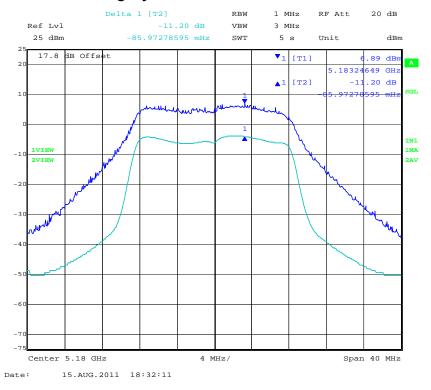
TABLE OF RESULTS - 802.11a Legacy 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	N/A Vdc				
Notes 1:					
Notes 2:					

Trace Δ Marker					Limit	Margin
Frequency	Port A	Port B	Port C	Port D	Linit	margin
MHz	dB	dB	dB	dB	dB	dB
5180	-12.36	-11.20	-11.02			-1.98
5200	-11.96	-11.48	-11.01		-13.00	-1.99
5240	-11.91	-12.02	-9.99			-3.01


Measurement uncertainty:	±1.33 dB
--------------------------	----------

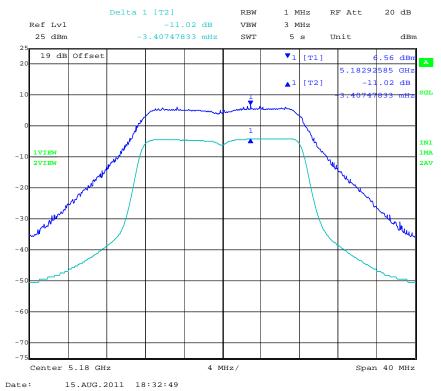
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:64 of 108

PORT A 5,180 MHz 802.11a Legacy Peak Excursion Ratio

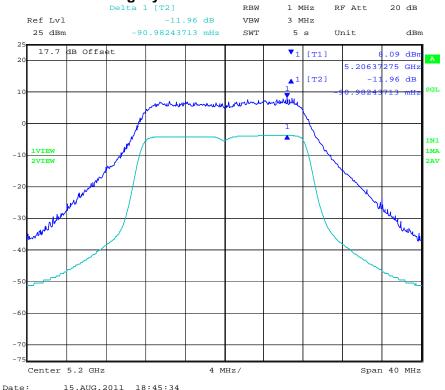
PORT B 5,180 MHz 802.11a Legacy Peak Excursion Ratio

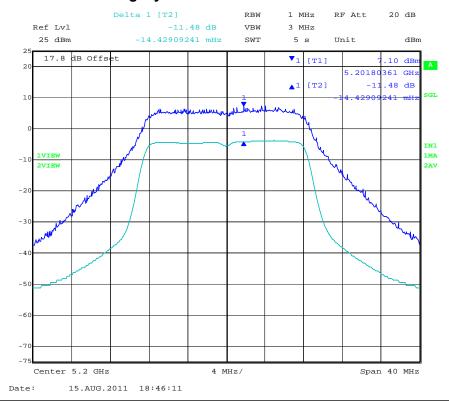

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:65 of 108

PORT C 5,180 MHz 802.11a Legacy Excursion Ratio

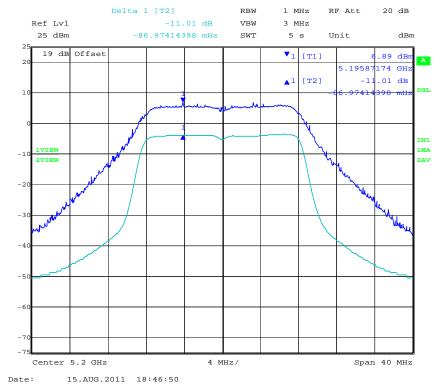

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:66 of 108

PORT A 5,200 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,200 MHz 802.11a Legacy Peak Excursion Ratio

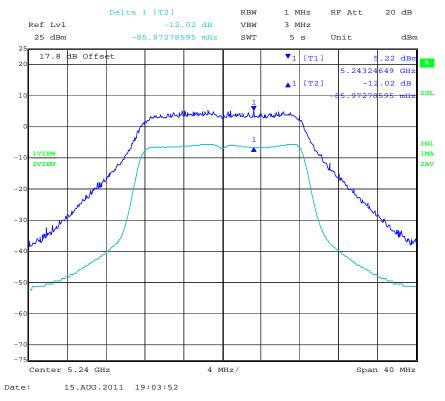


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:67 of 108

PORT C 5,200 MHz 802.11a Legacy Peak Excursion Ratio

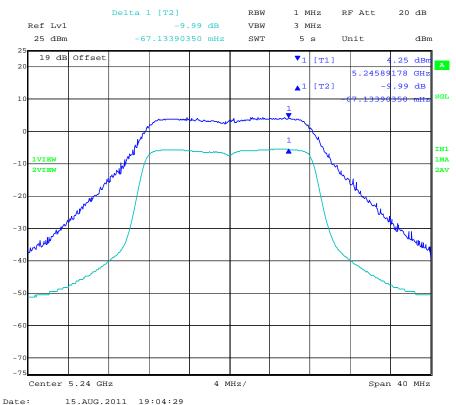
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:68 of 108

PORT A 5,240 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,240 MHz 802.11a Legacy Peak Excursion Ratio



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:69 of 108

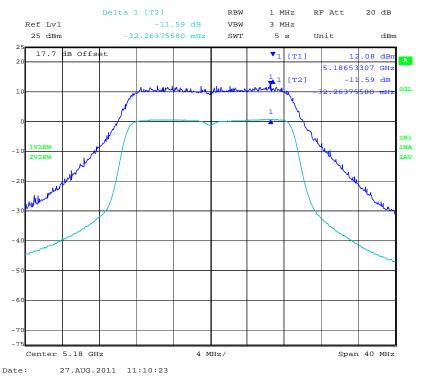
PORT C 5,240 MHz 802.11a Legacy Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

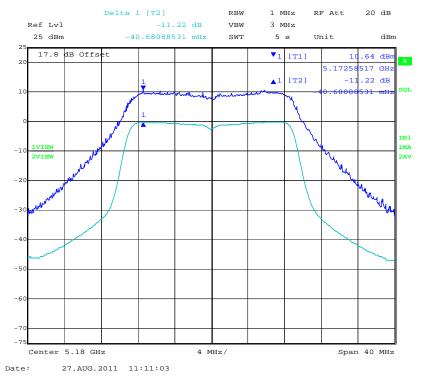
TABLE OF RESULTS - 802.11n HT-20 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Trace Δ Marker					Limit	Margin
Frequency	Port A	Port B	Port C	Port D		margin
MHz	dB	dB	dB	dB	dB	dB
5180	-11.59	-11.22	-10.54			-2.46
5200	-11.73	-10.97	-10.14		-13.00	-2.86
5240	-11.56	-11.04	-11.06			-1.96


Measurement uncertainty:	±1.33 dB
--------------------------	----------

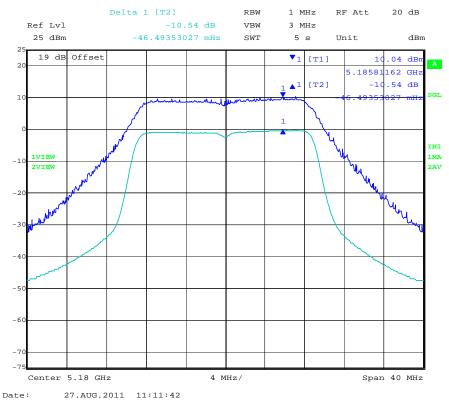
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:71 of 108

PORT A 5,180 MHz 802.11n HT-20 Peak Excursion Ratio

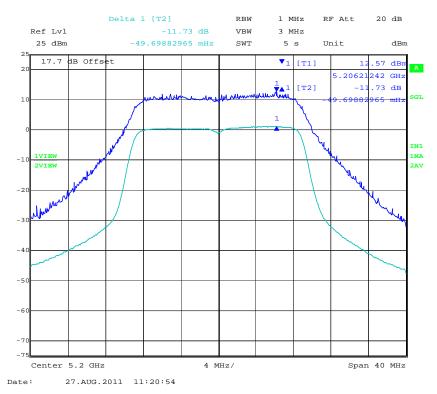
PORT B 5,180 MHz 802.11n HT-20 Peak Excursion Ratio

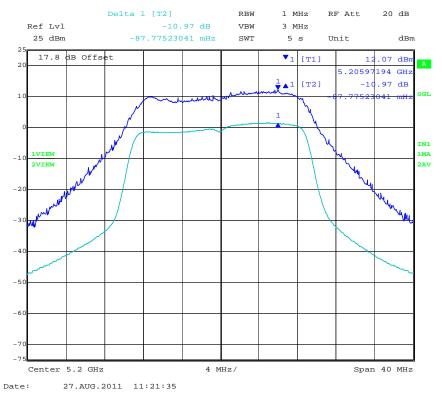


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:72 of 108

PORT C 5,180 MHz 802.11n HT-20 Peak Excursion Ratio


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:73 of 108

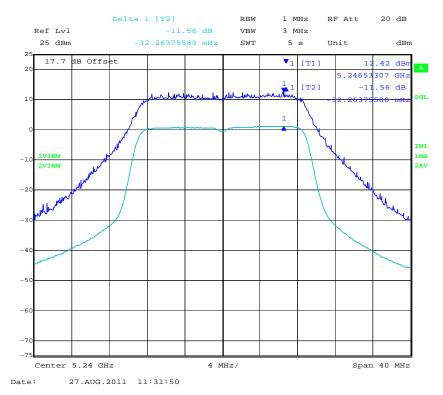
PORT A 5,200 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,200 MHz 802.11n HT-20 Peak Excursion Ratio

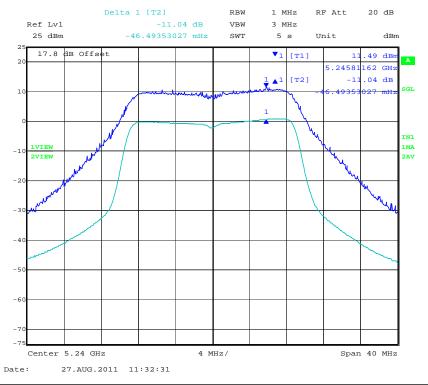
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:74 of 108

Delta 1 [T2] RBW 1 MHz 20 dB RF Att -10.14 dB Ref Lvl VBW 3 MHz 25 dBm -90.98243713 mHz SWT 5 s dBm Unit 25 19 dB Offset ▼1 [T1] 10.24 dBr А 20 5.20637275 GHz 1¹ [T2] -10 .14 dB 1 1 IN1 1MA **IVIEW** -1 2VIE 2AV ч -20 4. Yh, - 3 -40 -5 -60 - 7 -7 Center 5.2 GHz 4 MHz/ Span 40 MHz 27.AUG.2011 11:22:14 Date:


PORT C 5,200 MHz 802.11n HT-20 Peak Excursion Ratio

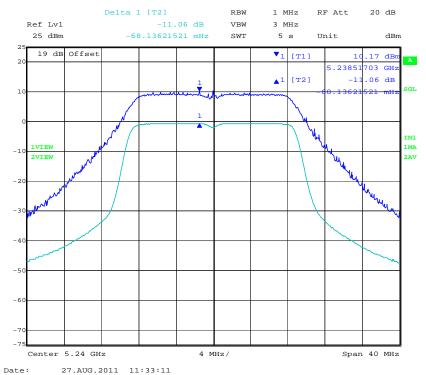
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:75 of 108

PORT A 5,240 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,240 MHz 802.11n HT-20 Peak Excursion Ratio



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:76 of 108

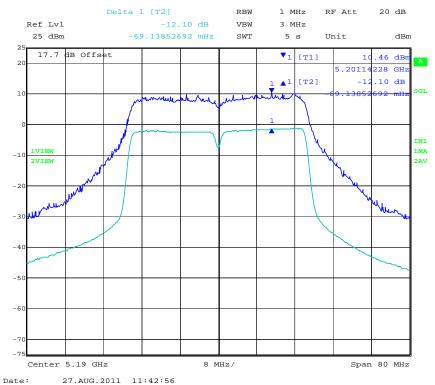
PORT C 5,240 MHz 802.11n HT-20 Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

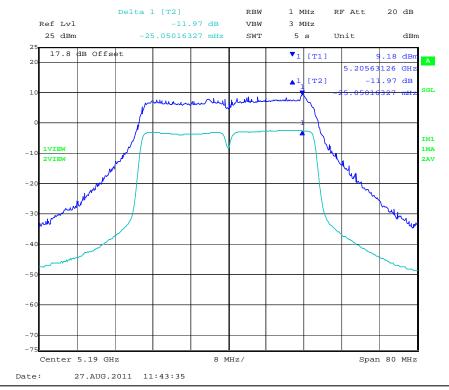
TABLE OF RESULTS - 802.11n HT-40 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		3 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test		Limit	Margin				
Frequency	Port A	Port B	Port C	Port D	Linit	wargin	
MHz	dB	dB	dB	dB	dB	dB	
5190	-12.10	-11.97	-10.48		-13.00	-2.53	
5230	-11.75	-11.18	-10.59		-10.00	-2.41	


Measurement uncertainty: ±1.33 dB

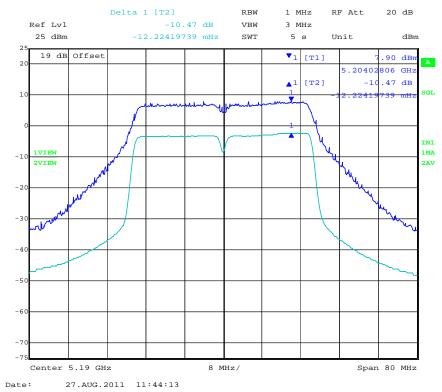
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:78 of 108

PORT A 5,190 MHz 802.11n HT-40 Peak Excursion Ratio

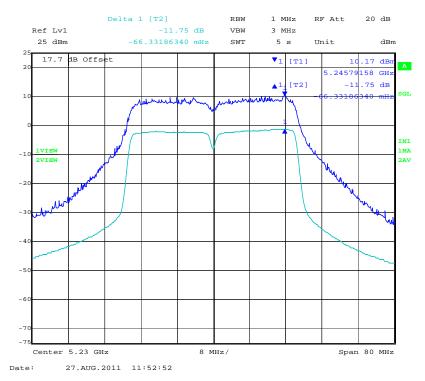
PORT B 5,190 MHz 802.11n HT-40 Peak Excursion Ratio


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

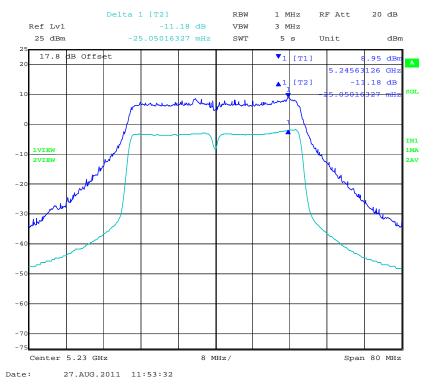
Serial #: Issue Date: Page:

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A 15th October 2011 79 of 108

PORT C 5,190 MHz 802.11n HT-40 Peak Excursion Ratio



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:80 of 108

PORT A 5,230 MHz 802.11n HT-40 Peak Excursion Ratio

PORT B 5,230 MHz 802.11n HT-40 Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:81 of 108

Delta 1 [T2] RBW 1 MHz RF Att 20 dB Ref Lvl -10.59 dB VBW 3 MHz 25 dBm -16.83425903 mHz SWT 5 s Unit dBm 2 19 dB Offset ▼1 [T1] .86 dB Α 2 421 GH: 5.24210 .59 dB **1** [T2] -10 1 11 IN1 1VIEW 1MA -10 2AV 2VIEW - 2 - 3 - 4 - 5 -6 Center 5.23 GHz 8 MHz/ Span 80 MHz Date: 27.AUG.2011 11:54:13

PORT C 5,230 MHz 802.11n HT-40 Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:82 of 108

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	± 2.81dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:83 of 108

5.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g) Industry Canada RSS-210 §2.1

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

 \pm 20ppm at 5.250 GHz translates to a maximum frequency shift of \pm 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, \pm 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.6. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.407(f) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/($4\pi d^2$) EIRP = P * G P = Peak output power (mW) G = Antenna numeric gain (numeric) d = Separation distance (cm) Numeric Gain = 10 ^ (G (dBi)/10)

The Juniper WLA532-US has three transmitters operating in each band. The peak power in the table below is calculated by assuming a worst case scenario where all transmitters are operating simultaneously in the same channel.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 $\rm mW/cm^2$

Freq. Band (MHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
5150 - 5250	3.0	1.99	+17.00	47.8	2.75	20.00

<u>Note:</u> for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification Maximum Permissible Exposure Limits

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the application requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7. Radiated Emissions

FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a) Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

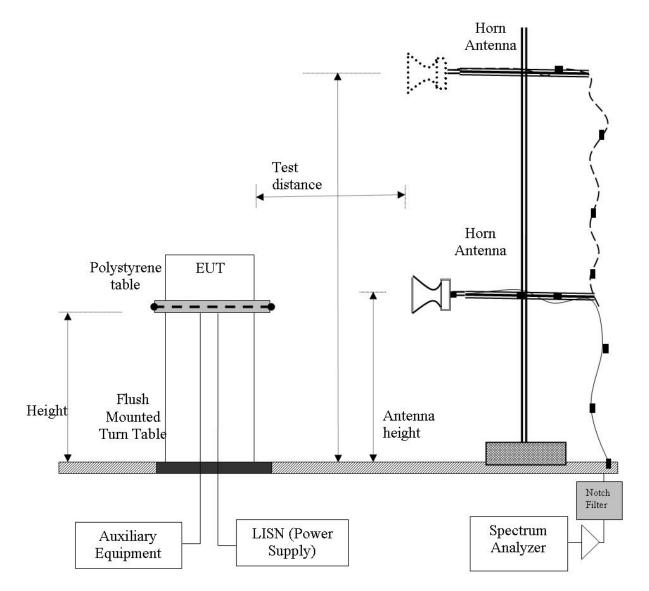
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:86 of 108

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ($dB\mu V/m$);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m


Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:87 of 108

Radiated Emission Measurement Setup – Above 1 GHz

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:88 of 108

Specification

Radiated Spurious Emissions

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of -27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2) For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6 Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

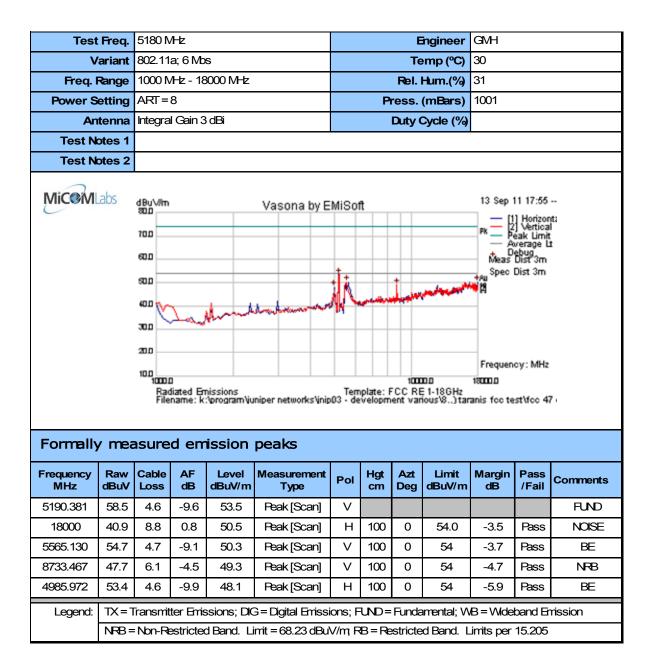
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty +5.6/-4.5 dB


Traceability:

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7.1. Integral Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:91 of 108

Tost	Freq.	5200 N	1-1-7					-	Fraincor	GMH			
	•					Engineer			30				
		802.11	,						emp (°C)				
Freq. F				000 MHz					Hum.(%)	31			
Power S	0	ART=	-						(mBars)	1001			
An	tenna	Integra	Gain 3	dBi				Duty (Cycle (%)				
	Test Notes 1 Test Notes 2												
Test Notes 2													
With Vasona by EMISoft 13 Sep 11 17:59 13 Sep 11 17:59 14 Utility Vasona by EMISoft 15 Vertical 16 Vertical 17 Vertical 18 Vertical 19 Vertical 10 Vertical 19 Vertical 10 Vertical 19 Vertical 19 Vertical 10												it: 1 1 1	
Formally	/ mea	sured	emise	sion pea	iks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5190.381	60.3	4.6	-9.6	55.3	Peak [Scan]	V						FUND	
5462.92585	57.6	4.6	-9.2	53.0	Peak [Scan]	V	100	0	54.0	-1.0	Pass	BE	
16773.547	41.1	8.6	1.2	51.0	Peak [Scan]	V	100	0	54	-3.1	Pass	NOISE	
8733.467	48.8	6.1	-4.5	50.4	Peak [Scan]	V	100	0	54	-3.7	Pass	NRB	
5701.403	53.8	4.7	-8.9	49.7	Peak [Scan]	Н	100	0	54	-4.3	Pass	BE	
4985.972	54.3	4.6	-9.9	49.0	Peak [Scan]	Н	100	0	54	-5.0	Pass	BE	
Legend:	TX=T	ransmit	ter Emis	sions; DIC	G = Digital Emissi	ons; F	UND=	Funda	amental; W	/B=Wide	band Er	rission	
	NRB=	Non-Re	stricted	d Band. Li	mit = 68.23 dBu	V/m, F	B=Re	stricte	ed Band. L	limits per	15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:92 of 108

Test	Freq.	5240 MHz Engine								GMH			
Va	ariant	802.11a; 6 Mbs				Temp (°C)			emp (°C)	30			
Freq. R	ange	1000 N	1-1 2 - 18	8000 MHz				Rel.	Hum.(%)	31			
Power Se	etting	ART=	8				Pi	ress.	(mBars)	1001			
Ant	enna	Integra	l Gain 3	dBi				Duty (Cycle (%)				
Test No	tes 1												
Test Notes 2													
Formally													
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5224.449	60.7	4.6	-9.6	55.7	Peak [Scan]	Н						FUND	
5462.92585	57.8	4.6	-9.2	53.2	Peak [Scan]	~	100	0	54.0	-0.8	Pass	BE	
16807.615	40.9	8.6	1.1	50.6	Peak [Scan]	V	100	0	54	-3.4	Pass	NOISE	
8733.467	48.9	6.1	-4.5	50.4	Peak [Scan]	V	100	0	54	-3.6	Pass	NRB	
5701.403	53.6	4.7	-8.9	49.4	Peak [Scan]	Н	100	0	54	-4.6	Pass	BE	
J				,	6 = Digital Emissi mit = 68.23 dBu'	,			,			rission	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:93 of 108

Test	Freq.	5180 N	Hz					E	ngineer	GMH			
	•	802.11n HT-20; 6.5 MCS					Temp (°C)			30			
Freq. F				8000 MHz					Hum.(%)	31			
Power Se	•	ART=					Р		(mBars)	1001			
	tenna	Integra	I Gain 3	dBi					Cycle (%)				
Test No			ttegral Gain 3 dBi Duty Cycle (%)										
Test Notes 2													
Redited Emissions Redited Emission Redited Redited Emission Redited Redited Redite													
Formally	' mea	asure	d em	ission	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5156.313	62.5	4.6	-9.6	57.5	Peak [Scan]	V						FUND	
5462.92585	59.2	4.6	-9.2	54.5	Peak [Scan]	V					Pass	BE	
5701.403	55.4	4.7	-8.9	51.2	Peak [Scan]	Н	100	0	54	-2.8	Pass	BE	
18000.000	41.4	8.8	0.8	51.0	Peak [Scan]	V	100	0	54	-3.0	Pass	NOISE	
8733.467	48.6	6.1	-4.5	50.2	Peak [Scan]	V	100	0	54	-3.8	Pass	NRB	
4985.972	53.3	4.6	-9.9	48.1	Peak [Scan]	V	100	0	54	-5.9	Pass	BE	
Legend:	TX=T	ransmit	ter Erris	sions; DK	G = Digital Emissi	ons; F	UND=	Funda	amental; V	/B=Wide	band E	mission	
	NRB=	Non-Re	estricted	d Band. Li	mit = 68.23 dBu	V/m, F	B=R€	stricte	ed Band. L	limits per	15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:94 of 108

Test	Freq.	5200 N	Hz					E	ngineer	GMH		
	•	802.11	n HT-20); 6.5 MCS	5	Temp (°C)			<u> </u>	30		
Freg. F	ange	1000 N	1Hz - 18	000 MHz		Rel. Hum.(%)			31			
Power Se	etting	ART=	12.5				P	ress.	(mBars)	1001		
	tenna	Integra	itegral Gain 3 dBi						<u> </u>			
Test No	tes 1								J (- 4			
Test No	Test Notes 2											
dBuVin Vasona by EMISoft 13 Sep 11 18:08 number 13 Sep 11 18:08 13 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 11 18:08 number 10 Sep 11 18:08 10 Sep 1												
Formally	mea	sured	emiss	sion pea	iks							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5190.381	63.0	4.6	-9.6	58.0	Peak [Scan]	н						FUND
5633.26653	59.3	4.7	-9.0	55.1	Peak [Scan]	н					Pass	BE
18000.000	41.2	8.8	0.8	50.8	Peak [Scan]	н	100	0	54	-3.2	Pass	NOISE
8733.467	48.4	6.1	-4.5	50.0	Peak [Scan]	V	100	0	54	-4.0	Pass	NRB
4985.972	53.5	4.6	-9.9	48.3	Peak [Scan]	\vee	100	0	54	-5.8	Pass	BE
5769.539	52.3	4.8	-8.9	48.2	Peak [Scan]	Н	100	0	54	-5.8	Pass	BE
Legend:					G = Digital Emissi imit = 68.23 dBu'							

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:95 of 108

Test	Freq.	5240 N	/Hz			Engineer			GMH			
v	ariant	802.11	n HT-20); 6.5 MCS	;	Temp (°C)			30			
Freq. I	Range	1000 N	/Hz - 18	3000 MHz		Rel. Hum.(%)			31			
Power S	etting	ART=	12.5				P	ress.	(mBars)	1001		
An	tenna	Integra	ntegral Gain 3 dBi Duty					Duty (Cycle (%)			
Test No	otes 1											
Test No	otes 2	es 2										
test rotes 2 Mice New Yasona by EMISoft 13 Sep 11 18:11 10 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5224.449	63.6	4.6	-9.6	58.6	Peak [Scan]	V						FUND
5565.13026	56.4	4.7	-9.1	52.0	Peak [Scan]	н	100	0	54.0	-2.0	Pass	BE
16058.116	41.5	9.0	0.4	50.9	Peak [Scan]	V	100	0	54	-3.2	Pass	NOISE
8733.467	48.8	6.1	-4.5	50.4	Peak [Scan]	V	100	0	54	-3.6	Pass	NRB
4985.972	53.8	4.6	-9.9	48.5	Peak [Scan]	V	100	0	54	-5.5	Pass	BE
	TV - 1	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										
Legend:	1~-	aisini		5310115, DIC	5 – Digital Difissi	015,1		Turue				13301

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

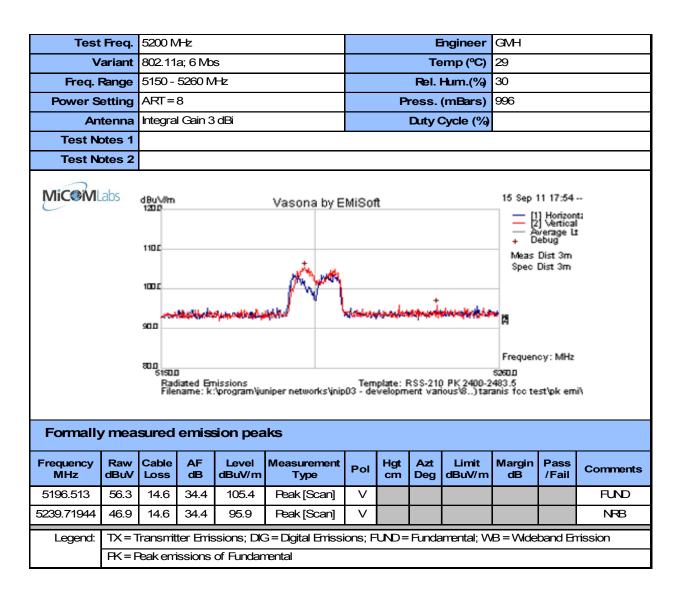
Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:96 of 108

Test	Freq.	5190 N	190 MHz					Engineer			GMH		
V	ariant	802.11	n HT-40); 13.5 MC	S	Temp (°C)			emp (°C)	30			
Freq. F	Range	1000 N	1Hz - 18	8000 MHz		Rel. Hum.(%)			Hum.(%)	31			
Power S	etting	ART=	12.5				P	ress.	(mBars)	1001			
An	tenna	Integra	ntegral Gain 3 dBi					Duty (Cycle (%)				
Test No	otes 1												
Test No	Test Notes 2												
But will be used to be u													
Formally	mea	asure	d em	ission	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5190.381	61.7	4.6	-9.6	56.7	Peak [Scan]	V						FUND	
5565.13026	57.6	4.7	-9.1	53.2	Peak [Scan]	V	100	0	54.0	-0.8	Pass	BE	
16058.116	41.5	9.0	0.4	50.9	Peak [Scan]	V	100	0	54	-3.1	Pass	NOISE	
8733.467	48.8	6.1	-4.5	50.4	Peak [Scan]	V	100	0	54	-3.7	Pass	NRB	
4985.972	54.8	4.6	-9.9	49.5	Peak [Scan]	V	100	0	54	-4.5	Pass	BE	
5769.539	52.2	4.8	-8.9	48.1	Peak [Scan]	н	100	0	54	-5.9	Pass	BE	
Legend:					G = Digital Emissi mit = 68.23 dBu'								

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:97 of 108

Test F	From	reg. 5230 MHz Engine									GMH			
). 12 ENA	e				<u> </u>	30				
); 13.5 MC	5	Temp (°C)								
Freq. R	•			8000 MHz					Hum.(%)	31				
Power Se	•	ART=						(mBars)	1001					
	enna	Integra	l Gain 3	dBi				Duty (Cycle (%)					
Test Not														
Test Not	tes 2	» 2												
MiCOMLa	lbs	dBuV/m Vasona by EMiSoft 13 Sep 11 18:17 Pk [1] Horizonta Peak Limit Average La Debug Meas Dist 3m Spec Dist 3m Au 200								ta I				
Formally	meas	Filer	liated Err name: k:	\program\ju	niper networks\inip	Tem 03 - de	plate: F velopm	1000 FCC RE ent var	- 1-18GHz	180000	cy: MHz st\fcc 47	7.		
· on any	mea													
	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
5224.449	61.7	4.6	-9.6	56.7	Peak [Scan]	V						FUND		
5633.26653	56.4	4.7	-9.0	52.2	Peak [Scan]	Н	100	0	54.0	-1.8	Pass	BE		
8733.467	50.2	6.1	-4.5	51.8	Peak [Scan]	V	100	0	54	-2.2	Pass	NRB		
16262.525	41.9	8.9	0.2	51.0	Peak [Scan]	V	100	0	54	-3.0	Pass	NOISE		
4985.972	53.6	4.6	-9.9	48.3	Peak [Scan]	V	100	0	54	-5.7	Pass	BE		
-					6 = Digital Emissi mit = 68.23 dBu							rission		


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:98 of 108

Peak Emissions

The peak emission level is present when the EUT is in the centre channel in the 5150 - 5250 MHz band in 11a mode.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:99 of 108

5.1.7.2. Radiated Spurious Emissions – 30MHz – 1000MHz

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))


40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:100 of 108

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:101 of 108

T	4 F	0407 14							-			
		2437 MI					-		Engineer	GMH		
		Digital E					Temp (°C)		• • • •	29		
Freq.	Range	30 MHz	- 1000	MHz				Rel.	Hum.(%)	30		
Power S	Setting	ART = 2	23				Press	. (mBars)	996			
Ar	ntenna	Integral	egral Gain 2 dBi Duty Cycle (%)									
Test N	Notes 1											
Test N	lotes 2											
With Vasona by EMiSoft 15 Sep 11 17:00 500 500 500 500 500 500 500 5												
requency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
57.535	57.9	3.8	-23.7	38.0	Quasi Peak	V	98	86	40.5	-2.5	Pass	
	DIO	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
Legend:	DIG =	Digital D	VRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band								y	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: Issue Date: Page:

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A 15th October 2011 102 of 108

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) and **RSS-Gen §2.2** Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

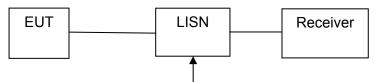
Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: WLA532-US Wireless LAN Access Point To: FCC 47 CFR Part 15.407 & IC RSS-210 JNIP03-U2 Rev A Serial #: 15th October 2011 Issue Date: 103 of 108 Page:


5.1.8. AC Wireline Conducted Emissions (150 kHz - 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

115 Vac 60 Hz

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

Not required - EUT is POE only.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:104 of 108

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:105 of 108

6. PHOTOGRAPHS

6.1. Conducted Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: Serial #: Issue Date: Page:

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210rial #:JNIP03-U2 Rev ADate:15th October 2011Page:106 of 108

6.2. Radiated Test Setup > 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:WLA532-US Wireless LAN Access PointTo:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:JNIP03-U2 Rev AIssue Date:15th October 2011Page:107 of 108

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0134	Amplifier	Com Power	PA 122	181910
0158	Barometer /Thermometer	Control Co.	4196	E2846
0287	EMI Receiver			100201
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0184	Pulse Limiter	Rhode & Schwartz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwartz	ESH3Z5	836679/006
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003
0304	2.4GHzHz Notch Filter	Micro-Tronics		001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0335	1-18GHz Horn Antenna	ETS- Lindgren	3117	00066580
0337	Amplifier	MiCOM Labs		
0338	Antenna	Sunol Sciences	JB-3	A052907

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com