To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: JNIP16-U2 Rev B

to

To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: JNIP16-U2 Rev B

Note: this report contains data with regard to the 5,150 to 5,350 MHz and 5470 to 5725 MHz bands for Juniper Networks, WLA321 Wireless Access Point. 2.4 and 5.8 GHz test data are reported in MiCOM Labs test report JNIP16-U1

This report supersedes None

Applicant: Juniper Networks, Inc

1194 North Mathilda Avenue

Sunnyvale

California 94089, USA

Product Function: Wireless Access Point

Copy No: pdf Issue Date: 16th May 2012

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306 www.micomlabs.com

TEST CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 3 of 244

This page has been left intentionally blank

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 4 of 244

TABLE OF CONTENTS

CC	OVER PAGE	
TIT	TLE PAGE	2
AC	CCREDITATION, LISTINGS & RECOGNITION	5
	TESTING ACCREDITATION	
	RECOGNITION	
	PRODUCT CERTIFICATION	
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1. Technical Details	12
	3.2. Scope of Test Program	13
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports	
	3.6. Test Configurations	
	3.8. Deviations from the Test Standard	
	3.9. Subcontracted Testing or Third Party Data	
4.		
5.		
٥.	5.1. Device Characteristics	_
	5.1.1. 26 dB and 99 % Bandwidth	
	5.1.2. Transmit Output Power	
	5.1.3. Peak Power Spectral Density	
	5.1.4. Peak Excursion Ratio	
	5.1.5. Frequency Stability	
	5.1.6. Maximum Permissible Exposure	
	5.1.7. Radiated Emissions5.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
	5.1.9. Dynamic Frequency Selection (DFS	
6.	· · · · · · · · · · · · · · · · · · ·	
٠.	6.1. Conducted Test Setup	
	6.2. Radiated Test Setup < 1 GHz	
	6.3. Radiated Test Setup > 1 GHz	
	6.4. Dynamic Frequency Selection (DFS)	
7		

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 5 of 244

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-01.pdf

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 6 of 244

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	210
	VCCI			No. 2959
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	1100450
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A - Not Applicable

^{**}EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

^{**}NB - Notified Body

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 7 of 244

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf

USA Telecommunication Certification Body (TCB) - TCB Identifier – US0159

<u>Industry Canada Certification Body</u> - CAB Identifier – US0159

European Notified Body - Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB) - RCB Identifier - 210

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 8 of 244

DOCUMENT HISTORY

Document History				
Revision	Date	Comments		
Draft Rev A 28 th March 2012				
		Initial release.		
Rev B 16 th May 2012		DFS bands test results added		

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 9 of 244

1. TEST RESULT CERTIFICATE

Applicant: Juniper Networks, Inc Tested MiCOM Labs, Inc.

1194 North Mathilda Avenue By: 440 Boulder Court

Sunnyvale Suite 200

California 94089, USA Pleasanton

California, 94566, USA

EUT: Product Description Tel: +1 925 462 0304

Model: WLA321-US Fax: +1 925 462 0306

S/N: Conducted unit: not available

Radiated: MA351110064

Test Date(s): 2nd February to 11th March 2012 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part 15.407 & IC RSS-210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

IG CERTIFICATE #2381.01

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 10 of 244

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.407	2010	Code of Federal Regulations
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order
(iii)	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
(iv)	Industry Canada RSS-210	2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment
(v)	Industry Canada RSS-Gen	2010	General Requirements and Information for the Certification of Radiocommunication Equipment
(vi)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(vii)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(viii)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(ix)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(x)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(xi)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy
(xii)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 11 of 244

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 12 of 244

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Diver	•
Purpose:	Test of the Juniper Networks WLA321 Wireless LAN
	Access Point in the frequency range 5,150 to 5,350 and 5,470 – 5,725 MHz to FCC Part 15.407 and Industry
Applicant:	Canada RSS-210 regulations. Juniper Networks, Inc
Арріісані.	1194 North Mathilda Avenue
	Sunnyvale
	California 94089, USA
Manufacturer:	As applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
Laboratory performing the tests.	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	JNIP16-U2 Rev B
Date EUT received:	2nd February 2012
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210
Dates of test (from - to):	2nd February to 11th March 2012
No of Units Tested:	2
Type of Equipment:	Wireless LAN Access Point, 2x2 Spatial Multiplexing
	MIMO configuration
Applicants Trade Name:	Wireless Access Point
Model(s):	WLA321
Location for use:	Indoor
Declared Frequency Range(s):	5,250 to 5,350 and 5,470 to 5,725 MHz
Software Release	7.7.2.0.031
Type of Modulation:	Per 802.11 – OFDM
Declared Nominal Output Power:	802.11a: Legacy +18 dBm
(Average Power)	802.11n: HT-20 +18 dBm
FUT M : CO ::	802.11n: HT-40 +18 dBm
EUT Modes of Operation:	Legacy 802.11a, 802.11n HT-20, HT-40
Transmit/Receive Operation:	Time Division Duplex
System Beam Forming:	WLA321 has no capability for beam forming
Rated Input Voltage and Current: Operating Temperature Range:	POE 48 Vdc 0.625 A Declared range 0° to +50°C
ITU Emission Designator:	802.11a 18M8D1D
TTO Emission Designator.	802.11n HT-20 19M9D1D
	802.11n HT-40 36M7D1D
Equipment Dimensions:	5.6in (H) x 5.4in (W) x 1.9in (D)
Weight:	8 oz
Primary function of equipment:	Wireless Access Point for transmitting data and voice.
Filmary function of equipment.	vvireless access point for transmitting data and voice.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 13 of 244

3.2. Scope of Test Program

Juniper Networks WLA321 Access Point RF Testing

The scope of the test program was to test the Juniper Networks WLA321 Wireless LAN Access Point, 2x2 Spatial Multiplexing MIMO configurations in the frequency range 5,150 to 5,250 and 5,470 – 5,725 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

WLA321-US (for US distribution) WLA321-WW, WLA321-XX (where –XX can be any alphanumeric, for world wide distribution)

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; *Emissions Testing of Transmitters with Multiple Outputs in the Same Band*

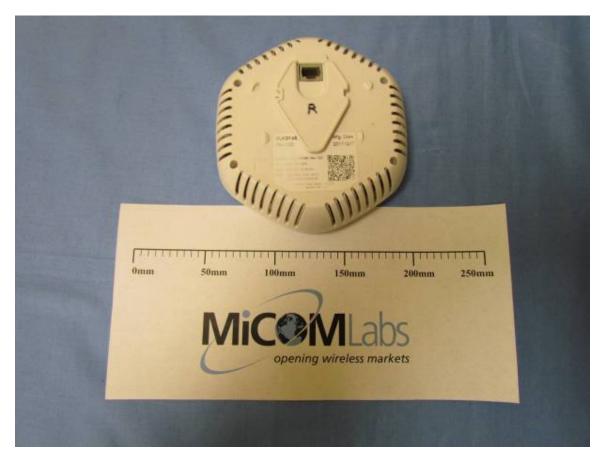
The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 14 of 244

WLA321 802.11 a/b/g/n Wireless Access Point



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 15 of 244

WLA321 802.11 a/b/g/n Wireless Access Point

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 16 of 244

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	Wireless LAN Access Point	Juniper Networks	WLA321	Conducted unit: not available
EUT	Wireless LAN Access Point	Juniper Networks	WLA321	Radiated - MA351110064
Support	Laptop PC	IBM	Thinkpad	None

3.4. Antenna Details

• Integral Single Band: Gain 5 GHz 0 dBi (average)

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 1 x 10/100/1000 Ethernet includes POE (Power over Ethernet +48 Vdc)

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 17 of 244

3.6. <u>Test Configurations</u>

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

Operational Mode(s) (802.11)	Variant	Data Rates with Highest Power	Frequencies (MHz)
	Legacy	6 MBit/s	5,260/5,300/5,320/
a,n	HT-20	6.5 MCS	5,500/5,580/5,700
,	HT-40	13.5 MCS	5,270, 5,230 5,510/5,550/5,670

Antenna Test Configurations for Radiated Emissions and Band-Edge

The following measurements were performed on all antenna configurations identified in Section 3.4 Antenna Details.

Spurious Emission and Band-Edge Test Strategy Band 5,250 – 5,350

11a	11n HT-20	11n HT-40
SE 5180	SE 5180	SE 5190
SE 5200	SE 5200	
SE 5240	SE 5240	SE 5230
SE 5260	SE 5260	SE 5270
SE 5300	SE 5300	
SE 5320	SE 5320	SE 5310
BE 5350	BE 5350	BE 5350

Band 5,470 - 5,725

11a	11n HT-20	11n HT-40
SE 5500	SE 5500	SE 5510
SE 5580	SE 5580	SE 5550
SE 5700	SE 5700	SE 5670
BE 5460	BE 5460	BE 5460

KEY:-SE – Spurious Emissions

BE - Band-Edge

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 18 of 244

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

The following modifications were required to bring the equipment into compliance. Section 5.1.2 Transmit Output Power identifies the total conducted power levels measured per antenna port and sums the powers. The tables in Section 5.1.2 includes the following power reduction and reports the maximum possible operating power levels.

1. Band-Edge Power Reduction

During radiated band-edge emission testing the output power was reduced in order to comply with the Restricted Band criteria. At 5.15 - 5.35 GHz restricted bands are 4,500 - 5,150 MHz and 5,320 - 5,460 MHz.

5 GHz Band-Edge Power Settings – Nominal Setting was NART = 18 all modes

Frequency Range	Mode	Channel	Band-Edge Frequency (MHz)	Power Setting (NART)
5,150 – 5,350	36 5,150.0		17	
	802.11a	64	5,350.0) (NART)
	000 44 - UT 00	36	5,150.0	16
	802.11n HT-20	64	5,350.0	Maximum
	000 44 117 40	36	5,150.0	14
	802.11n HT-40	64	5,350.0	15

5,470 – 5,725	No band-edge power reduction was required
---------------	---

2. Spurious Emission Power Reduction

During radiated emission testing the output power was reduced on the following frequencies and modes;

802.11a 5300 MHz power reduced from 18 to 16

802.11a 5320 MHz power reduced from 18 to 14

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 19 of 244

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 20 of 244

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210.and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	5.1.1
15.407(a) A9.2(2) 4.6	Transmit Output Power	Power Measurement	Conducted	Complies	5.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	5.1.3
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	5.1.4
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	5.1.5
15.407(f) 5.5	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Conducted	Complies	5.1.6

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 21 of 244

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2)	Radiated Emissions		Radiated		5.1.7
4.7	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.7.1
	Radiated Band Edge	Band edge results		Complies	5.1.7.1
Industry Canada only RSS-Gen §4.10, §6	Receiver Radiated Spurious Emissions	Emissions above 1 GHz		Complies	5.1.7.2
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	5.1.7.3
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Complies	5.1.8

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 22 of 244

List of Measurements (cont'd)

Dynamic Frequency Selection (DFS)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407(h)(2) and FCC Memorandum Opinion and Order FCC 06-96 (Compliance Measurement procedures for Unlicensed National Information Infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection).

Tests performed on Master Device

Section	Test Items	Description	Condition	Result	Test
Section	rest items	Description	Condition	Result	Report Section
	Dynamic Frequ	ency Selection			5.1.9
7.8.1	Detection Bandwidth	UNII Detection Bandwidth	Conducted	Complies	
7.8.2.1	Performance Requirements	Initial Channel Availability Check Time	Conducted	Complies	
7.8.2.2	Check	Radar Burst at the Beginning of the Channel Availability Check Time	Conducted	Complies	
7.8.2.3		Radar Burst at the End of the Channel Availability Check Time	Conducted	Complies	
7.8.3	In-Service Monitoring	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non- Occupancy Period	Conducted	Complies	
7.8.4	Radar Detection	Statistical Performance Check	Conducted	Complies	

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

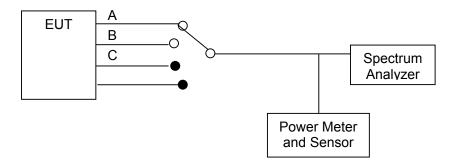
Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 23 of 244

5. TEST RESULTS

5.1. Device Characteristics


5.1.1. 26 dB and 99 % Bandwidth

FCC, Part 15 Subpart C §15.407(a) Industry Canada RSS-210 § A9.2(2) Industry Canada RSS-Gen 4.4

Test Procedure

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Test Measurement Set up

Measurement set up for 26 dB and 99 % bandwidth test

Radio Parameters Duty Cycle: 100%

Output: Modulated Carrier Power: Maximum Default Power

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 24 of 244

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS – **802.11a Legacy 5150 – 5250 MHz**

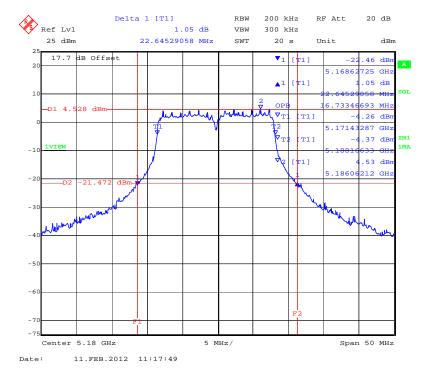
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

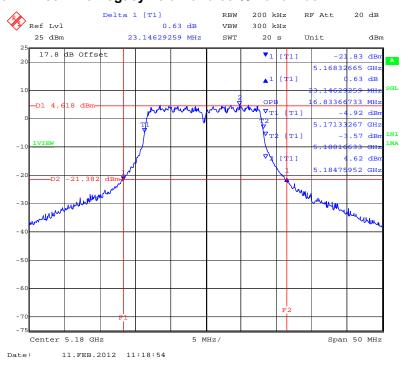
26 dB Bandwidth

_ ,_		26 dB Bandwidth Minimum 6dB					
Test Frequency	MHz Bandwidth Limit			Margin			
MHz	а	b	С	d	kHz	MHz	MHz
5180	22.645000	23.146000					-22.145000
5200	22.044000	22.946000	-		500	0.5	-21.544000
5240	21.944000	22.745000					-21.444000

99% Bandwidth

	99 % Bandwidth					
Test Frequency		М	Hz			
MHz	а	b	С	d		
5180	16.733000	16.834000				
5200	16.733000	16.834000	-			
5240	16.633000	16.834000				

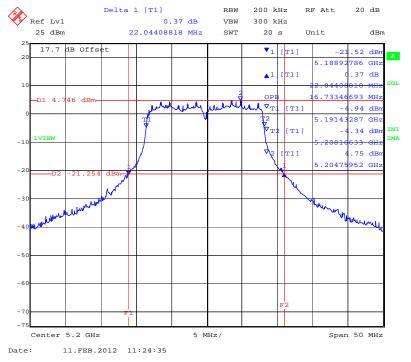

Measurement uncertainty:	±2.81 dB
--------------------------	----------

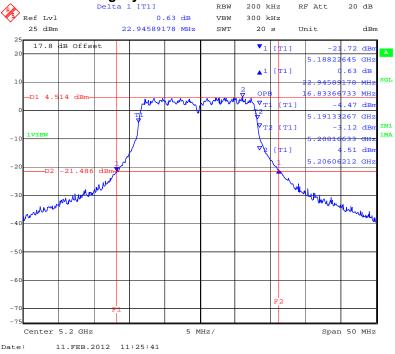

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 25 of 244

PORT A 5,180 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,180 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

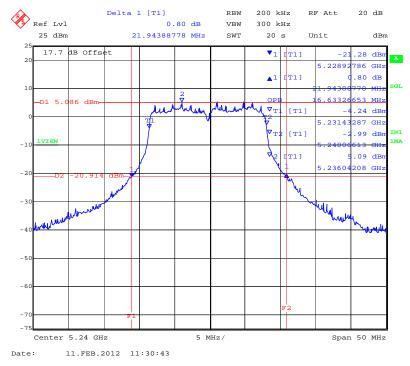


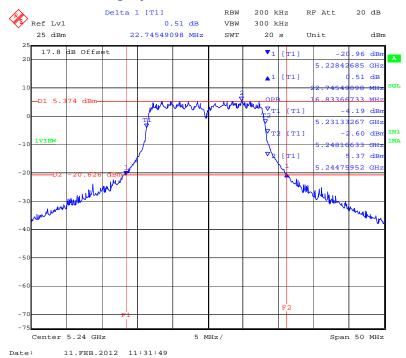

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 26 of 244

PORT A 5,200 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,200 MHz 802.11a Legacy 26 dB and 99 % Bandwidth




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 27 of 244

PORT A 5,240 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,240 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 28 of 244

TABLE OF RESULTS - 802.11n HT-20 5150 - 5250 MHz

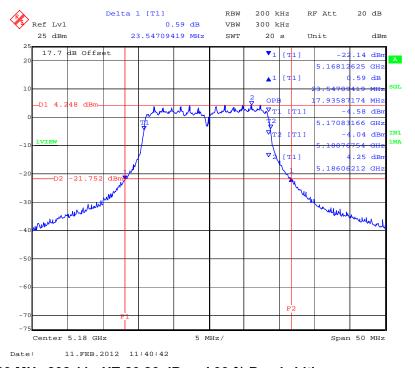
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

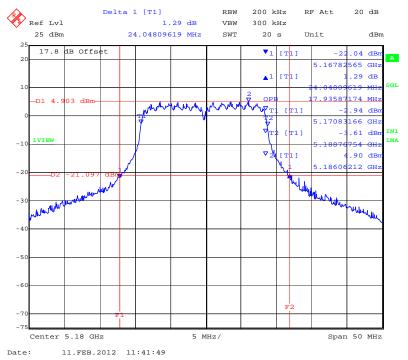
26 dB Bandwidth

Test Frequency		26 dB Bandwidth MHz				ım 6dB dth Limit	Margin
MHz	а	b	С	d	kHz MHz		MHz
5180	23.547000	24.048000	-				-23.047000
5200	23.046000	23.848000			500	0.5	-22.546000
5240	22.645000	23.747000	-				-22.145000

99% Bandwidth

OO70 Banaman						
	99 % Bandwidth					
Test Frequency		М	Hz			
MHz	а	b	C	d		
5180	17.936000	17.936000	-			
5200	17.936000	17.936000	-			
5240	17.836000	17.936000				

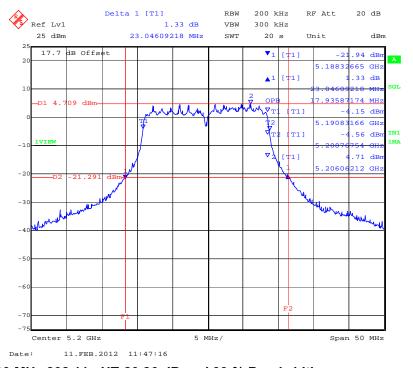

model of the containty.	Measurement uncertainty:	±2.81 dB
-------------------------	--------------------------	----------

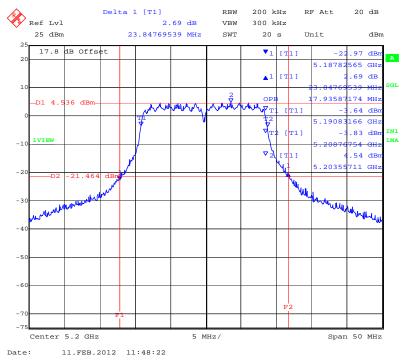

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 29 of 244

PORT A 5,180 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,180 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

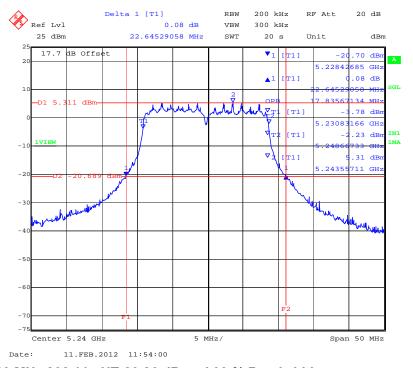


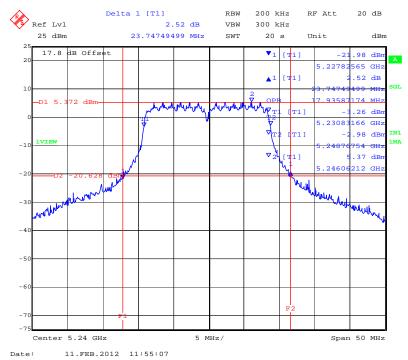

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 30 of 244

PORT A 5,200 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,200 MHz 802.11n HT-20 26 dB and 99 % Bandwidth




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 31 of 244

PORT A 5,240 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,240 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 32 of 244

TABLE OF RESULTS - 802.11n HT-40 5150 - 5250 MHz

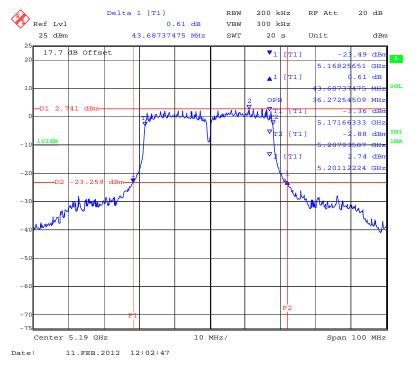
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:		-			

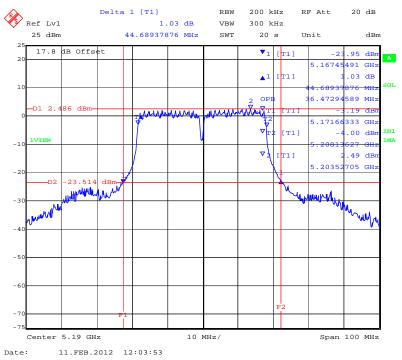
26 dB Bandwidth

Test Frequency			andwidth Hz	Minimu Bandwid	ım 6dB dth Limit	Margin	
MHz	а	b	С	d	kHz	MHz	MHz
5190	43.687000	44.689000			500	0.5	-43.187000
5230	44.088000	46.293000			500 0.5		-43.588000

99% Bandwidth

	99 % Bandwidth						
Test Frequency	MHz						
MHz	а	b	С	d			
5190	36.273000	36.473000	-	-			
5230	36.473000	36.473000	-	-			

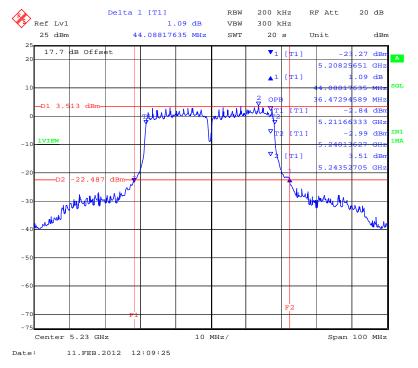

Measurement uncertainty: ±2.81 dB


To: FCC 47 CFR Part 15.407 & IC RSS-210

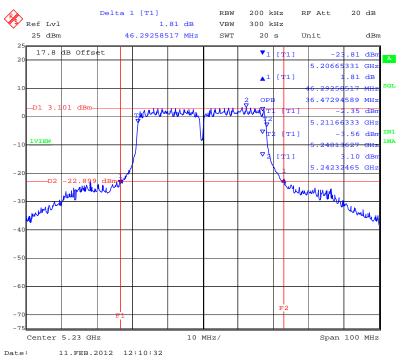
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 33 of 244

PORT A 5,190 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,190 MHz 802.11n HT-40 26 dB and 99 % Bandwidth



To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 34 of 244

PORT A 5,230 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,230 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 35 of 244

TABLE OF RESULTS - 802.11a Legacy 5250 - 5350 MHz

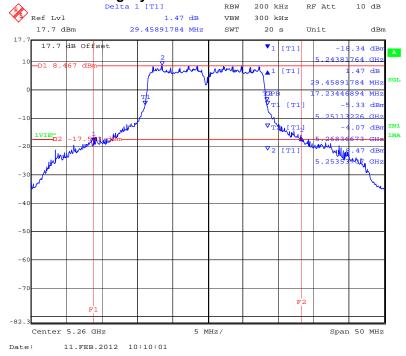
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

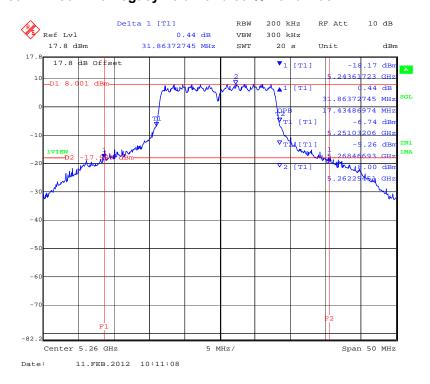
26 dB Bandwidth

Test Frequency		26 dB B	andwidth		ım 6dB	Margin	
. cot i requesioj	MHz				Bandwidth Limit		
MHz	а	b	С	d	kHz	MHz	MHz
5260	29.459000	31.864000					-28.959000
5300	26.152000	32.465000			500	0.5	-25.652000
5320	29.158000	31.764000					-28.658000

99% Bandwidth

	99 % Bandwidth						
Test Frequency							
MHz	а	b	С	d			
5260	17.234000	17.435000	-				
5300	17.034000	17.335000					
5320	16.934000	17.435000					

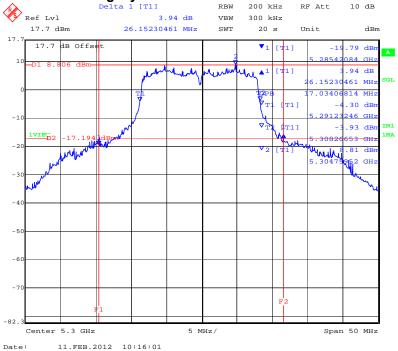

Measurement uncertainty:	±2.81 dB
--------------------------	----------

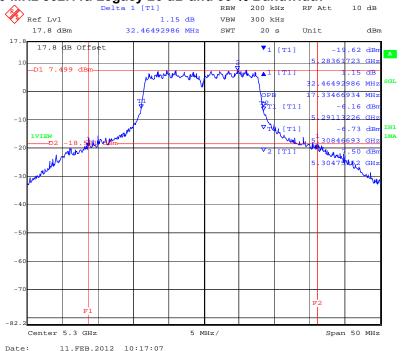

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 36 of 244

PORT A 5,260 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,260 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

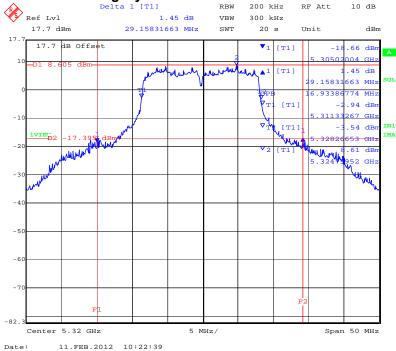


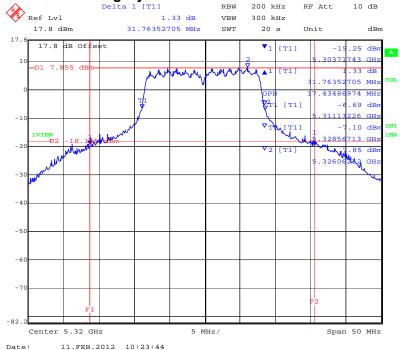

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 37 of 244

PORT A 5300 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,300 MHz 802.11a Legacy 26 dB and 99 % Bandwidth




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 38 of 244

PORT A 5,320 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,320 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 39 of 244

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

TABLE OF RESULTS - 802.11n HT20 5250 - 5350 MHz

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:			•	•	
Notes 2:					

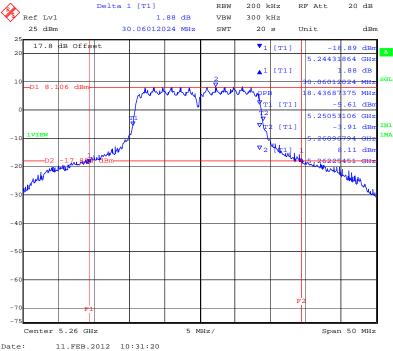
26 dB Bandwidth

Test Frequency		26 dB Bandwidth MHz				ım 6dB dth Limit	Margin
MHz	а	b	С	d	kHz MHz		MHz
5260	29.259000	30.060000					-28.759000
5300	23.848000	30.661000	-		500	0.5	-23.348000
5320	23.246000	30.361000					-22.746000

99% Bandwidth

99/8 Danidwidth								
		99 % Bandwidth						
Test Frequency								
MHz	а	b	С	d				
5260	18.236000	18.437000	-	-				
5300	17.936000	18.337000	-					
5320	17.836000	18.437000	-	-				

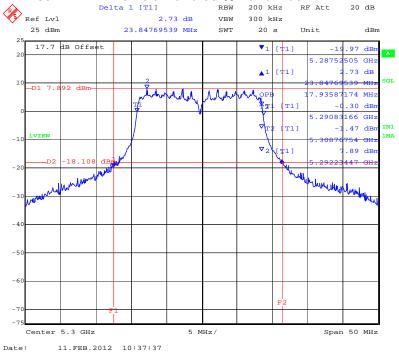
Measurement uncertainty:	±2.81 dB
--------------------------	----------


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 40 of 244

PORT A 5,260 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,260 MHz 802.11n HT-20 26 dB and 99 % Bandwidth



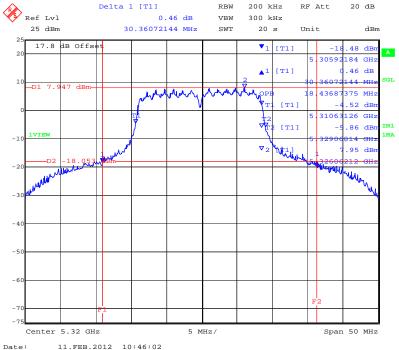
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 41 of 244

PORT A 5300 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,300 MHz 802.11n HT-20 26 dB and 99 % Bandwidth




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 42 of 244

PORT A 5,320 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,320 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 43 of 244

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

TABLE OF RESULTS - 802.11n HT40 5250 - 5350 MHz

Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:		<u> </u>			

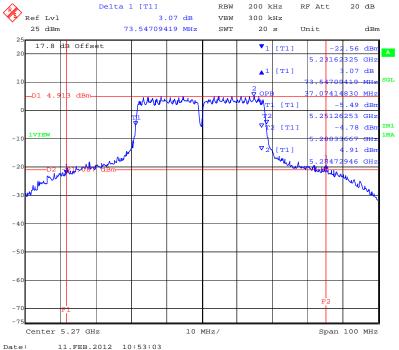
26 dB Bandwidth

Test Frequency			andwidth Hz	Minimu Bandwid	ım 6dB dth Limit	Margin	
MHz	а	b	С	d	kHz	MHz	MHz
5270	46.092000	73.547000			500	0.5	-45.592000
5310	44.689000	67.735000			500 0.5		-44.189000

99% Bandwidth

		99 % Ba	ndwidth			
Test Frequency		MHz				
MHz	а	b	С	d		
5270	36.673000	37.074000				
5310	36.673000	37.074000				

Measurement uncertainty:	±2.81 dB
--------------------------	----------


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 44 of 244

PORT A 5,270 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,270 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 45 of 244

PORT A 5,310 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,310 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 46 of 244

TABLE OF RESULTS - 802.11a Legacy 5500 - 5700 MHz

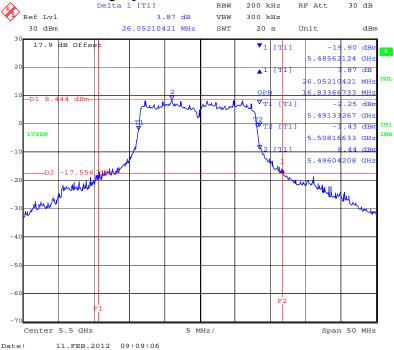
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:		•			

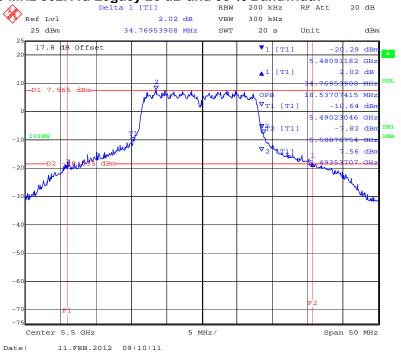
26 dB Bandwidth

Test Frequency		26 dB Ba	andwidth		ım 6dB	Margin		
	MHz			Bandwidth Limit				
MHz	а	b	С	d	kHz	MHz	MHz	
5500	26.052000	34.770000					-25.552000	
5580	24.649000	36.273000			500 0.5		-24.149000	
5700	29.359000	36.673000					-28.859000	

99% Bandwidth

		99 % Ba	ndwidth			
Test Frequency		М	Hz			
MHz	а	b	С	d		
5500	16.834000	18.537000	-			
5580	16.934000	19.439000	-			
5700	17.335000	20.441000				

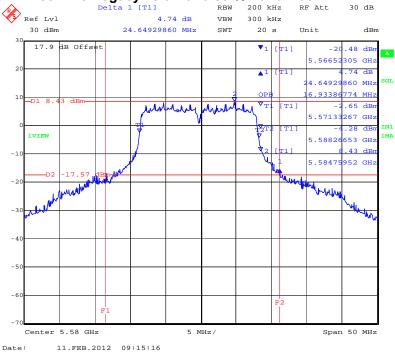

Measurement uncertainty:	±2.81 dB
	!

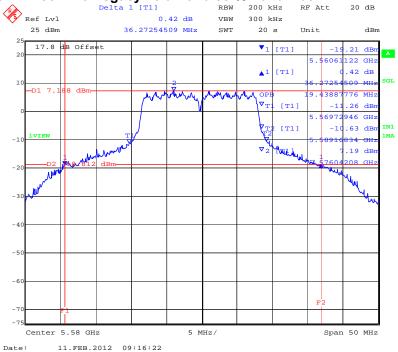

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 47 of 244

PORT A 5,500 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,500 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

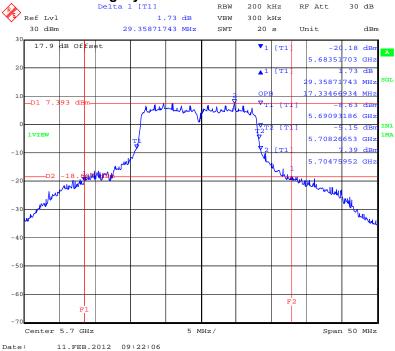


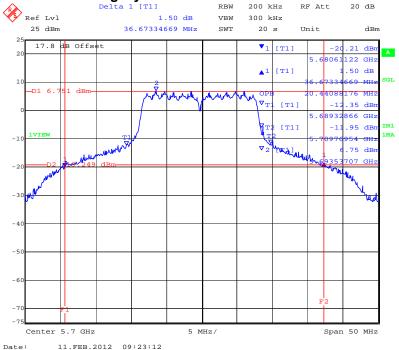

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 48 of 244

PORT A 5,580 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,580 MHz 802.11a Legacy 26 dB and 99 % Bandwidth




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 49 of 244

PORT A 5,700 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

PORT B 5,700 MHz 802.11a Legacy 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 50 of 244

TABLE OF RESULTS - 802.11n HT-20 5500 - 5700 MHz

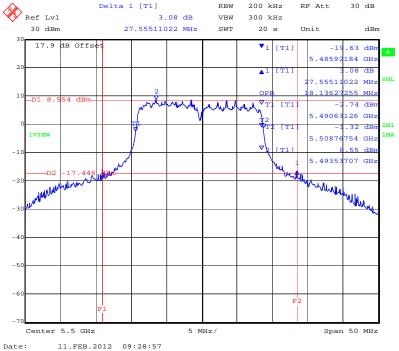
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

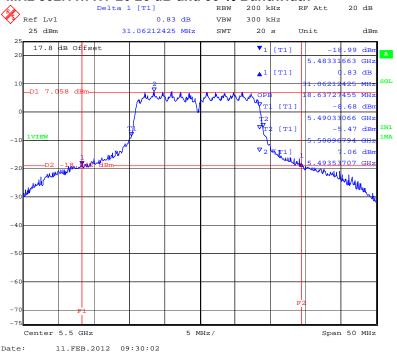
26 dB Bandwidth

		26 dB Bandwidth				Minimu	ım 6dB	Margin	
	Test Frequency	MHz				Bandwidth Limit			
	MHz	а	b	С	d	kHz	MHz	MHz	
	5500	27.555000	31.062000	-				-27.055000	
	5580	28.457000	34.770000			500	0.5	-27.957000	
	5700	28.657000	39.379000	-				-28.157000	

99% Bandwidth

3370 Banawaan								
	99 % Bandwidth							
Test Frequency	MHz							
MHz	а	b	С	d				
5500	18.136000	18.637000	-					
5580	18.236000	19.339000						
5700	18.136000	20.741000	-	-				

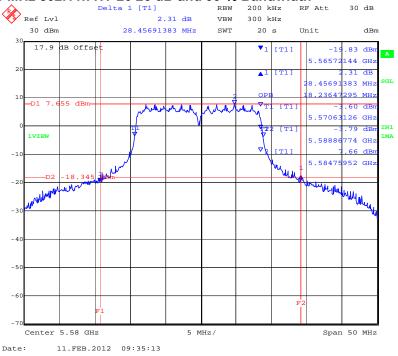

Measurement uncertainty:	±2.81 dB
--------------------------	----------

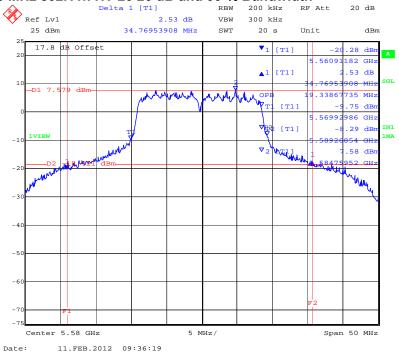

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 51 of 244

PORT A 5,500 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,500 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

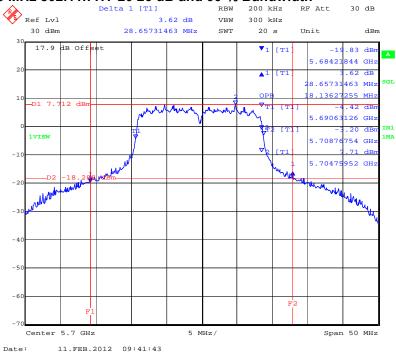



To: FCC 47 CFR Part 15.407 & IC RSS-210

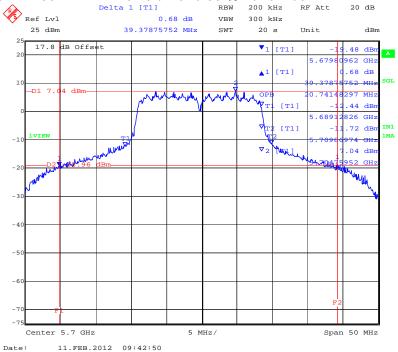
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 52 of 244

PORT A 5,580 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,580 MHz 802.11n HT-20 26 dB and 99 % Bandwidth



To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 53 of 244

PORT A 5,700 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

PORT B 5,700 MHz 802.11n HT-20 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 54 of 244

TABLE OF RESULTS - 802.11n HT-40 5500 - 5700 MHz

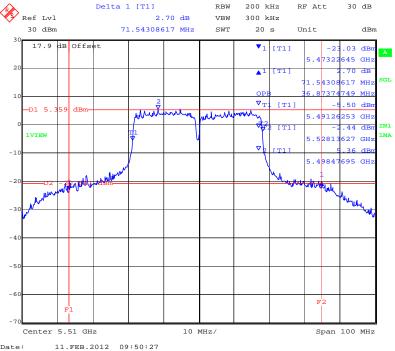
Test Conditions:	15.247 (a)(2)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/A	dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

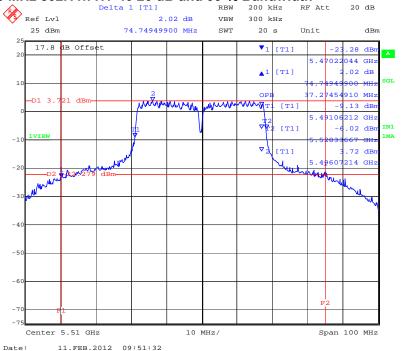
26 dB Bandwidth

Test Frequency		26 dB Bandwidth MHz			Minimu Bandwid	ım 6dB dth Limit	Margin
MHz	а	b	С	d	kHz	MHz	MHz
5510	71.543000	74.749000					-71.043000
5550	66.132000	75.952000	-		500	0.5	-65.632000
5670	75.952000	83.567000	-	-			-75.452000

99% Bandwidth

_ ,_	99 % Bandwidth					
Test Frequency		M	Hz			
MHz	а	b	С	d		
5510	36.874000	37.275000				
5550	36.874000	37.675000				
5670	37.074000	43.287000				

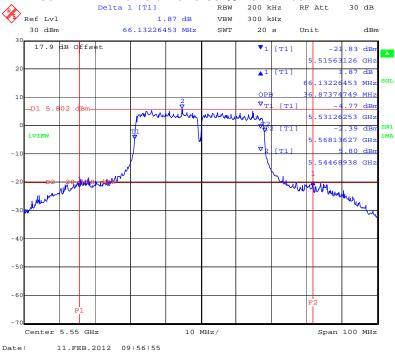

Measurement uncertainty:	±2.81 dB
--------------------------	----------

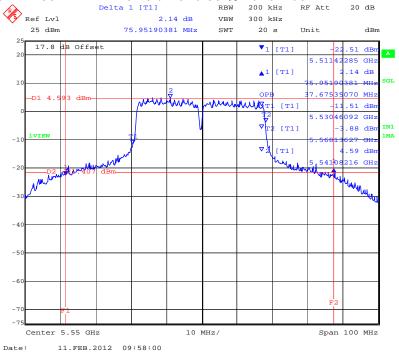

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 55 of 244

PORT A 5,510 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,510 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

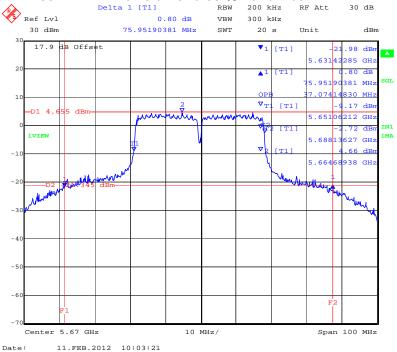


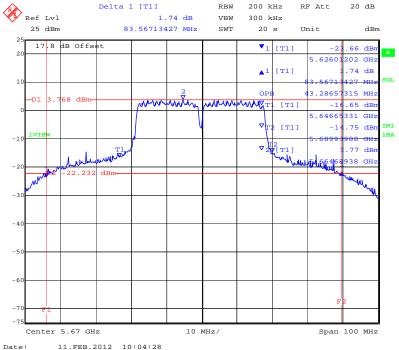

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 56 of 244

PORT A 5,550 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,550 MHz 802.11n HT-40 26 dB and 99 % Bandwidth




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 57 of 244

PORT A 5,670 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

PORT B 5,670 MHz 802.11n HT-40 26 dB and 99 % Bandwidth

To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 58 of 244

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Spectrum Measurement

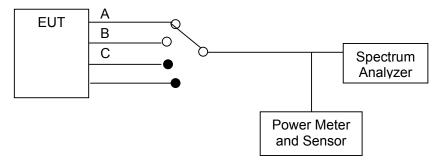
Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 59 of 244


5.1.2. Transmit Output Power

FCC, Part 15 Subpart C §15.407(a) Industry Canada RSS-210 §9.9(2) Industry Canada RSS-Gen 4.6

Test Procedure

The transmitter terminal of EUT was connected to the input of an average power meter. Measurements were made while EUT was operating in a continuous transmission mode i.e. 100 % duty cycle at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result.

Test Measurement Set up

Measurement set up for Transmitter Output Power

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 60 of 244

Maximum Transmit (Conducted) Power, FCC Limits and Industry Canada Limits

Bands 5150 - 5250 MHz

FCC Limits

Conducted Power Limit lesser of: 50 mW or 4 dBm + 10 log (B) dBm. B is the 26 dB emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	4 + 10 Log (B) (dBm)	Limit (dBm)
а		23.1	+17.64	+17.00
HT-20	5150 – 5250	32.5	+19.12	+17.00
HT-40		36.7	+19.65	+17.00

Industry Canada Limits

EIRP Limit 5150 - 5250 MHz: Lesser of 200 mW (+23 dBm) or 10 + 10 Log (B) dBm. B is the 99% emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Maximum 99 % Bandwidth (MHz)	4 + 10 Log (B) (dBm)	EIRP Limit (dBm)
а		16.8	+16.25	+23.00
HT-20	5150 – 5250	17.4	+16.41	+23.00
HT-40		20.4	+17.10	+23.00

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 61 of 244

FCC Limits Bands 5250 - 5350 and 5470 - 5725 MHz

Limit lesser of: 250 mW or 11 dBm + 10 log (B) dBm. B is the 26 dB emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а	5050 5050	32.5	+26.12	+24.00
HT-20	5250 – 5350	30.7	+25.87	+24.00
HT-40		73.5	+29.66	+24.00

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а		36.7	+26.65	+24.00
HT-20	5470 – 5725	39.4	+26.95	+24.00
HT-40		83.6	+30.22	+24.00

Industry Canada Limits

Bands 5250 - 5350 and 5470 - 5725 MHz

Limit lesser of: 250 mW or 11 dBm + 10 log (B) dBm. B is the 99% emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а	5050 5050	17.4	+23.41	+23.41
HT-20	5250 – 5350	18.4	+23.65	+23.65
HT-40		37.0	+26.65	+24.00

Mode	Frequency Range (MHz)	Maximum 26 dB Bandwidth (MHz)	11 + 10 Log (B) (dBm)	Limit (dBm)
а		20.4	+24.10	+24.00
HT-20	5470 – 5725	20.7	+24.16	+24.00
HT-40		43.3	+27.36	+24.00

To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 62 of 244

Antenna Beam and Non-Beam Forming Power Levels

15. 407 (a)(1), (a) (2) Operation with directional antenna gains greater than 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Further FCC KDB 662911 D01 Multiple Transmitter Output v01 requires that the gain of antennas transmitting the same data (legacy 802.11a mode) must be increased by 10 * Log (N) when N is the number of antenna elements.

Operating Frequency Band 5150-5250 MHz

Antenna	Gain	Max. Allowable Conducted Peak Power (dBm)		Maximum EIRP
(dB)	(dBi)	Non-Beam Forming	Beam Forming	(dBm)
Integral	0.0	+17.0	+12.23	+23.0

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 63 of 244

MIMO Operation 5250-5350 and 5470 - 5725 MHz

Antenna	Gain	Max. Allowable Conducted Peak Power (dBm)		Maximum EIRP
(dB)	(dBi)	Non-Beam	Beam Forming	(dBm)
		Forming		
Integral	0.0	+24.00	+19.23	+24.00

Measurement Results for Transmit Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

EUT parameters.

Power Level: Maximum Duty Cycle: 100% Temperature: Ambient

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 64 of 244

TABLE OF RESULTS – **802.11a Legacy 5150 – 5250 MHz**

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port	(dBm)			(,		9
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	12.96	13.45			N/A	16.22	17.00	-0.78
5200	13.02	13.33			N/A	16.19	17.00	-0.81
5240	12.89	13.28			N/A	16.10	17.00	-0.90

Measurement uncertainty:	±1.33 dB

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 65 of 244

TABLE OF RESULTS - 802.11n HT20 5150 - 5250 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port	(dBm)			(,		g
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5180	12.84	13.12			N/A	15.99	17.00	-1.01
5200	13.02	13.64			N/A	16.35	17.00	-0.65
5240	13.05	13.71			N/A	16.40	17.00	-0.60

Measurement uncertainty:	±1.33 dB
--------------------------	----------

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 66 of 244

TABLE OF RESULTS - 802.11n HT40 5150 - 5250 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	Measured Peak Power				Total Pow	ver (dBm)	Limit	Margin
Frequency	RF Port (dBm)			Total Fower (ubili)			marg	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5190	12.55	13.21			N/A	15.90	17.00	-1.10
5230	13.53	14.10			N/A	16.83	17.00	-0.17

Measurement uncertainty: ±1.33 dB	
-----------------------------------	--

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 67 of 244

TABLE OF RESULTS - 802.11a Legacy 5250 - 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power RF Port (dBm)			- Total Power (dBm)		Limit	Margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	17.28	16.83			N/A	20.07	30.00	-9.93
5300	15.34	15.15			N/A	18.26	30.00	-11.74
5320	14.95	14.89			N/A	17.93	30.00	-12.07

Measurement uncertainty:	±1.33 dB
--------------------------	----------

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 68 of 244

TABLE OF RESULTS - 802.11n HT20 5250 - 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:				•	

Test	N	leasured P	eak Power		Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port	(dBm)			` ,		ŭ
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	16.73	16.80	-		N/A	19.78	30.00	-10.22
5300	16.27	16.19			N/A	19.24	30.00	-10.76
5320	16.12	16.27			N/A	19.21	30.00	-10.79

Measurement uncertainty:	±1.33 dB
--------------------------	----------

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 69 of 244

TABLE OF RESULTS - 802.11n HT40 5250 - 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power	,	Total Pow	ver (dRm)	Limit	Margin
Frequency	RF Port (dBm)			Total Power (dBm)		Lilling	margini	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5270	16.84	16.90			N/A	19.88	30.00	-10.12
5310	14.33	14.41			N/A	17.38	30.00	-12.62

Measurement uncertainty:	±1.33 dB
--------------------------	----------

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 70 of 244

TABLE OF RESULTS - 802.11a Legacy 5470 - 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power		Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port (dBm)			Total Tow	ici (dBiii)	Lilling	margin
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	16.38	15.47			N/A	18.96	30.00	-11.04
5580	16.84	16.14			N/A	19.51	30.00	-10.49
5700	15.85	15.20			N/A	18.55	30.00	-11.45

Measurement uncertainty:	±1.33 dB

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 71 of 244

TABLE OF RESULTS - 802.11n HT20 5470 - 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power	,	Total Pow	ver (dBm)	Limit	Margin	
Frequency		RF Port	(dBm)			. C. (u.=)		J	
MHz	а	b	С	d	Combined	Calculated	dBm	dB	
5500	16.57	15.49			N/A	19.07	30.00	-10.93	
5580	16.79	16.25			N/A	19.54	30.00	-10.46	
5700	15.81	15.46			N/A	18.65	30.00	-11.35	

Measurement uncertainty: ±1.33 dB

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 72 of 244

TABLE OF RESULTS - 802.11n HT40 5470 - 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power		Total Pow	ver (dBm)	Limit	Margin
Frequency		RF Port (dBm)				,		. 3
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5510	16.72	15.60	-		N/A	19.21	30.00	-10.79
5550	16.85	16.19			N/A	19.54	30.00	-10.46
5670	16.52	16.06			N/A	19.31	30.00	-10.69

Measurement uncertainty:	±1.33 dB
--------------------------	----------

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 73 of 244

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 74 of 244

5.1.3. Peak Power Spectral Density

FCC, Part 15 Subpart C §15.407(a) Industry Canada RSS-210 § A9.2(2)

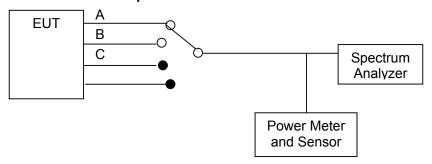
Test Procedure

The transmitter output was connected to a spectrum analyzer and the peak power spectral density measured. Method 2 Sample Detection and power averaging, specified in FCC document DA 02-2138 (Normative Reference (ix) Section 2.1 "Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices") was used to determine the peak power spectral density of the emission for each antenna port. The Peak Power Spectral Density is the highest level found across the emission in a 1 MHz resolution bandwidth.

Emissions Testing of Transmitters with Multiple Outputs in the Same Band

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)

(1) Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs [i.e., for a device with N transmitter outputs, if the spectrum measurements of the individual outputs are all performed with the same span and number of points, the spectrum value (in watts or milliwatts) in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.


The summed spectral values were calculated on a computer and the results read as a data file by the spectrum analyzer to produce plot of total power density across the spectra.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 75 of 244

Test Measurement Set up

Measurement set up for Peak Power Spectral Density

Measurement Results for Peak Power Spectral Density

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100%

Output: Modulated Carrier Power: Maximum Default Power

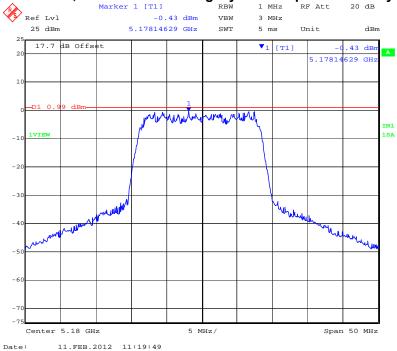
To: FCC 47 CFR Part 15.407 & IC RSS-210

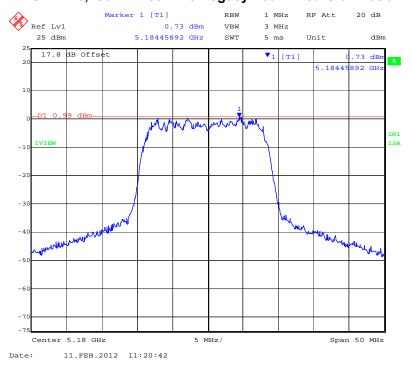
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 76 of 244

TABLE OF RESULTS - 802.11a Legacy 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):	2		
Notes 1:					
Notes 2:					

Test Frequency	N	leasured P	eak Power		Correction	Maximum Peak Power	Limit	Margin
		RF Port	(dBm)		factor	Spectral Density		margini
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5180	-0.43	0.73		-	3.01	0.73	0.99	-0.26
5200	0.58	0.81			3.01	0.81	0.99	-0.18
5240	-0.16	0.65			3.01	0.65	0.99	-0.34

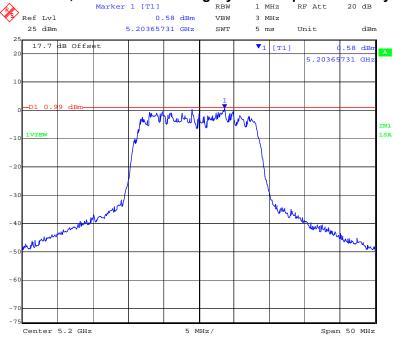

Measurement uncertainty:	±1.33 dB
--------------------------	----------


To: FCC 47 CFR Part 15.407 & IC RSS-210

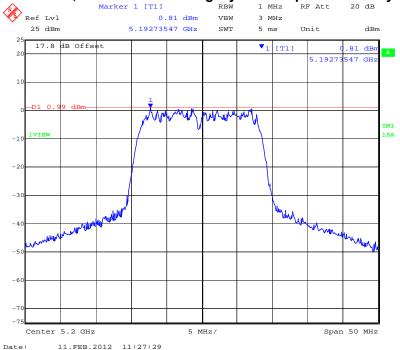
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 77 of 244

PORT A 5,180 MHz 802.11a Legacy Power Spectral Density

PORT B 5,180 MHz 802.11a Legacy Peak Excursion Ratio



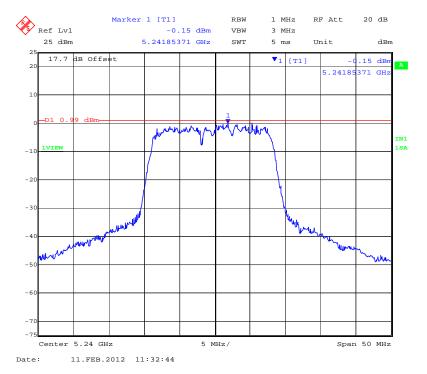
To: FCC 47 CFR Part 15.407 & IC RSS-210

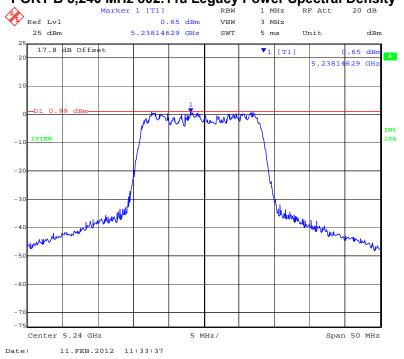

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 78 of 244

PORT A 5,200 MHz 802.11a Legacy Power Spectral Density

Date: 11.FEB.2012 11:26:36

PORT B 5,200 MHz 802.11a Legacy Power Spectral Density




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 79 of 244

PORT A 5,240 MHz 802.11a Legacy Power Spectral Density

PORT B 5,240 MHz 802.11a Legacy Power Spectral Density

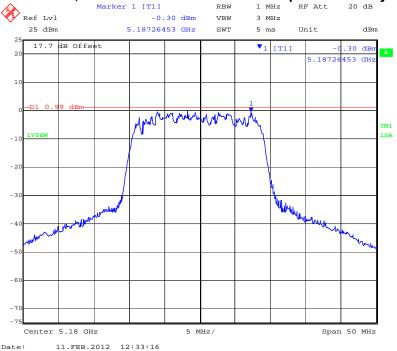
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 80 of 244

TABLE OF RESULTS - 802.11n HT-20 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):	2		
Notes 1:					
Notes 2:					

Test		N	leasured P	eak Power		Correction	Maximum Peak Power	Limit	Margin	
	Frequency		RF Port	(dBm)		factor	Spectral Density	Lilling	Wargin	
	MHz	а	b	С	d	10Log(N)	dBm	dBm	dB	
I	5180	-0.30	0.37			3.01	0.37	0.99	-0.62	
	5200	0.19	0.78			3.01	0.78	0.99	-0.21	
I	5240	-0.18	0.46			3.01	0.46	0.99	-0.53	

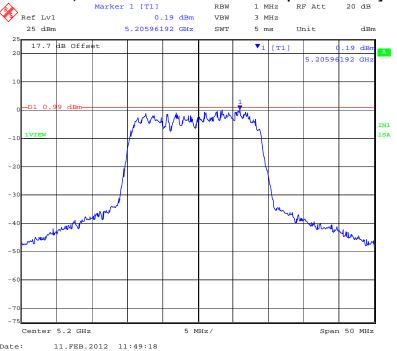

Measurement uncertainty:	±1.33 dB
--------------------------	----------

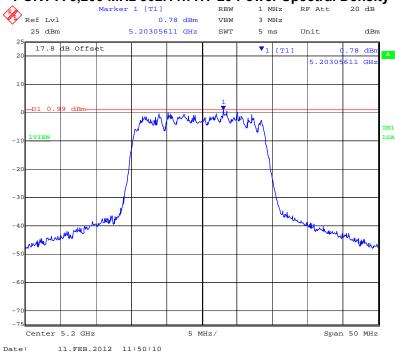

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 81 of 244

PORT A 5,180 MHz 802.11n HT-20 Power Spectral Density

PORT B 5,180 MHz 802.11n HT-20 Power Spectral Density

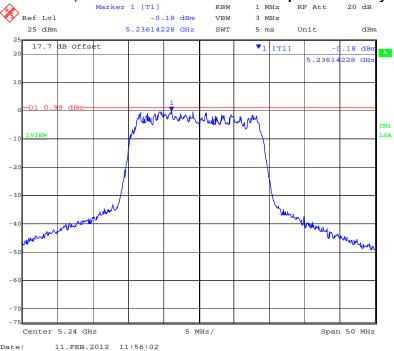


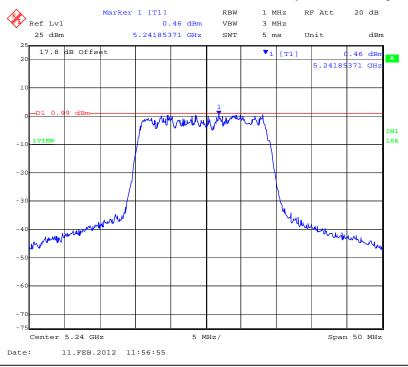

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 82 of 244

PORT A 5,200 MHz 802.11n HT-20 Power Spectral Density

PORT A 5,200 MHz 802.11n HT-20 Power Spectral Density




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 83 of 244

PORT A 5,240 MHz 802.11n HT-20 Power Spectral Density

PORT B 5,240 MHz 802.11n HT-20 Power Spectral Density

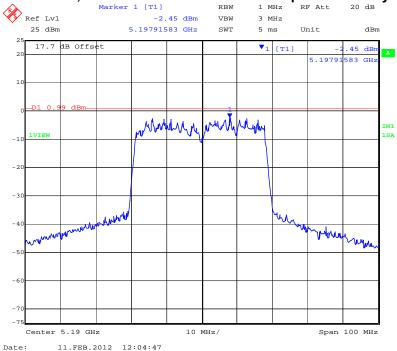
To: FCC 47 CFR Part 15.407 & IC RSS-210

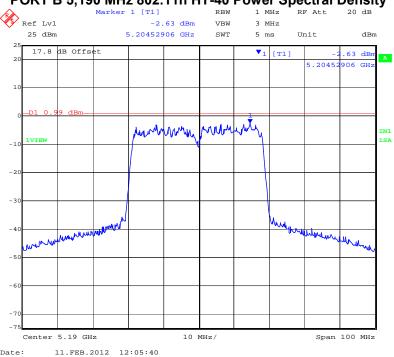
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 84 of 244

TABLE OF RESULTS - 802.11n HT-40 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):	2		
Notes 1:					
Notes 2:		_			

Test Frequency	Measured Peak Power RF Port (dBm)			Correction factor	Maximum Peak Power Spectral	Limit	Margin	
MHz	а	b	С	d	10Log(N)	Density dBm	dBm	dB
5190	-2.45	-2.63			3.01	-2.63	0.99	-3.62
5230	-2.57	-1.21			3.01	-1.21	0.99	-2.20

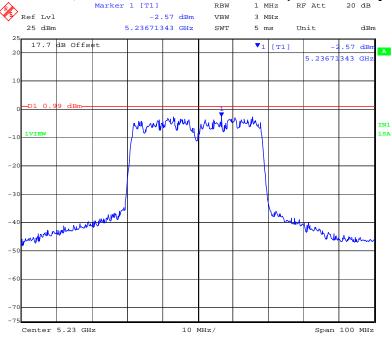

Measurement uncertainty:	±1.33 dB
--------------------------	----------


To: FCC 47 CFR Part 15.407 & IC RSS-210

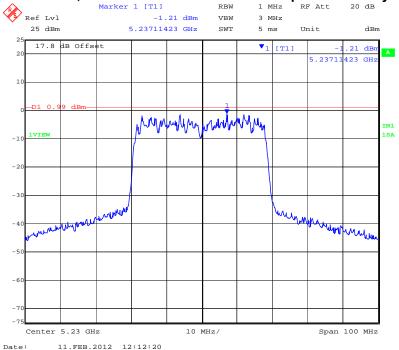
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 85 of 244

PORT A 5,190 MHz 802.11n HT-40 Power Spectral Density

PORT B 5,190 MHz 802.11n HT-40 Power Spectral Density



To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 86 of 244

PORT A 5,230 MHz 802.11n HT-40 Power Spectral Density

Date: 11.FEB.2012 12:11:27

PORT B 5,230 MHz 802.11n HT-40 Power Spectral Density

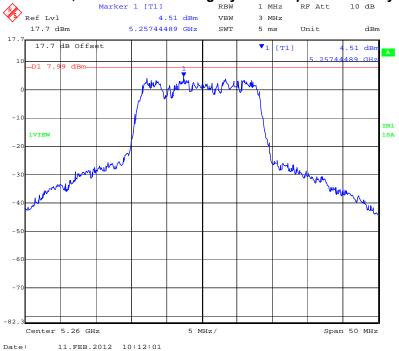
To: FCC 47 CFR Part 15.407 & IC RSS-210

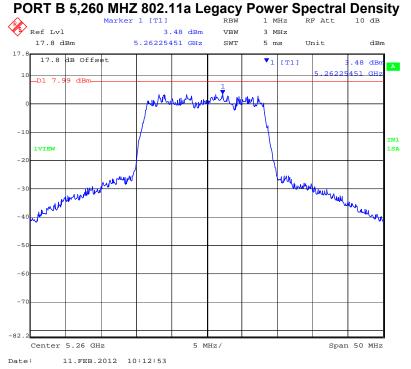
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 87 of 244

TABLE OF RESULTS - 802.11a Legacy 5250 - 5350 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):	2		
Notes 1:					
Notes 2:					

Test Frequency	N	leasured P			Correction factor	Maximum Peak Power Spectral Density	Limit	Margin
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5260	4.51	3.48			3.01	4.51	7.99	-3.48
5300	3.95	3.60			3.01	3.95	7.99	-4.04
5320	4.04	4.02			3.01	4.04	7.99	-3.95

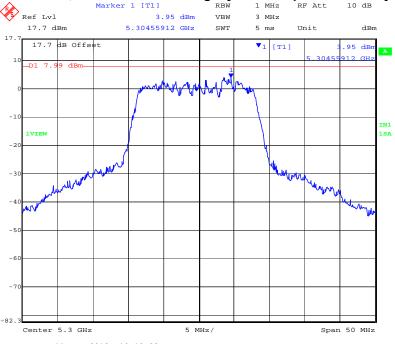

Measurement uncertainty:



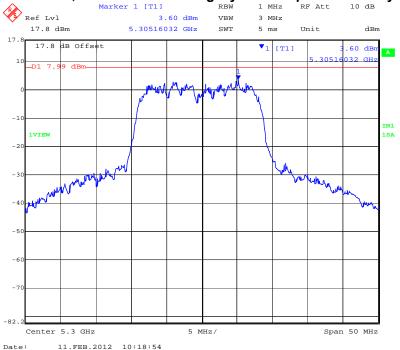
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 88 of 244

PORT A 5,260 MHZ 802.11a Legacy Power Spectral Density



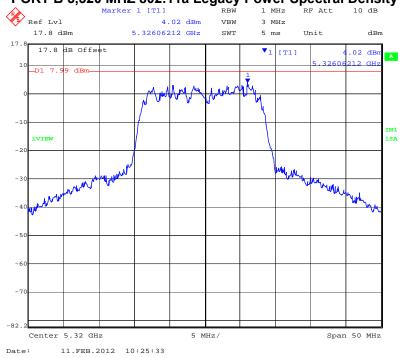
To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 89 of 244

PORT A 5,300 MHZ 802.11a Legacy Power Spectral Density

Date: 11.FEB.2012 10:18:02

PORT B 5,300 MHZ 802.11a Legacy Power Spectral Density


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 90 of 244

PORT A 5,320 MHZ 802.11a Legacy Power Spectral Density

PORT B 5,320 MHZ 802.11a Legacy Power Spectral Density

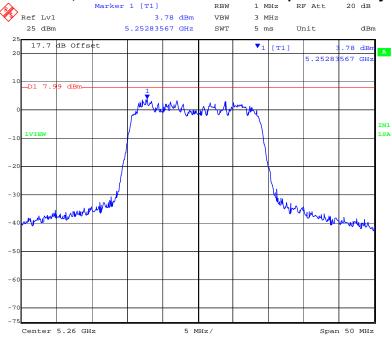
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 91 of 244

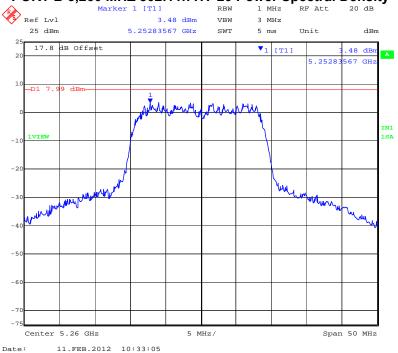
TABLE OF RESULTS - 802.11n HT-20 5250 - 5350 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	ı: 0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):		2	
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power		Correction	Maximum Peak Power	Limit	Margin
Frequency	RF Port (dBm)		factor	Spectral Density		g		
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5260	3.78	3.48			3.01	3.78	7.99	-4.21
5300	2.89	2.90			3.01	2.90	7.99	-5.09
5320	2.83	3.02			3.01	3.02	7.99	-4.97


Measurement uncertainty:	±1.33 dB
--------------------------	----------

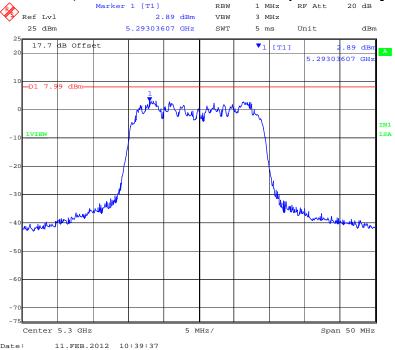
To: FCC 47 CFR Part 15.407 & IC RSS-210

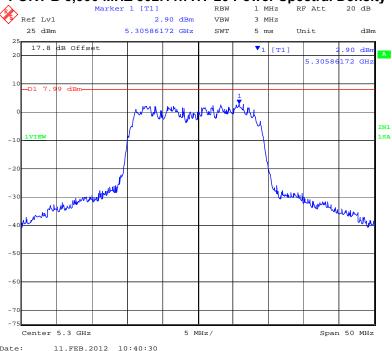

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 92 of 244

PORT A 5,260 MHZ 802.11n HT-20 Power Spectral Density

Date: 11.FEB.2012 10:32:13

PORT B 5,260 MHZ 802.11n HT-20 Power Spectral Density

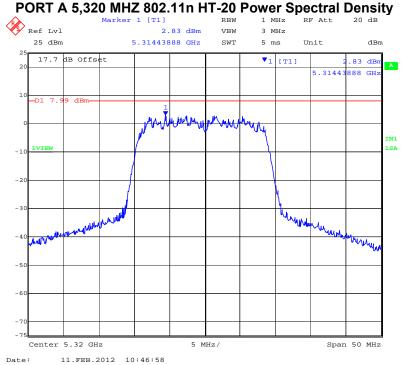



To: FCC 47 CFR Part 15.407 & IC RSS-210

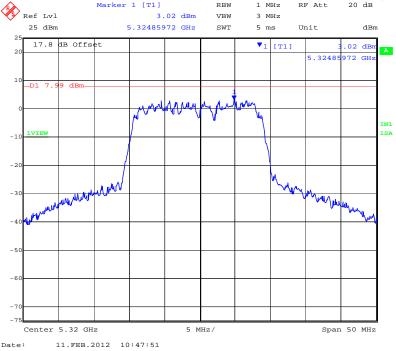
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 93 of 244

PORT A 5,300 MHZ 802.11n HT-20 Power Spectral Density

PORT B 5,300 MHZ 802.11n HT-20 Power Spectral Density


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Date:



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 94 of 244

PORT B 5,320 MHZ 802.11n HT-20 Power Spectral Density

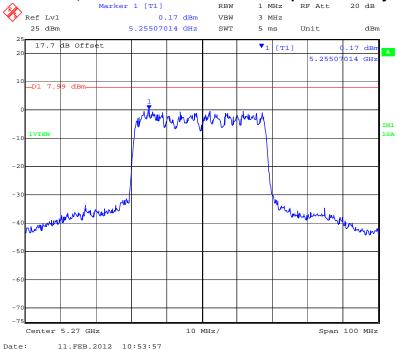
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 95 of 244

TABLE OF RESULTS - 802.11n HT-40 5250 - 5350 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	6): 100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	: 0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):		2	
Notes 1:					
Notes 2:					

Test	N	leasured P	eak Power		Correction	Maximum Peak Power	Limit	Margin	
Frequency	RF Port (dBm)				factor	Spectral Density		J	
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB	
5270	0.17	-0.17	1		3.01	0.17	7.99	-7.82	
5310	0.07	-0.50			3.01	0.07	7.99	-7.92	

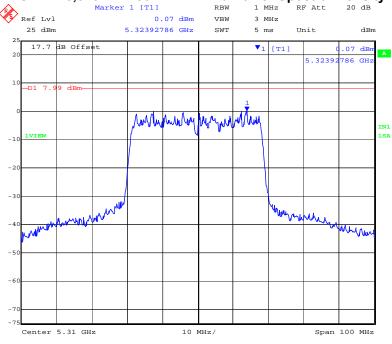

Measurement uncertainty: ±1.33 dB


To: FCC 47 CFR Part 15.407 & IC RSS-210

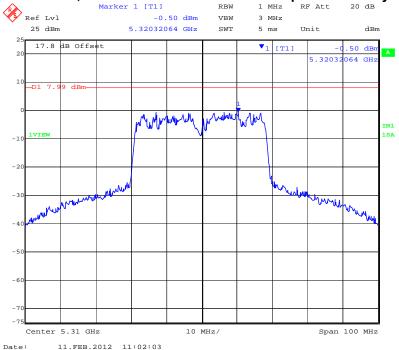
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 96 of 244

PORT A 5,270 MHz 802.11n HT-40 Power Spectral Density

PORT B 5,270 MHz 802.11n HT-40 Power Spectral Density



To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 97 of 244

PORT A 5,310 MHz 802.11n HT-40 Power Spectral Density

Date: 11.FEB.2012 11:01:10

PORT B 5,310 MHz 802.11n HT-40 Power Spectral Density

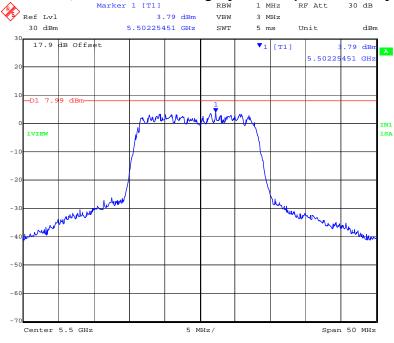
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 98 of 244

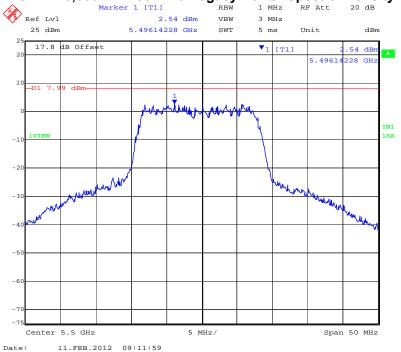
TABLE OF RESULTS - 802.11a Legacy 5470 - 5725 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	Modulation: ON		100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):		2	
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power RF Port (dBm)				Correction factor	Maximum Peak Power Spectral Density	Limit	Margin
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB
5500	3.79	2.54			3.01	3.79	7.99	-4.20
5580	3.51	2.55			3.01	3.51	7.99	-4.48
5700	2.49	2.86			3.01	2.86	7.99	-5.13


Measurement uncertainty:	±1.33 dB	

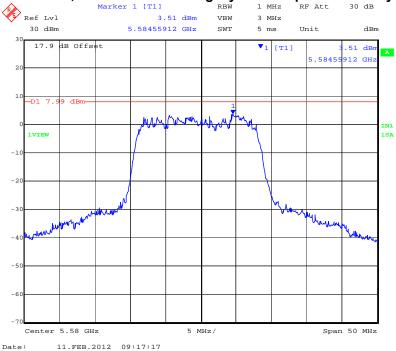
To: FCC 47 CFR Part 15.407 & IC RSS-210

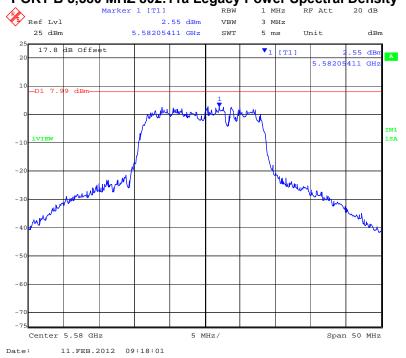

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 99 of 244

PORT A 5,500 MHZ 802.11a Legacy Power Spectral Density

Date: 11.FEB.2012 09:11:06

PORT B 5,500 MHZ 802.11a Legacy Power Spectral Density

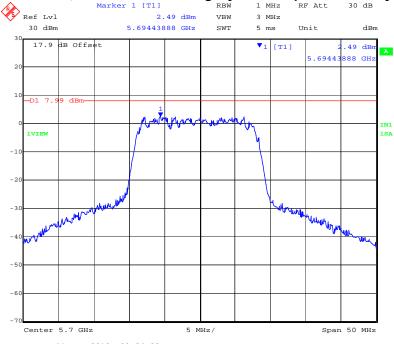



To: FCC 47 CFR Part 15.407 & IC RSS-210

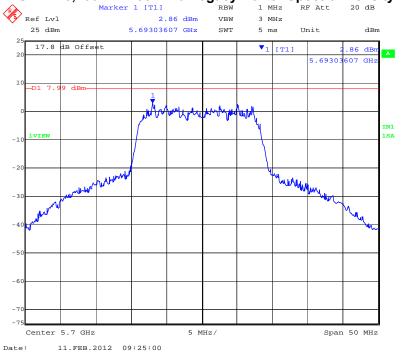
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 100 of 244

PORT A 5,580 MHZ 802.11a Legacy Power Spectral Density

PORT B 5,580 MHZ 802.11a Legacy Power Spectral Density



To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 101 of 244

PORT A 5,700 MHZ 802.11a Legacy Power Spectral Density

Date: 11.FEB.2012 09:24:08

PORT B 5,700 MHZ 802.11a Legacy Power Spectral Density

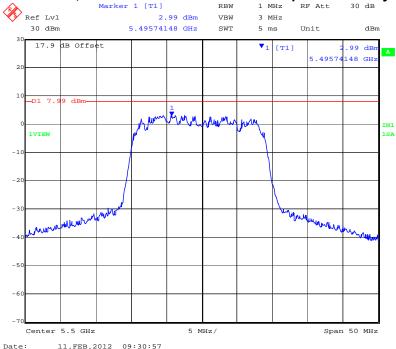
To: FCC 47 CFR Part 15.407 & IC RSS-210

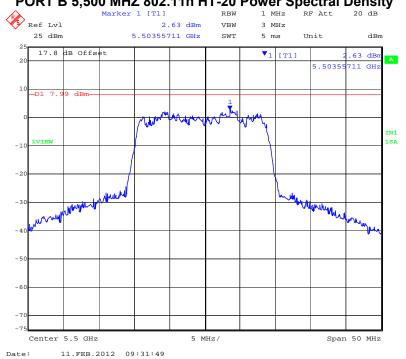
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 102 of 244

TABLE OF RESULTS - 802.11n HT-20 5470 - 5725 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	odulation: ON		100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	: 0 dBi		
Applied Voltage:	48.0 Vdc	Antenna Ports (N):	2		
Notes 1:					
Notes 2:					

Test Measured Peak Power					Correction	Maximum Peak Power	Peak Power Limit	Margin	
Frequency	RF Port (dBm)				factor	Spectral Density		g	
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB	
5500	2.99	2.63		-	3.01	2.99	7.99	-5.00	
5580	3.26	3.09			3.01	3.26	7.99	-4.73	
5700	2.22	1.93			3.01	2.22	7.99	-5.77	

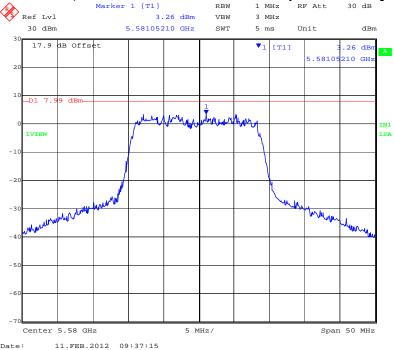

Measurement uncertainty:	±1.33 dB
--------------------------	----------

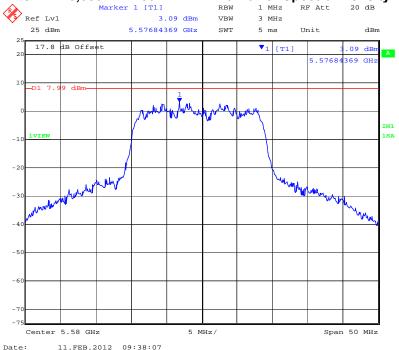

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 103 of 244

PORT A 5,500 MHZ 802.11n HT-20 Power Spectral Density

PORT B 5,500 MHZ 802.11n HT-20 Power Spectral Density

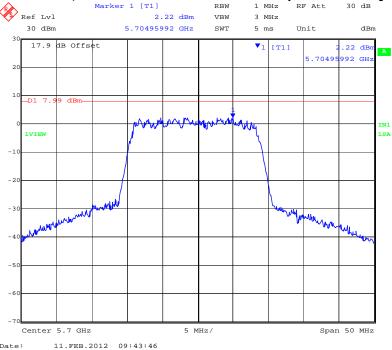


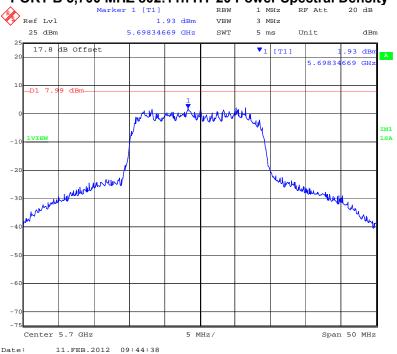

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 104 of 244

PORT A 5,580 MHZ 802.11n HT-20 Power Spectral Density

PORT B 5,580 MHZ 802.11n HT-20 Power Spectral Density




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 105 of 244

PORT A 5,700 MHZ 802.11n HT-20 Power Spectral Density

PORT B 5,700 MHZ 802.11n HT-20 Power Spectral Density

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 106 of 244

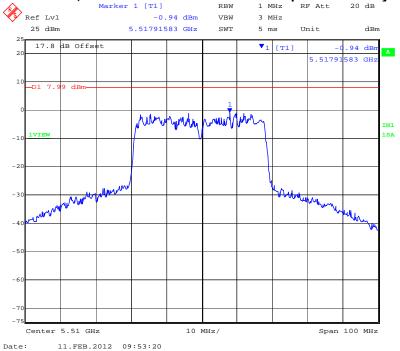
TABLE OF RESULTS - 802.11n HT-40 5470 - 5725 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	48.0 Vdc	Antenna Ports (N):		2	
Notes 1:					
Notes 2:					

Test						Maximum Peak Power	Limit	Margin	
Frequency	RF Port (dBm)				factor	Spectral Density		g	
MHz	а	b	С	d	10Log(N)	dBm	dBm	dB	
5510	1.20	-0.95		-	3.01	1.20	7.99	-6.79	
5550	1.18	0.81	-	-	3.01	1.18	7.99	-6.81	
5670	0.08	-0.05			3.01	0.08	7.99	-7.91	

Measurement uncertainty:	±1.33 dB
--------------------------	----------

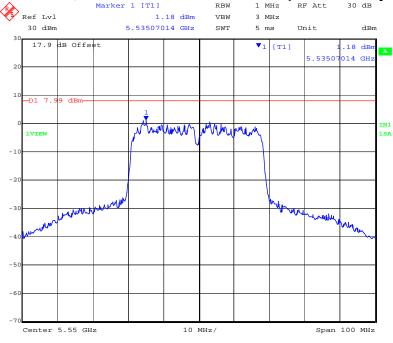
To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 107 of 244

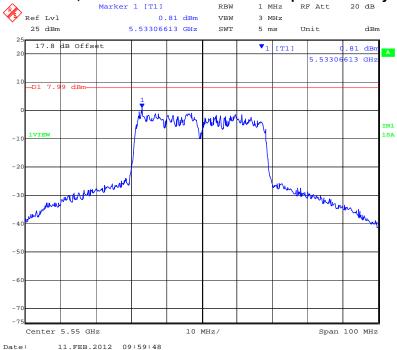
PORT A 5,510 MHz 802.11n HT-40 Power Spectral Density

11.FEB.2012 09:52:27

PORT B 5,510 MHz 802.11n HT-40 Power Spectral Density



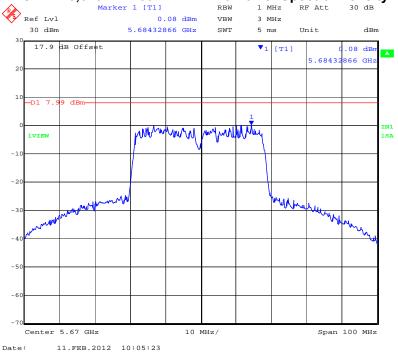
To: FCC 47 CFR Part 15.407 & IC RSS-210

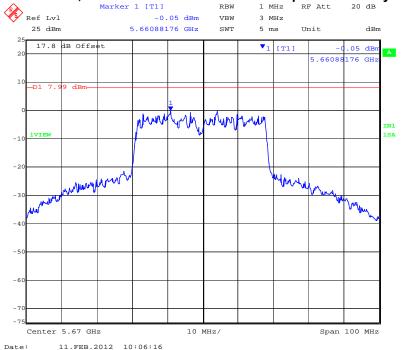

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 108 of 244

PORT A 5,550 MHz 802.11n HT-40 Power Spectral Density

Date: 11.FEB.2012 09:58:56

PORT B 5,550 MHz 802.11n HT-40 Power Spectral Density




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 109 of 244

PORT A 5,670 MHz 802.11n HT-40 Power Spectral Density

PORT B 5,670 MHz 802.11n HT-40 Power Spectral Density

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 110 of 244

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)

5150 - 5250 MHz

(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

5250 - 5350 MHz & 5470 - 5725 MHz

(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2(1), A9.2(2)

5150 - 5250 MHz

§ A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band

5250 - 5350 MHz & 5470 - 5725 MHz

§ A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

Laboratory Measurement Uncertainty for Spectral Density

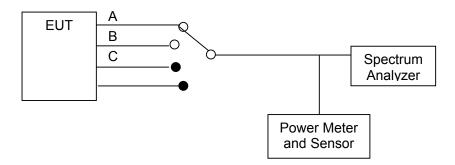
Measurement uncertainty	±1.33 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 111 of 244


5.1.4. Peak Excursion Ratio

FCC, Part 15 Subpart C §15.407(a)(6)

Test Procedure

Normative Reference (xi) Section 2.1 Measurement Procedure DA 02-2138 "Measurement Procedure Updated for Peak Transmit Power in the UNII Bands" was implemented to determine the Peak Excursion Ratio. This is a conducted measurement using a spectrum analyzer. The Peak Excursion Ratio is the difference in amplitude (dB) between the two traces.

Test Measurement Set up

Measurement set up for Peak Excursion Ratio

Measurement Results for Peak Excursion Ratio

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57% Pressure: 999 to 1012 mbar

Radio Parameters Duty Cycle: 100%

Output: Modulated Carrier Power: Maximum Default Power

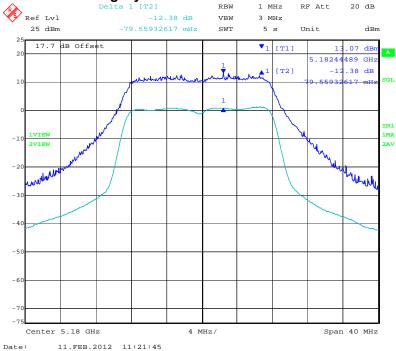
To: FCC 47 CFR Part 15.407 & IC RSS-210

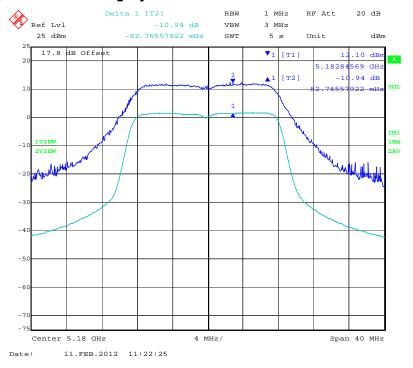
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 112 of 244

TABLE OF RESULTS - 802.11a Legacy 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	00	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	'A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test		Trace Δ	Marker		Limit	Margin
Frequency	Port A	Port B	Port C	Port D	Lillit	Wargin
MHz	dB	dB	dB	dB	dB	dB
5180	-12.38	-10.94				-0.63
5200	-12.30	-11.00			-13.00	-0.70
5240	-12.88	-11.11				-0.12

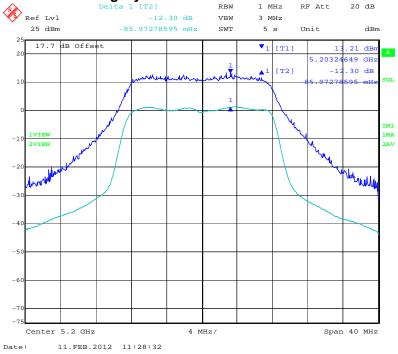

Measurement uncertainty:	±1.33 dB
--------------------------	----------

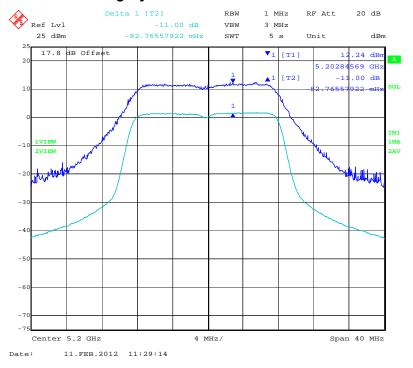

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 113 of 244

PORT A 5,180 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,180 MHz 802.11a Legacy Peak Excursion Ratio

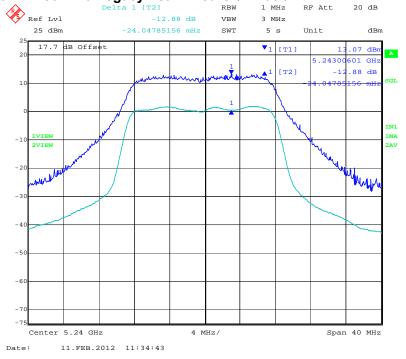


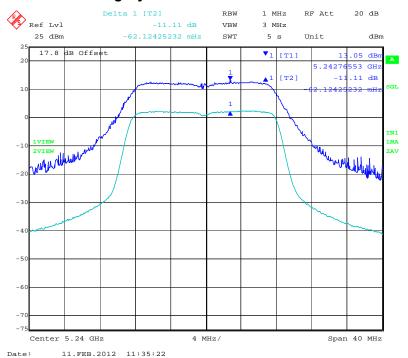

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 114 of 244

PORT A 5,200 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,200 MHz 802.11a Legacy Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 115 of 244

PORT A 5,240 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,240 MHz 802.11a Legacy Peak Excursion Ratio

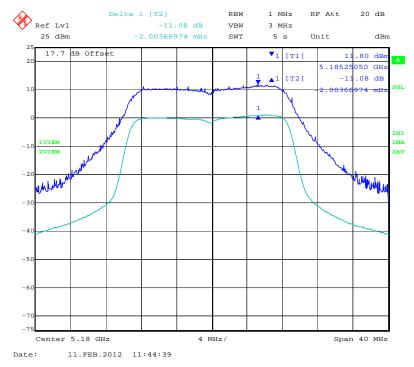
To: FCC 47 CFR Part 15.407 & IC RSS-210

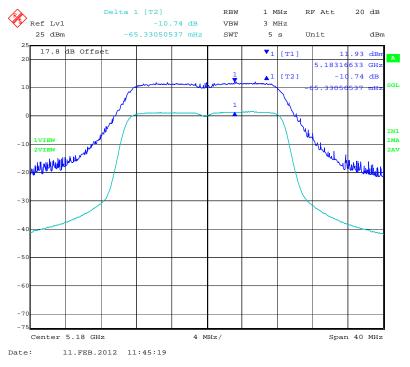
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 116 of 244

TABLE OF RESULTS - 802.11n HT-20 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test		Trace Δ	Marker		Limit	Margin
Frequency	Port A	Port B	Port C	Port D	Lilling	Margin
MHz	dB	dB	dB	dB	dB	dB
5180	-11.08	-10.74				-1.92
5200	-10.79	-11.07			-13.00	-1.93
5240	-11.78	-10.68				-1.22

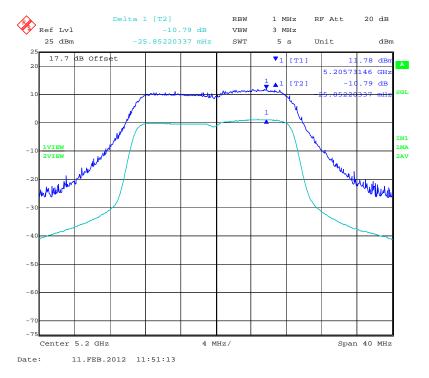

Measurement uncertainty:	±1.33 dB
--------------------------	----------

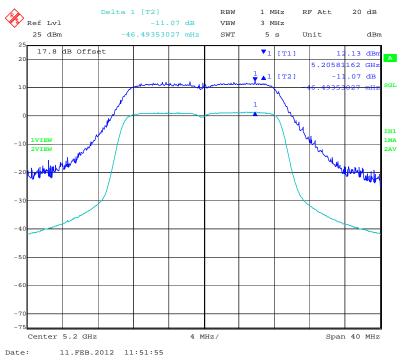

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 117 of 244

PORT A 5,180 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,180 MHz 802.11n HT-20 Peak Excursion Ratio

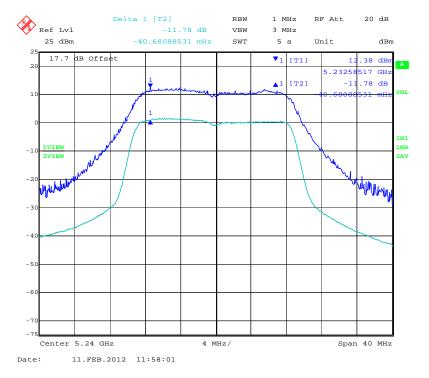


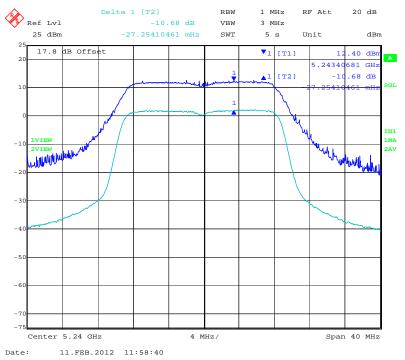

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 118 of 244

PORT A 5,200 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,200 MHz 802.11n HT-20 Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 119 of 244

PORT A 5,240 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,240 MHz 802.11n HT-20 Peak Excursion Ratio

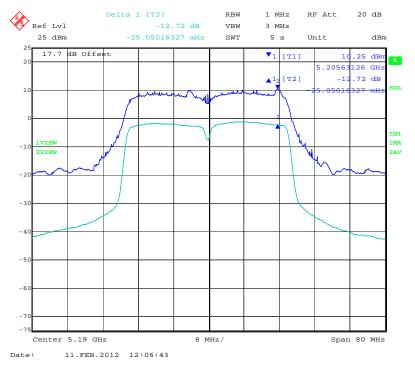
To: FCC 47 CFR Part 15.407 & IC RSS-210

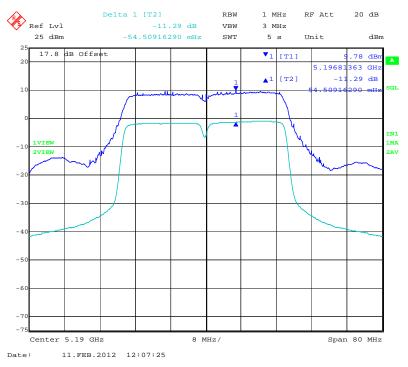
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 120 of 244

TABLE OF RESULTS - 802.11n HT-40 5150 - 5250 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test		Trace Δ	Marker		Limit	Margin
Frequency	Port A	Port B	Port C	Port D	Lilling	margin
MHz	dB	dB	dB	dB	dB	dB
5190	-12.72	-11.29			-13.00	-0.28
5230	-11.00	-11.39			-13.00	-1.61

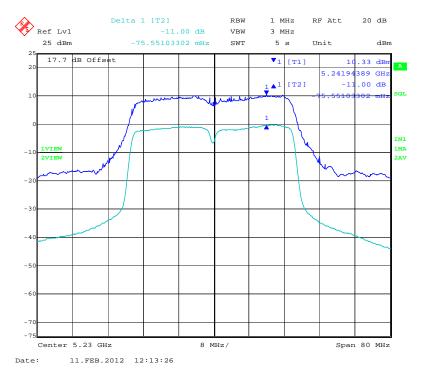

Measurement uncertainty:	±1.33 dB
--------------------------	----------

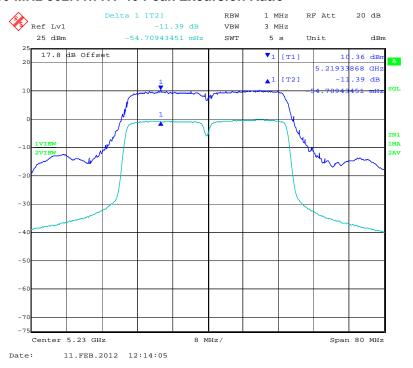

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 121 of 244

PORT A 5,190 MHz 802.11n HT-40 Peak Excursion Ratio

PORT B 5,190 MHz 802.11n HT-40 Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 122 of 244

PORT A 5,230 MHz 802.11n HT-40 Peak Excursion Ratio

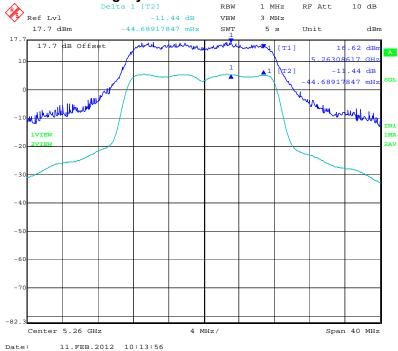
PORT B 5,230 MHz 802.11n HT-40 Peak Excursion Ratio

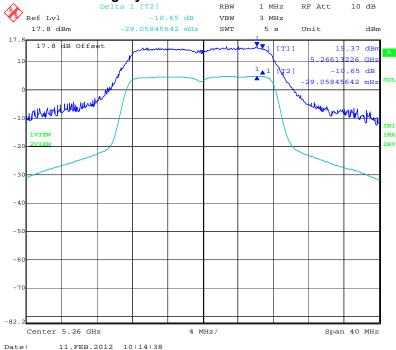
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 123 of 244

TABLE OF RESULTS - 802.11a Legacy 5250 -5350 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

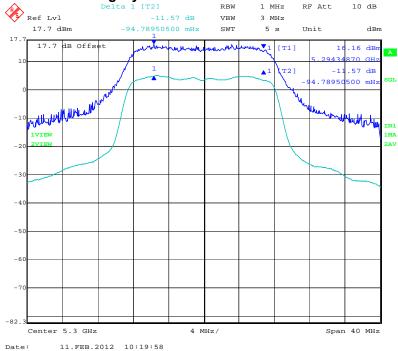

Test		Trace Δ	Marker		Limit	Margin
Frequency	Port A	Port B	Port C	Port D	Lillit	Wargin
MHz	dB	dB	dB	dB	dB	dB
5260	-11.45	-10.66	-			-1.56
5300	-11.57	-10.25			-13.00	-1.43
5320	-11.48	-10.33				-1.52

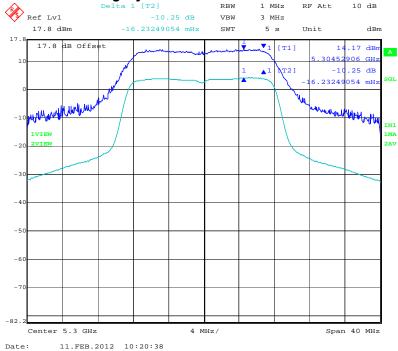

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 124 of 244

PORT A 5,260 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,260 MHz 802.11a Legacy Peak Excursion Ratio

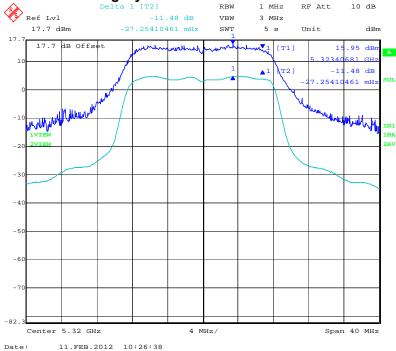


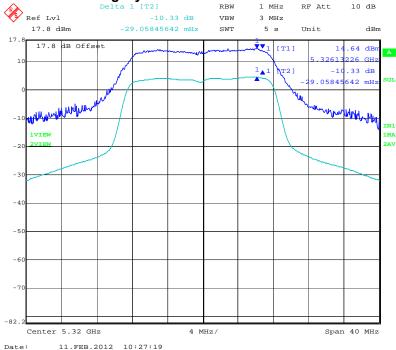

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 125 of 244

PORT A 5300 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,300 MHz 802.11a Legacy Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 126 of 244

PORT A 5,320 MHz 802.11a Legacy Peak Excursion Ratio

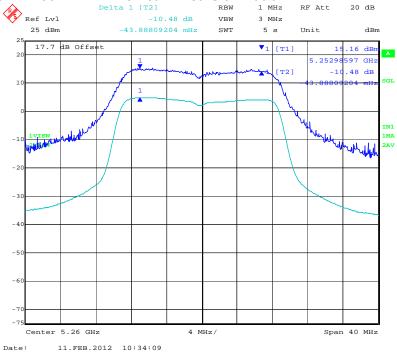
PORT B 5,320 MHz 802.11a Legacy Peak Excursion Ratio

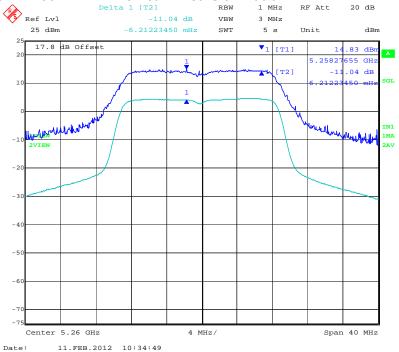
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 127 of 244

TABLE OF RESULTS - 802.11n HT-20 5250-5350 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	100	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:			•		•

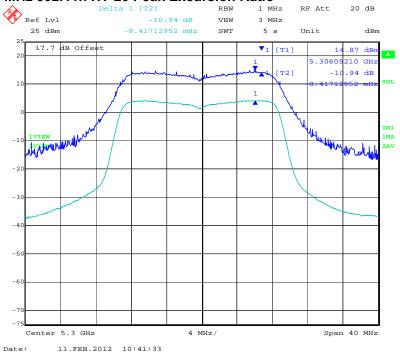

Test		Trace Δ	Marker		Limit	Margin
Frequency	Port A	Port B	Port C	Port D		Margin
MHz	dB	dB	dB	dB	dB	dB
5260	-10.48	-11.04				-1.96
5300	-10.94	-10.81			-13.00	-2.06
5320	-10.68	-10.35				-2.32

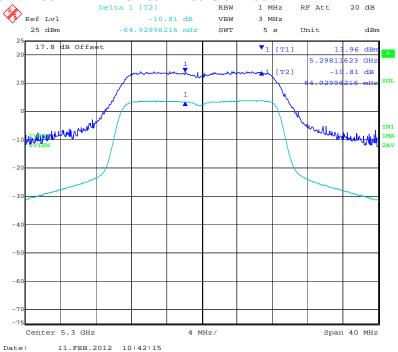

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 128 of 244

PORT A 5,260 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,260 MHz 802.11n HT-20 Peak Excursion Ratio

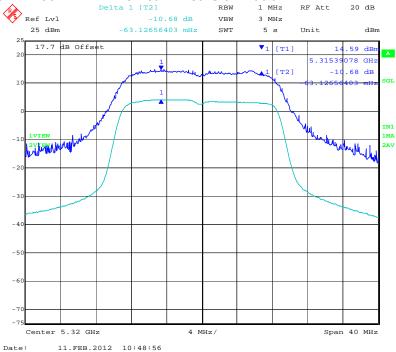


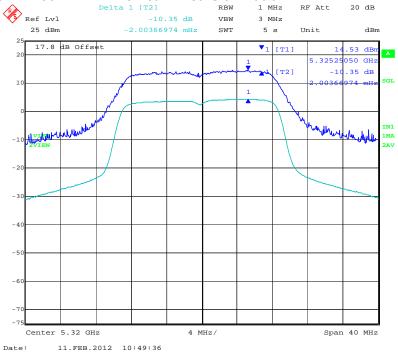

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 129 of 244

PORT A 5300 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,300 MHz 802.11n HT-20 Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 130 of 244

PORT A 5,320 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,320 MHz 802.11n HT-20 Peak Excursion Ratio

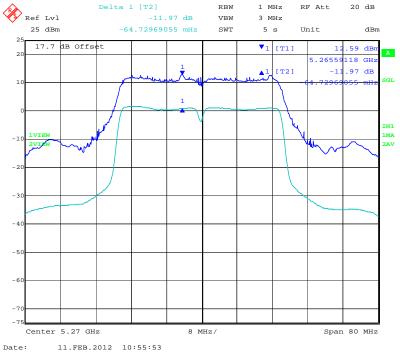
To: FCC 47 CFR Part 15.407 & IC RSS-210

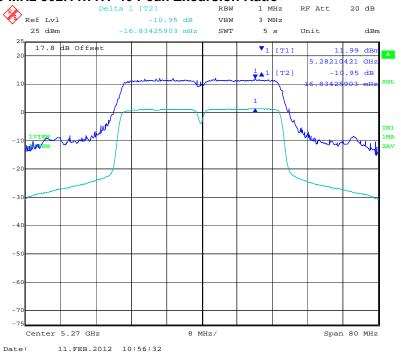
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 131 of 244

TABLE OF RESULTS - 802.11n HT-40 5250-5350 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	100	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test		Trace Δ	Marker		Limit	Margin
Frequency	Port A	Port B	Port C	Port D		murgiii
MHz	dB	dB	dB	dB	dB	dB
5270	-11.97	-10.95			-13.00	-1.03
5310	-11.43	-10.72			-13.00	-1.57

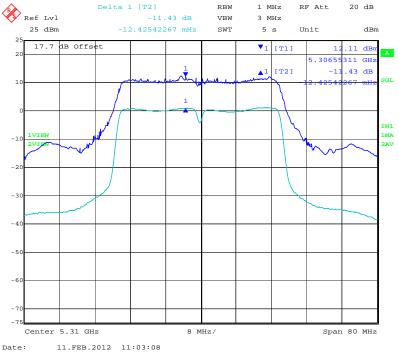

Measurement uncertainty:	±1.33 dB
--------------------------	----------

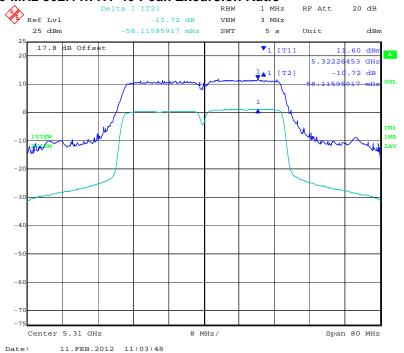

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 132 of 244

PORT A 5,270 MHz 802.11n HT-40 Peak Excursion Ratio

PORT B 5,270 MHz 802.11n HT-40 Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 133 of 244

PORT A 5,310 MHz 802.11n HT-40 Peak Excursion Ratio

PORT B 5,310 MHz 802.11n HT-40 Peak Excursion Ratio

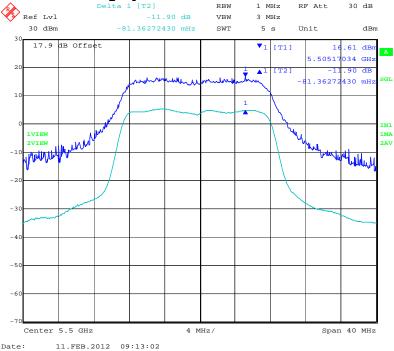
To: FCC 47 CFR Part 15.407 & IC RSS-210

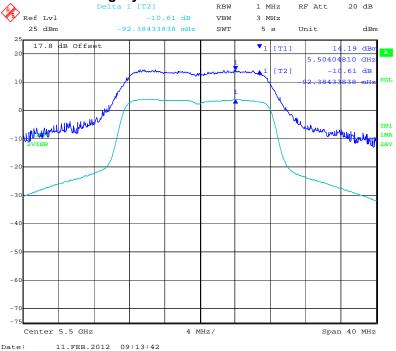
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 134 of 244

TABLE OF RESULTS - 802.11a Legacy 5500 - 5700 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11a	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	100	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test		Trace Δ	Marker		Limit	Margin
Frequency	Port A	Port B	Port C	Port D	Lilling	Margin
MHz	dB	dB	dB	dB	dB	dB
5500	-11.90	-10.61				-1.10
5580	-11.43	-10.73			-13.00	-1.57
5700	-11.89	-10.67				-1.11

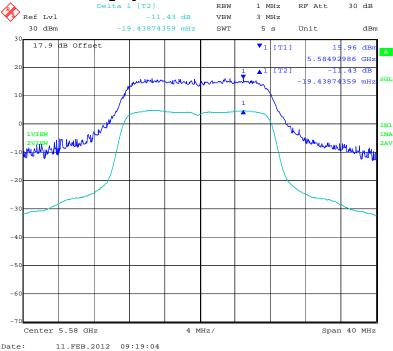

Measurement uncertainty:	±1.33 dB
--------------------------	----------

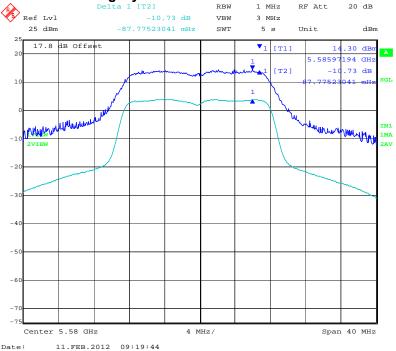

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 135 of 244

PORT A 5,500 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,500 MHz 802.11a Legacy Peak Excursion Ratio

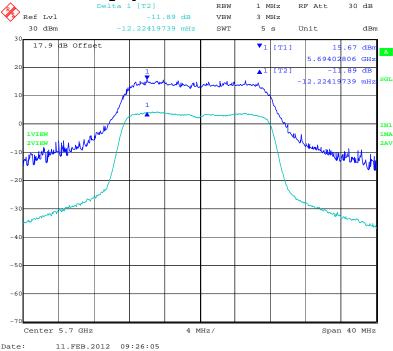


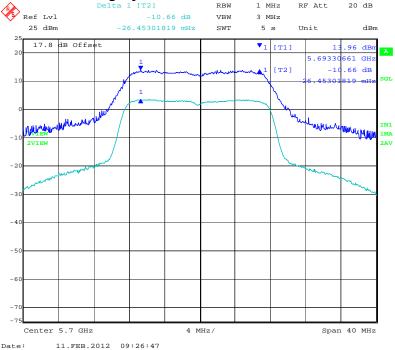

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 136 of 244

PORT A 5,580 MHz 802.11a Legacy Peak Excursion Ratio

PORT B 5,580 MHz 802.11a Legacy Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 137 of 244

PORT A 5,700 MHz 802.11a Legacy Peak Excursion Ratio

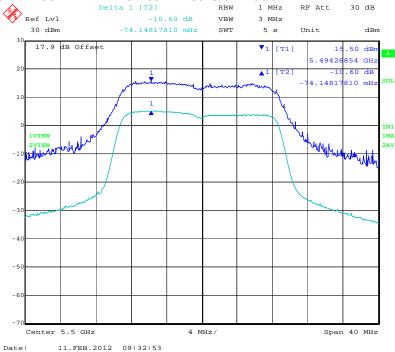
PORT B 5,700 MHz 802.11a Legacy Peak Excursion Ratio

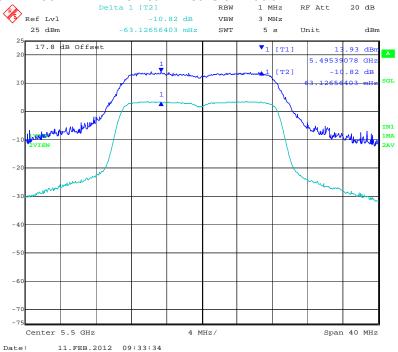
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 138 of 244

TABLE OF RESULTS - 802.11n HT-20 5500 - 5700 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-20	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	100	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					-

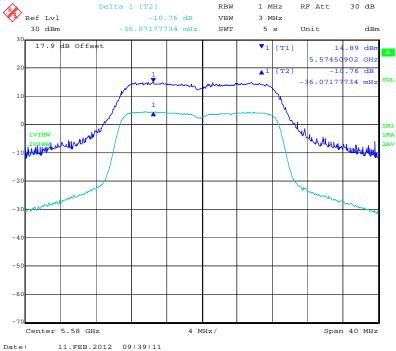

Test	Test Trace Δ Marker					Margin
Frequency	Port A	Port B	Port C	Port D	Limit	Margin
MHz	dB	dB	dB	dB	dB	dB
5500	-10.60	-10.82				-2.18
5580	-10.76	-10.56			-13.00	-2.24
5700	-10.89	-10.50				-2.11

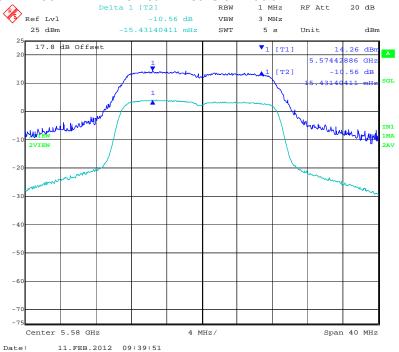

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 139 of 244

PORT A 5,500 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,500 MHz 802.11n HT-20 Peak Excursion Ratio

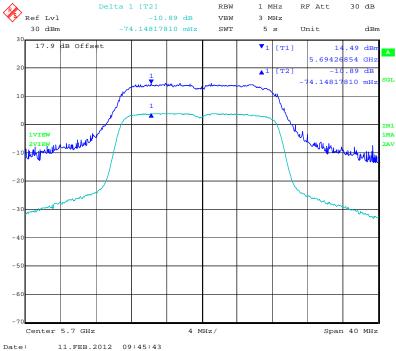


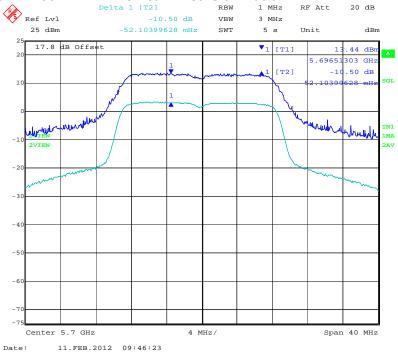

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 140 of 244

PORT A 5,580 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,580 MHz 802.11n HT-20 Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 141 of 244

PORT A 5,700 MHz 802.11n HT-20 Peak Excursion Ratio

PORT B 5,700 MHz 802.11n HT-20 Peak Excursion Ratio

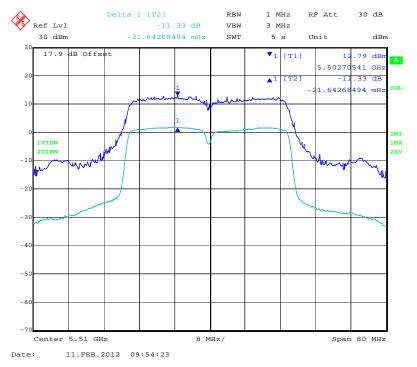
To: FCC 47 CFR Part 15.407 & IC RSS-210

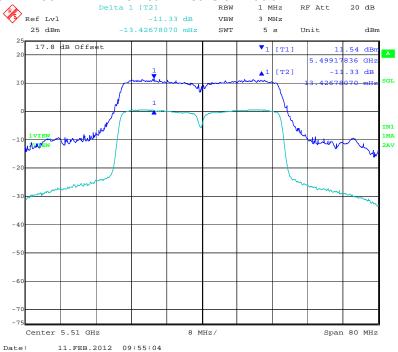
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 142 of 244

TABLE OF RESULTS - 802.11n HT-40 5500 - 5700 MHz

Test Conditions:	15.407 (a)	Rel. Humidity (%):	35	to	42
Variant:	802.11n HT-40	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (%):	10	0	
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	N/	A dBi	
Applied Voltage:	48.0 Vdc				
Notes 1:					
Notes 2:					

Test	Test Trace Δ Marker					Margin
Frequency	Port A	Port B	Port C	Port D	Limit	Margin
MHz	dB	dB	dB	dB	dB	dB
5510	-11.33	-11.33				-1.67
5550	-11.93	-11.14			-13.00	-1.07
5670	-10.89	-11.11				-1.89

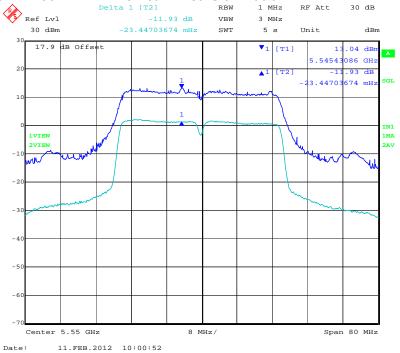

Measurement uncertainty: ±1.33 dB	Measurement uncertainty:	±1.33 dB
-----------------------------------	--------------------------	----------

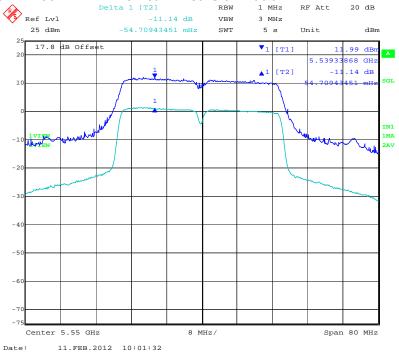

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 143 of 244

PORT A 5,510 MHz 802.11n HT-40 Peak Excursion Ratio

PORT B 5,510 MHz 802.11n HT-40 Peak Excursion Ratio

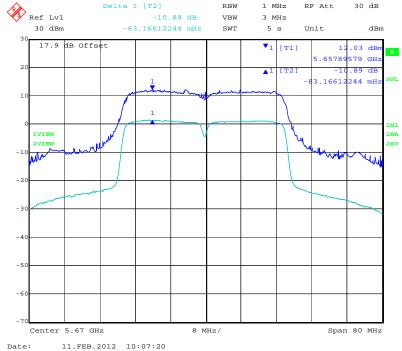


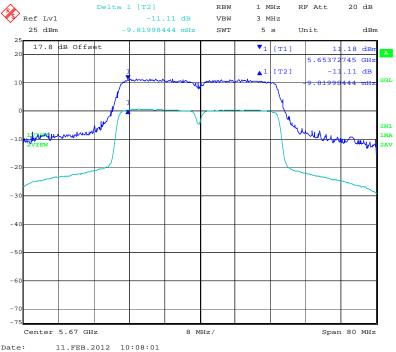

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 144 of 244

PORT A 5,550 MHz 802.11n HT-40 Peak Excursion Ratio

PORT B 5,550 MHz 802.11n HT-40 Peak Excursion Ratio




To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 145 of 244

PORT A 5,670 MHz 802.11n HT-40 Peak Excursion Ratio

PORT B 5,670 MHz 802.11n HT-40 Peak Excursion Ratio

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 146 of 244

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Laboratory Measurement Uncertainty for Spectrum Measurement

Traceability

Method	Test Equipment Used
instruction WI-03 'Measurement of RF	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117
Spectrum Mask'	

To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 147 of 244

5.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g) Industry Canada RSS-210 §2.1

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20ppm stability.

This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

±20ppm at 5.250 GHz translates to a maximum frequency shift of ±105 KHz. As the edge of the channels is at least one MHz from either of the band edges, ±105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 148 of 244

5.1.6. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.407(f)

Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

The Juniper WLA321 has three transmitters operating in each band. The peak power in the table below is calculated by assuming a worst case scenario where all transmitters are operating simultaneously.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (MHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
5150 - 5250	0.0	1.00	+16.83	48.2	1.96	20.00
5250 - 5350	0.0	1.00	+20.07	101.6	2.84	20.00
5470 - 5725	0.0	1.00	+19.54	89.9	2.67	20.00

<u>Note:</u> for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the application requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 149 of 244

5.1.7. Radiated Emissions

FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a) Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB_{\mu}V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100 \mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250 \mu\text{V/m}$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.407 & IC RSS-210

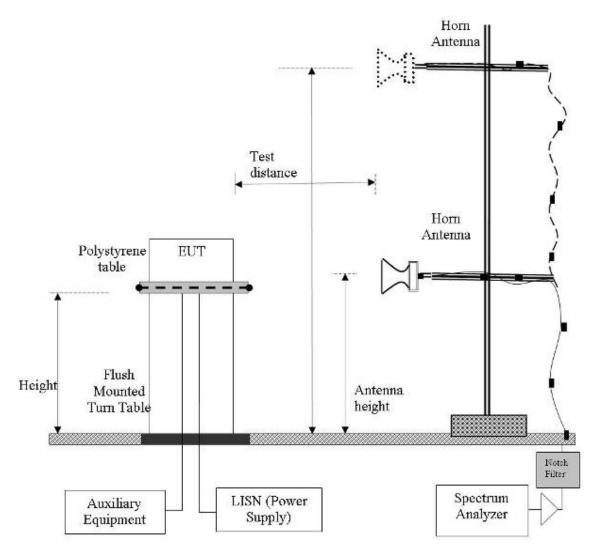
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 150 of 244

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ($dB\mu V/m$);

$$E = \frac{10000000 \times \sqrt{30P}}{3} \mu \text{V/m}$$

where P is the EIRP in Watts

Therefore: -27 dBm/MHz = 68.23 dBuV/m


Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 151 of 244

Radiated Emission Measurement Setup - Above 1 GHz

NOTE: KDB 662911 was implemented for Out-of-Band measurements. Where necessary Option (2) Measure and add 10 log (N) dB was implemented

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 152 of 244

Specification

Radiated Spurious Emissions

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of -27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2) For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6 Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 153 of 244

Table 1: FCC 15.209 Spurious Emissions Limits

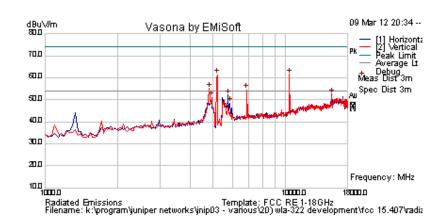
Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement Uncertainty	+5.6/ -4.5 dB

Traceability:

Method	Test Equipment Used			
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312			

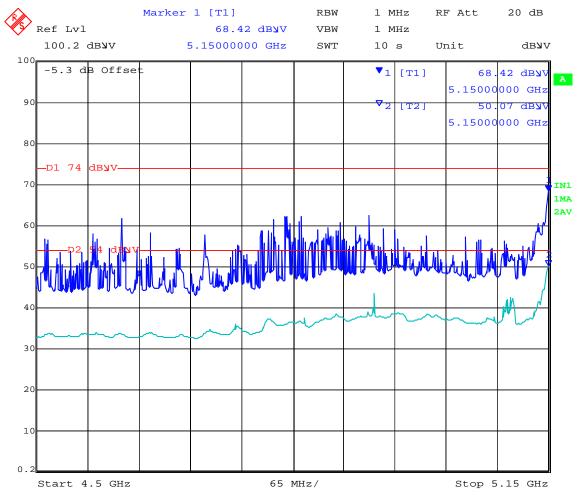

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 154 of 244

5.1.7.1. Integral Antenna

Test Freq.	5180 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10368.737	57.3	6.7	-2.5	61.5	Peak [Scan]	V					Pass	NRB
5190.381	66.6	4.6	-9.9	61.3	Peak [Scan]	V						BE
4815.631	60.4	4.5	-9.7	55.2	Peak [Scan]	V					Pass	BE
6893.788	55.7	5.3	-6.5	54.5	Peak [Scan]	V					Pass	NRB
5769.539	57.0	4.8	-9.5	52.3	Peak [Scan]	Η					Pass	BE
4917.836	56.4	4.6	-9.8	51.2	Peak [Scan]	V					Pass	BE
5871.743	52.8	4.8	-9.1	48.5	Peak [Scan]	Η					Pass	BE
15538.397	48.1	8.3	-0.6	55.8	Peak Max	Н	114	345	74.0	-18.2	Pass	RB
15538.397	33.8	8.3	-0.6	41.5	Average Max	Н	114	345	54.0	-12.5	Pass	RB

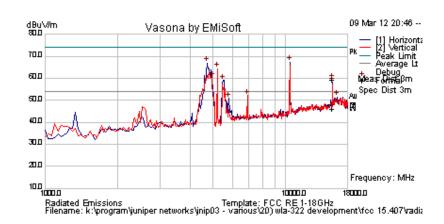
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 155 of 244

802.11a 5150 Restricted Band-edge

Date: 10.MAR.2012 13:26:01

Power reduction required ART = 17


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 156 of 244

Test Freq.	5200 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

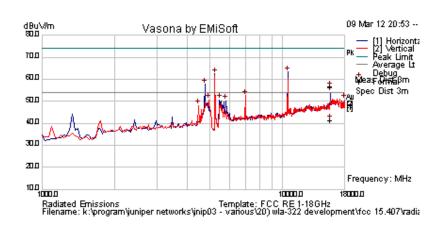
Legend:

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10402.806	63.1	6.7	-2.5	67.3	Peak [Scan]	Н					Pass	NRB
4713.427	72.3	4.4	-9.8	66.9	Peak [Scan]	Н					Pass	BE
5190.381	69.6	4.6	-9.9	64.4	Peak [Scan]	V						FUND
4951.904	65.5	4.6	-9.8	60.2	Peak [Scan]	Н					Pass	BE
5496.994	64.1	4.6	-9.6	59.1	Peak [Scan]	Н					Pass	BE
6927.856	53.4	5.4	-6.5	52.3	Peak [Scan]	V	100	0	54.0	-1.7	Pass	NRB
16296.593	42.5	8.9	0.2	51.5	Peak [Scan]	Н	100	0	54.0	-2.5	Pass	NOISE
5803.607	55.6	4.8	-9.4	51.0	Peak [Scan]	Н					Pass	BE
15598.957	51.5	8.4	-0.6	59.3	Peak Max	Н	142	0	74.0	-14.7	Pass	RB
15598.957	38.1	8.4	-0.6	45.9	Average Max	Н	142	0	54.0	-8.1	Pass	RB

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission



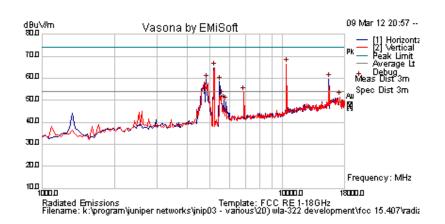
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 157 of 244

Test Freq.	5240 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10470.942	58.9	6.8	-2.5	63.2	Peak [Scan]	Н					Pass	NRB
5224.449	67.6	4.6	-9.8	62.4	Peak [Scan]	Н						FUND
4747.495	63.0	4.4	-9.7	57.7	Peak [Scan]	Н					Pass	BE
6995.992	53.5	5.4	-6.4	52.5	Peak [Scan]	V	100	0	54.0	-1.5	Pass	NRB
18000.000	41.5	8.8	0.7	51.0	Peak [Scan]	V	100	0	54.0	-3.0	Pass	NOISE
4917.836	55.9	4.6	-9.8	50.7	Peak [Scan]	Η					Pass	BE
5462.926	55.7	4.6	-9.7	50.6	Peak [Scan]	Н					Pass	BE
5803.607	54.9	4.8	-9.4	50.3	Peak [Scan]	Н					Pass	BE
4474.950	54.5	4.2	-10.5	48.2	Peak [Scan]	V	100	0	54.0	-5.8	Pass	BE
15728.257	48.4	8.6	-0.4	56.6	Peak Max	Н	98	58	74.0	-17.4	Pass	RB
15728.257	33.1	8.6	-0.4	41.2	Average Max	Н	98	58	54.0	-12.8	Pass	RB

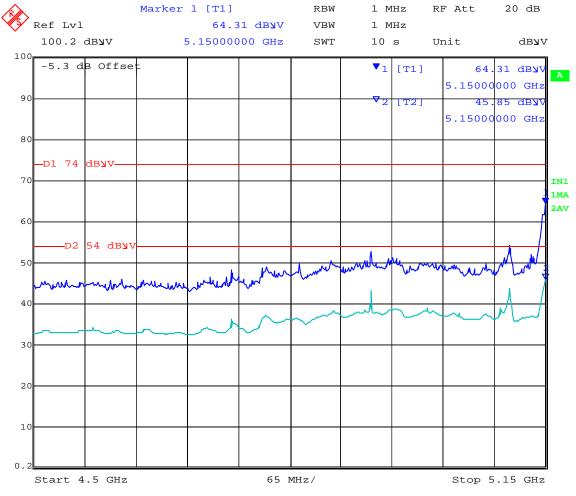


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 158 of 244

Test Freq.	5180 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10368.737	62.4	6.7	-2.5	66.6	Peak [Scan]	Н					Pass	NRB
5190.381	70.1	4.6	-9.9	64.9	Peak [Scan]	V						FUND
4815.631	64.7	4.5	-9.7	59.5	Peak [Scan]	Н					Pass	BE
5462.926	63.7	4.6	-9.7	58.7	Peak [Scan]	Н					Pass	BE
6893.788	55.2	5.3	-6.5	54.0	Peak [Scan]	V	100	0	54.0	0.0	Pass	NRB
5565.130	57.0	4.7	-9.7	52.0	Peak [Scan]	>					Pass	BE
17216.433	42.2	8.6	0.9	51.6	Peak [Scan]	>	100	0	54.0	-2.4	Pass	NOISE
5701.403	54.9	4.7	-9.6	50.0	Peak [Scan]	Η					Pass	BE
5803.607	53.9	4.8	-9.4	49.3	Peak [Scan]	Н					Pass	BE
15537.194	54.3	8.3	-0.6	62.0	Peak Max	Н	121	348	74.0	-12.0	Pass	RB
15537.194	38.9	8.3	-0.6	46.5	Average Max	Н	121	348	54.0	-7.5	Pass	RB

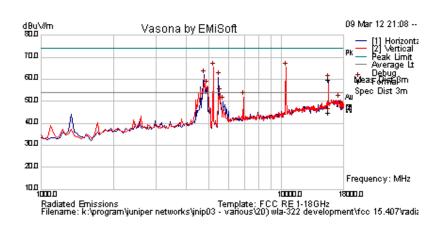
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 159 of 244

802.11n HT-20 5150 Restricted Band-edge

Date: 10.MAR.2012 13:28:48

Power reduction required ART = 16



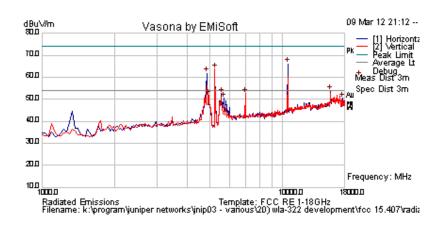
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 160 of 244

Test Freq.	5200 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna		Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5190.381	70.7	4.6	-9.9	65.5	Peak [Scan]	V						FUND
10402.806	61.2	6.7	-2.5	65.4	Peak [Scan]	V					Pass	NRB
4747.495	67.4	4.4	-9.7	62.1	Peak [Scan]	Н					Pass	BE
5462.926	66.1	4.6	-9.7	61.0	Peak [Scan]	Н					Pass	BE
4883.768	62.4	4.5	-9.7	57.2	Peak [Scan]	V					Pass	BE
5531.062	59.0	4.6	-9.7	53.9	Peak [Scan]	V					Pass	BE
6927.856	53.2	5.4	-6.5	52.1	Peak [Scan]	٧	100	0	54.0	-2.0	Pass	NRB
17250.501	41.1	8.6	1.0	50.7	Peak [Scan]	Н	100	0	54.0	-3.3	Pass	NOISE
5701.403	54.6	4.7	-9.6	49.8	Peak [Scan]	Н					Pass	BE
15597.434	52.0	8.4	-0.6	59.8	Peak Max	Н	108	355	74.0	-14.2	Pass	RB
15597.434	37.1	8.4	-0.6	44.9	Average Max	Н	108	355	54.0	-9.1	Pass	RB



To: FCC 47 CFR Part 15.407 & IC RSS-210

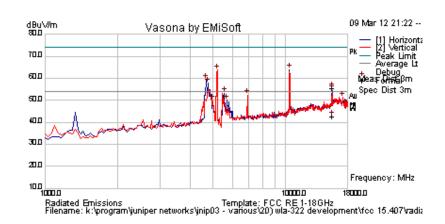
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 161 of 244

Test Freq.	5240 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10470.942	61.9	6.8	-2.5	66.2	Peak [Scan]	Н					Pass	NRB
5224.449	69.0	4.6	-9.8	63.8	Peak [Scan]	V						FUND
4849.699	66.9	4.5	-9.7	61.8	Peak [Scan]	Н					Pass	BE
5565.130	57.7	4.7	-9.7	52.7	Peak [Scan]	Н					Pass	BE
6995.992	53.5	5.4	-6.4	52.5	Peak [Scan]	V	100	0	54.0	-1.5	Pass	NRB
4917.836	56.9	4.6	-9.8	51.7	Peak [Scan]	V					Pass	BE
5701.403	55.4	4.7	-9.6	50.6	Peak [Scan]	Н					Pass	BE
17659.319	41.3	8.8	0.4	50.5	Peak [Scan]	Н	100	0	54.0	-3.5	Pass	NOISE
15732.505	50.6	8.6	-0.4	58.8	Peak Max	Н	109	46	74.0	-15.2	Pass	RB
15732.505	33.4	8.6	-0.4	41.6	Average Max	Н	109	46	54.0	-12.5	Pass	RB
Legend:	TX = T	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										
	1											

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

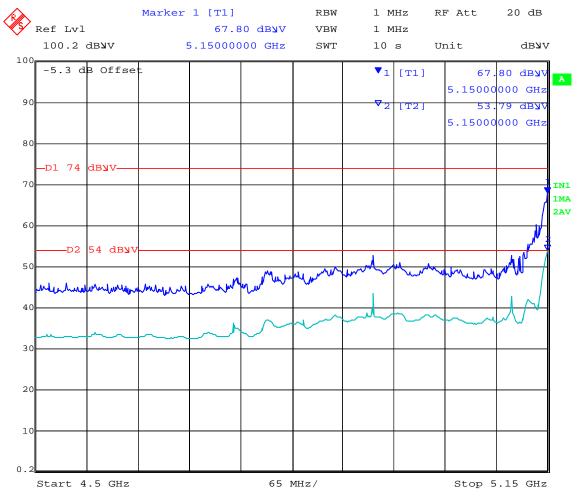


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 162 of 244

Test Freq.	5190 MHz	Engineer	GMH
Variant	802.11n HT-40; 13.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10368.737	59.8	6.7	-2.5	64.0	Peak [Scan]	Н					Pass	NRB
5190.381	69.1	4.6	-9.9	63.9	Peak [Scan]	V						FUND
4679.359	64.7	4.3	-9.9	59.2	Peak [Scan]	Н					Pass	BE
4747.495	63.0	4.4	-9.7	57.7	Peak [Scan]	Н					Pass	BE
5565.130	58.3	4.7	-9.7	53.2	Peak [Scan]	Н					Pass	BE
6927.856	53.6	5.4	-6.5	52.4	Peak [Scan]	V	100	0	54.0	-1.6	Pass	NRB
17216.433	41.8	8.6	0.9	51.3	Peak [Scan]	٧	100	0	54.0	-2.7	Pass	NOISE
5701.403	55.0	4.7	-9.6	50.1	Peak [Scan]	Н					Pass	BE
4985.972	55.2	4.6	-9.9	49.9	Peak [Scan]	V					Pass	BE
15575.951	47.6	8.3	-0.6	55.4	Peak Max	Н	101	345	74.0	-18.6	Pass	RB
15575.951	34.9	8.3	-0.6	42.6	Average Max	Н	101	345	54.0	-11.4	Pass	RB

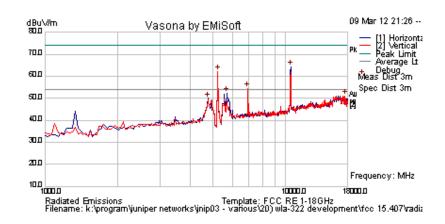
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 163 of 244

802.11n HT-40 5150 Restricted Band-edge

Date: 10.MAR.2012 13:29:48

Power reduction required ART = 14



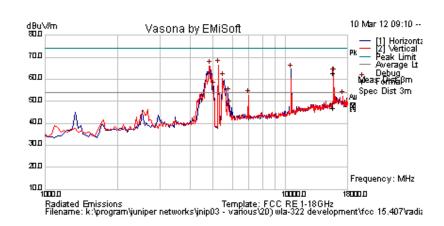
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 164 of 244

Test Freq.	5230 MHz	Engineer	GMH
Variant	802.11n HT-40; 13.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

	<u> </u>											
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
10470.942	60.2	6.8	-2.5	64.5	Peak [Scan]	Н					Pass	NRB
5224.449	67.5	4.6	-9.8	62.3	Peak [Scan]	Н						FUND
6961.924	55.5	5.4	-6.4	54.5	Peak [Scan]	V					Pass	NRB
5701.403	57.2	4.7	-9.6	52.3	Peak [Scan]	Н					Pass	BE
17625.251	41.8	8.8	0.5	51.1	Peak [Scan]	V	100	0	54.0	-2.9	Pass	NOISE
4747.495	55.4	4.4	-9.7	50.1	Peak [Scan]	Н					Pass	BE


To: FCC 47 CFR Part 15.407 & IC RSS-210

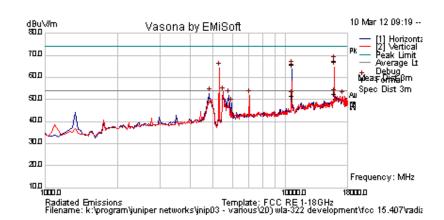
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 165 of 244

Radiated Spurious Emissions 5250 - 5350 MHz

Test Freq.	5260 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	71.6	4.6	-9.7	66.5	Peak [Scan]	V						FUND
4815.631	71.4	4.5	-9.7	66.2	Peak [Scan]	V					Pass	BR
10505.010	60.3	6.8	-2.4	64.6	Peak [Scan]	Н					Pass	NRB
5462.926	65.6	4.6	-9.7	60.6	Peak [Scan]	Н					Pass	BE
5020.040	62.2	4.6	-9.9	56.9	Peak [Scan]	Н					Pass	BE
5769.539	58.4	4.8	-9.5	53.7	Peak [Scan]	Η					Pass	BE
6995.992	53.8	5.4	-6.4	52.8	Peak [Scan]	>	100	0	54.0	-1.2	Pass	NRB
17216.433	43.0	8.6	0.9	52.4	Peak [Scan]	>	100	0	54.0	-1.6	Pass	NOISE
5837.675	52.5	4.8	-9.3	48.1	Peak [Scan]	Н					Pass	BE
15784.128	54.5	8.7	-0.3	62.9	Peak Max	V	98	0	74.0	-11.2	Pass	RB
15784.128	38.6	8.7	-0.3	47.0	Average Max	٧	98	0	54.0	-7.0	Pass	RB



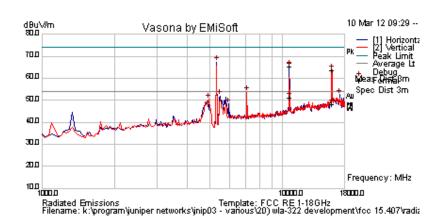
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 166 of 244

Test Freq.	5300 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 16	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5292.585	69.4	4.6	-9.6	64.4	Peak [Scan]	Н						FUND
5496.994	58.5	4.6	-9.6	53.5	Peak [Scan]	V					Pass	BE
4815.631	58.0	4.5	-9.7	52.8	Peak [Scan]	Н					Pass	BE
7064.128	52.7	5.4	-6.1	52.0	Peak [Scan]	V	100	0	54.0	-2.0	Pass	NRB
5803.607	56.5	4.8	-9.4	51.9	Peak [Scan]	Н					Pass	BE
17182.365	42.3	8.6	0.7	51.6	Peak [Scan]	V	100	0	54.0	-2.4	Pass	NOISE
5939.880	52.3	4.9	-8.8	48.3	Peak [Scan]	Η					Pass	BE
15901.844	58.7	8.9	-0.2	67.4	Peak Max	V	99	2	74.0	-6.6	Pass	RB
10607.215	61.2	6.8	-2.4	65.6	Peak Max	Н	98	331	74.0	-8.4	Pass	RB
15901.844	43.8	8.9	-0.2	52.5	Average Max	٧	99	2	54.0	-1.5	Pass	RB
10607.215	47.4	6.8	-2.4	51.8	Average Max	Н	98	331	54.0	-2.2	Pass	RB

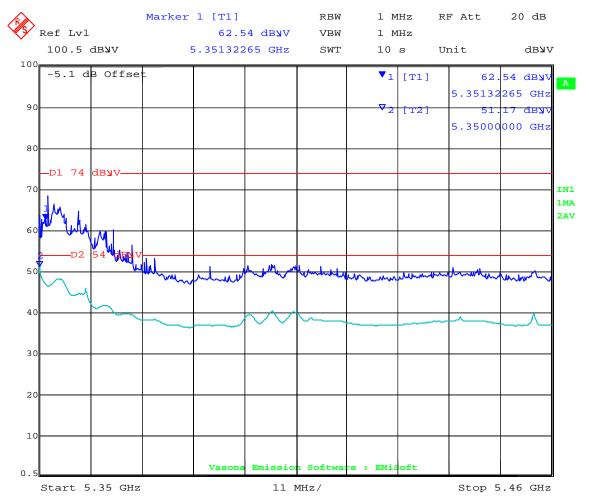


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 167 of 244

Test Freq.	5320 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 14	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5326.653	72.3	4.6	-9.5	67.4	Peak [Scan]	Н						FUND
7098.196	54.4	5.4	-6.1	53.7	Peak [Scan]	V	100	0	54.0	-0.3	Pass	NRB
17250.501	43.1	8.6	1.0	52.7	Peak [Scan]	Н	100	0	54.0	-1.3	Pass	NOISE
5496.994	56.9	4.6	-9.6	51.9	Peak [Scan]	Н					Pass	BE
4917.836	55.6	4.6	-9.8	50.4	Peak [Scan]	V					Pass	BE
5939.880	52.2	4.9	-8.8	48.2	Peak [Scan]	Н					Pass	BE
10641.283	60.8	6.8	-2.4	65.2	Peak Max	Н	114	287	74.0	-8.8	Pass	RB
15956.713	54.6	9.0	0.0	63.6	Peak Max	V	99	19	74.0	-10.5	Pass	RB
10641.283	46.7	6.8	-2.4	51.2	Average Max	Н	114	287	54.0	-2.8	Pass	RB
15956.713	39.3	9.0	0.0	48.2	Average Max	V	99	19	54.0	-5.8	Pass	RB

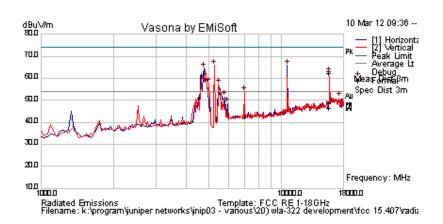
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 168 of 244

802.11a 5320 Restricted Band-edge

Date: 10.MAR.2012 13:20:52

No power reduction required



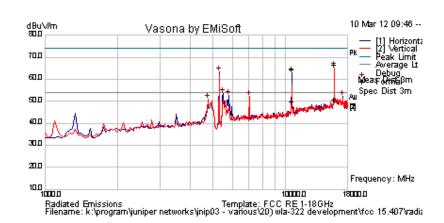
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 169 of 244

Test Freq.	5260 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	71.0	4.6	-9.7	65.9	Peak [Scan]	V						FUND
10539.078	61.5	6.8	-2.5	65.8	Peak [Scan]	Н					Pass	NRB
4747.495	69.8	4.4	-9.7	64.5	Peak [Scan]	Н					Pass	BE
4985.972	63.1	4.6	-9.9	57.9	Peak [Scan]	V					Pass	BE
5462.926	62.3	4.6	-9.7	57.2	Peak [Scan]	V					Pass	BE
6995.992	54.8	5.4	-6.4	53.9	Peak [Scan]	V	100	0	54.0	-0.1	Pass	NRB
5803.607	56.2	4.8	-9.4	51.6	Peak [Scan]	Н					Pass	BE
17284.569	41.3	8.6	1.1	51.0	Peak [Scan]	V	100	0	54.0	-3.0	Pass	NOISE
5939.880	52.6	4.9	-8.8	48.6	Peak [Scan]	Н					Pass	BE
15775.791	53.9	8.7	-0.3	62.3	Peak Max	V	98	0	74.0	-11.7	Pass	RB
15775.791	38.2	8.7	-0.3	46.6	Average Max	٧	98	0	54.0	-7.4	Pass	RB



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 170 of 244

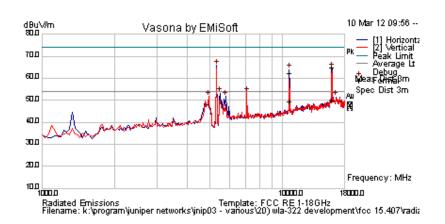
Test Freq.	5300 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	Internal	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
68.4	4.6	-9.6	63.4	Peak [Scan]	Н					_	FUND	
58.6	4.6	-9.6	53.6	Peak [Scan]	Н					Pass	BE	
57.1	4.8	-9.4	52.5	Peak [Scan]	Н					Pass	BE	
42.6	8.6	0.9	52.1	Peak [Scan]	Н	100	0	54	-1.9	Pass	NOISE	
52.8	5.4	-6.1	52.1	Peak [Scan]	V	100	0	54	-1.9	Pass	NRB	
56.1	4.4	-9.7	50.8	Peak [Scan]	V					Pass	BE	
57.8	8.9	-0.2	66.5	Peak Max	V	98	0	74	-7.5	Pass	RB	
59.9	6.8	-2.4	64.3	Peak Max	Н	99	336	74	-9.7	Pass	RB	
42.0	8.9	-0.2	50.7	Average Max	V	98	0	54	-3.3	Pass	RB	
45.6	6.8	-2.4	50.0	Average Max	Н	99	336	54	-4.0	Pass	RB	
TX = T	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	68.4 58.6 57.1 42.6 52.8 56.1 57.8 59.9 42.0 45.6	dBuV Loss 68.4 4.6 58.6 4.6 57.1 4.8 42.6 8.6 52.8 5.4 56.1 4.4 57.8 8.9 59.9 6.8 42.0 8.9 45.6 6.8	dBuV Loss dB 68.4 4.6 -9.6 58.6 4.6 -9.6 57.1 4.8 -9.4 42.6 8.6 0.9 52.8 5.4 -6.1 56.1 4.4 -9.7 57.8 8.9 -0.2 59.9 6.8 -2.4 42.0 8.9 -0.2 45.6 6.8 -2.4	dBuV Loss dB dBuV/m 68.4 4.6 -9.6 63.4 58.6 4.6 -9.6 53.6 57.1 4.8 -9.4 52.5 42.6 8.6 0.9 52.1 52.8 5.4 -6.1 52.1 56.1 4.4 -9.7 50.8 57.8 8.9 -0.2 66.5 59.9 6.8 -2.4 64.3 42.0 8.9 -0.2 50.7 45.6 6.8 -2.4 50.0	dBuV Loss dB dBuV/m Type 68.4 4.6 -9.6 63.4 Peak [Scan] 58.6 4.6 -9.6 53.6 Peak [Scan] 57.1 4.8 -9.4 52.5 Peak [Scan] 42.6 8.6 0.9 52.1 Peak [Scan] 52.8 5.4 -6.1 52.1 Peak [Scan] 56.1 4.4 -9.7 50.8 Peak [Scan] 57.8 8.9 -0.2 66.5 Peak Max 59.9 6.8 -2.4 64.3 Peak Max 42.0 8.9 -0.2 50.7 Average Max 45.6 6.8 -2.4 50.0 Average Max	dBuV Loss dB dBuV/m Type Pol 68.4 4.6 -9.6 63.4 Peak [Scan] H 58.6 4.6 -9.6 53.6 Peak [Scan] H 57.1 4.8 -9.4 52.5 Peak [Scan] H 42.6 8.6 0.9 52.1 Peak [Scan] H 52.8 5.4 -6.1 52.1 Peak [Scan] V 56.1 4.4 -9.7 50.8 Peak [Scan] V 57.8 8.9 -0.2 66.5 Peak Max V 59.9 6.8 -2.4 64.3 Peak Max H 42.0 8.9 -0.2 50.7 Average Max V 45.6 6.8 -2.4 50.0 Average Max H	dBuV Loss dB dBuV/m Type Pol cm 68.4 4.6 -9.6 63.4 Peak [Scan] H - 58.6 4.6 -9.6 53.6 Peak [Scan] H - 57.1 4.8 -9.4 52.5 Peak [Scan] H - 42.6 8.6 0.9 52.1 Peak [Scan] H 100 52.8 5.4 -6.1 52.1 Peak [Scan] V 100 56.1 4.4 -9.7 50.8 Peak [Scan] V 98 57.8 8.9 -0.2 66.5 Peak Max V 98 59.9 6.8 -2.4 64.3 Peak Max H 99 42.0 8.9 -0.2 50.7 Average Max V 98 45.6 6.8 -2.4 50.0 Average Max H 99	dBuV Loss dB dBuV/m Type Pol. cm Deg 68.4 4.6 -9.6 63.4 Peak [Scan] H	dBuV Loss dB dBuV/m Type Pol cm Deg dBuV/m 68.4 4.6 -9.6 63.4 Peak [Scan] H	dBuV Loss dB dBuV/m Type Pol cm Deg dBuV/m dB 68.4 4.6 -9.6 63.4 Peak [Scan] H	dBuV Loss dB dBuV/m Type Pol cm Deg dBuV/m dB /Fail 68.4 4.6 -9.6 63.4 Peak [Scan] H	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 171 of 244

Test Freq.	5320 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	Internal	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Legend:

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5326.653	70.9	4.6	-9.5	66.0	Peak [Scan]	Н						FUND
7098.196	54.2	5.4	-6.1	53.5	Peak [Scan]	V	100	0	54	-0.5	Pass	NRB
5496.994	58.3	4.6	-9.6	53.3	Peak [Scan]	Н					Pass	BE
5803.607	56.3	4.8	-9.4	51.7	Peak [Scan]	Н					Pass	BE
4917.836	56.9	4.6	-9.8	51.7	Peak [Scan]	V					Pass	BE
16569.138	42.4	8.8	0.5	51.6	Peak [Scan]	Н	100	0	54	-2.4	Pass	NOISE
15963.928	56.0	9.0	0.0	65.0	Peak Max	Н	135	50	74	-9.0	Pass	RB
10641.284	57.8	6.8	-2.4	62.2	Peak Max	Н	101	345	74	-11.8	Pass	RB
15963.928	41.0	9.0	0.0	50.0	Average Max	Н	135	50	54	-4.0	Pass	RB
10641.284	45.1	6.8	-2.4	49.5	Average Max	Н	101	345	54	-4.5	Pass	RB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

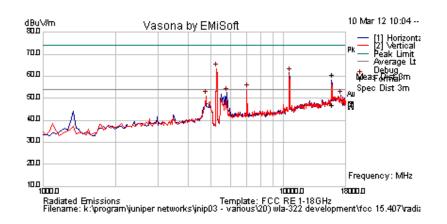
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 172 of 244

802.11n HT-20 5320 Restricted Band-edge

Date: 10.MAR.2012 13:21:54

No power reduction required



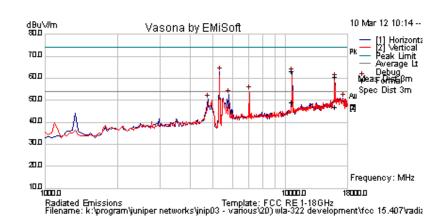
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 173 of 244

Test Freq.	5270 MHz	Engineer	GMH
Variant	802.11n HT-40; 13.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	68.7	4.6	-9.7	63.5	Peak [Scan]	V						FUND
10539.078	57.4	6.8	-2.5	61.7	Peak [Scan]	Н					Pass	NRB
7030.060	55.1	5.4	-6.3	54.2	Peak [Scan]	V					Pass	NRB
5803.607	57.2	4.8	-9.4	52.6	Peak [Scan]	Н					Pass	BE
17250.501	41.6	8.6	1.0	51.2	Peak [Scan]	Н	100	0	54.0	-2.8	Pass	NOISE
4747.495	56.4	4.4	-9.7	51.1	Peak [Scan]	>					Pass	BE
15815.751	52.2	8.7	-0.3	60.6	Peak Max	Н	99	58	74.0	-13.4	Pass	RB
15815.751	38.2	8.7	-0.3	46.7	Average Max	Η	99	58	54.0	-7.3	Pass	RB

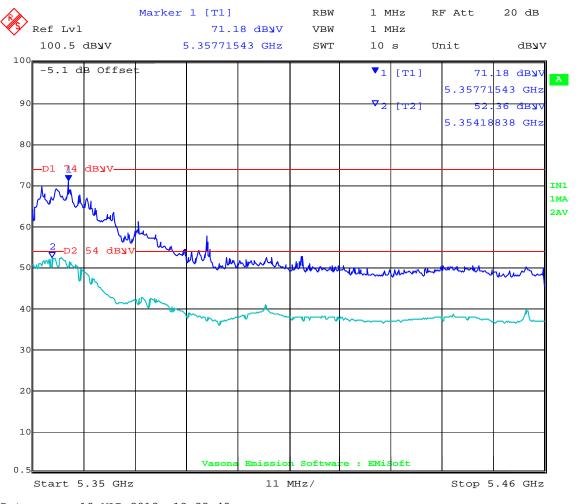


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 174 of 244

Test Freq.	5310 MHz	Engineer	GMH
Variant	802.11n HT-40; 13.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5326.653	67.9	4.6	-9.5	63.0	Peak [Scan]	Н						FUND
7064.128	54.9	5.4	-6.1	54.2	Peak [Scan]	V					Pass	NRB
5803.607	57.1	4.8	-9.4	52.5	Peak [Scan]	Н					Pass	BE
17284.569	41.3	8.6	1.1	51.0	Peak [Scan]	Н	100	0	54.0	-3.0	Pass	NOISE
4747.495	55.8	4.4	-9.7	50.5	Peak [Scan]	Н					Pass	BE
10615.831	58.7	6.8	-2.4	63.1	Peak Max	Н	99	345	74.0	-10.9	Pass	RB
15939.639	51.8	8.9	-0.1	60.6	Peak Max	V	98	25	74.0	-13.4	Pass	RB
10615.831	44.8	6.8	-2.4	49.2	Average Max	Н	99	345	54.0	-4.8	Pass	RB
15939.639	38.0	8.9	-0.1	46.8	Average Max	٧	98	25	54.0	-7.2	Pass	RB

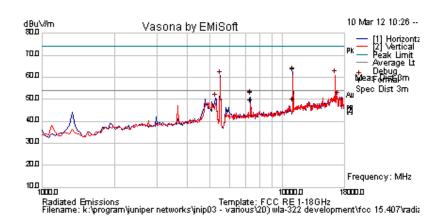
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 175 of 244

802.11n HT-40 5320 Restricted Band-edge

Date: 10.MAR.2012 13:22:43

Power reduction required ART = 15

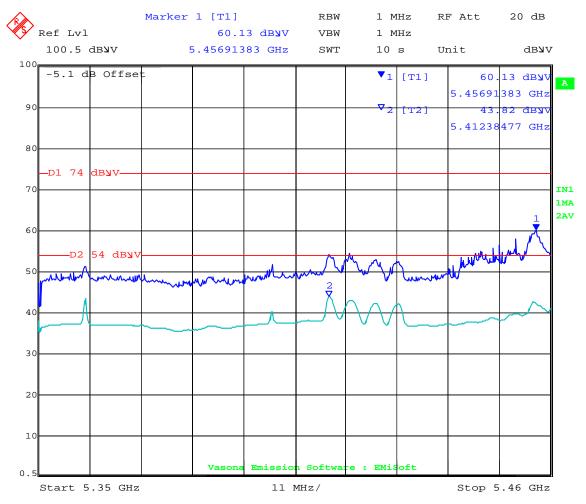

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 176 of 244

Radiated Spurious Emissions 5470 - 5725 MHz

Test Freq.	5500 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
16501.002	51.8	8.8	0.3	61.0	Peak [Scan]	>					Pass	NRB	
5496.99399	65.9	4.6	-9.6	60.9	Peak [Scan]	Η						FUND	
16841.683	41.9	8.6	0.8	51.2	Peak [Scan]	>	100	0	54.0	-2.8	Pass	NOISE	
5258.51703	55.7	4.6	-9.7	50.6	Peak [Scan]	Η					Pass	BE	
11003.437	60.2	7.0	-3.1	64.1	Peak Max	Η	99	325	74.0	-9.9	Pass	RB	
7333.196	53.8	5.5	-5.6	53.6	Peak Max	Н	98	251	74.0	-20.4	Pass	RB	
11003.437	46.5	7.0	-3.1	50.3	Average Max	Н	99	325	54.0	-3.7	Pass	RB	
7333.196	49.9	5.5	-5.6	49.8	Average Max	Н	98	251	54.0	-4.2	Pass	RB	

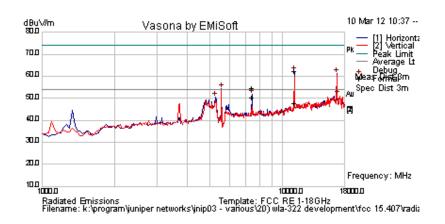
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 177 of 244

802.11a 5460 Restricted Band-edge

Date: 10.MAR.2012 13:17:46

No power reduction required



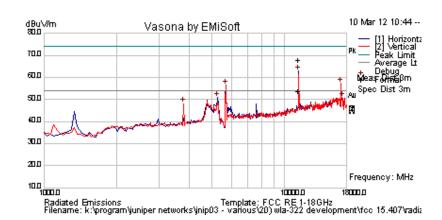
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 178 of 244

Test Freq.	5580 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16739.479	51.6	8.7	0.9	61.2	Peak [Scan]	Н					Pass	NRB
5565.13026	59.5	4.7	-9.7	54.4	Peak [Scan]	Н						FUND
16841.683	41.7	8.6	0.8	51.0	Peak [Scan]	V	100	0	54.0	-3.0	Pass	NOISE
5258.51703	55.6	4.6	-9.7	50.5	Peak [Scan]	Н					Pass	BE
11152.305	58.3	6.9	-3.0	62.2	Peak Max	Н	98	315	74.0	-11.8	Pass	RB
7439.79	54.3	5.5	-5.4	54.5	Peak Max	Н	108	252	74.0	-19.6	Pass	RB
11152.305	43.7	6.9	-3.0	47.6	Average Max	Н	98	315	54.0	-6.4	Pass	RB
7439.79	50.2	5.5	-5.4	50.3	Average Max	Н	108	252	54.0	-3.7	Pass	RB



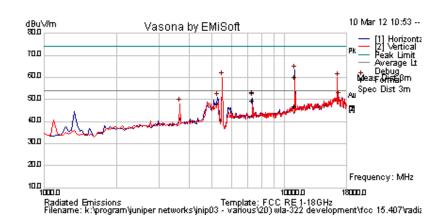
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 179 of 244

Test Freq.	5700 MHz	Engineer	GMH
Variant	802.11a; 6 Mbs	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17114.228	48.4	8.5	0.5	57.4	Peak [Scan]	٧					Pass	NRB
5701.40281	61.3	4.7	-9.6	56.4	Peak [Scan]	Н					_	FUND
17284.569	41.2	8.6	1.1	50.9	Peak [Scan]	Н					Pass	NOISE
5258.51703	55.9	4.6	-9.7	50.8	Peak [Scan]	Н					Pass	BE
3793.58717	55.2	3.8	-10.9	48.0	Peak [Scan]	V	100	0	54.0	-6.0	Pass	RB
11399.77	63.1	6.8	-2.3	67.7	Peak Max	Н	98	5	74.0	-6.3	Pass	RB
11399.77	49.0	6.8	-2.3	53.6	Average Max	Н	98	5	54.0	-0.5	Pass	RB

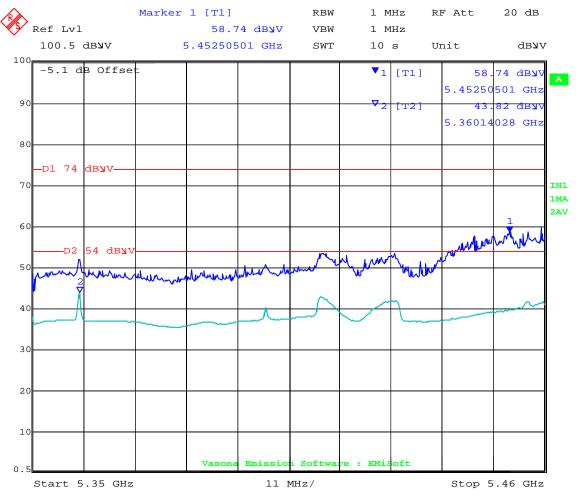


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 180 of 244

Test Freq.	5500 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
5496.994	65.1	4.6	-9.6	60.1	Peak [Scan]	V						FUND		
16535.070	50.8	8.8	0.4	60.0	Peak [Scan]	V					Pass	NRB		
16807.615	41.6	8.6	0.8	51.0	Peak [Scan]	Н	100	0	54	-3.0	Pass	NOISE		
5258.517	56.0	4.6	-9.7	50.9	Peak [Scan]	Н					Pass	BE		
3657.315	55.8	3.7	-11.3	48.2	Peak [Scan]	V	100	0	54	-5.8	Pass	RB		
11011.102	56.1	7.0	-3.1	60.0	Peak Max	Н	98	324	74	-14.0	Pass	RB		
7333.136	53.7	5.5	-5.6	53.5	Peak Max	Н	98	254	74	-20.5	Pass	RB		
11011.102	43.1	7.0	-3.1	46.9	Average Max	Н	98	324	54	-7.1	Pass	RB		
7333.136	49.7	5.5	-5.6	49.5	Average Max	Н	98	254	54	-4.5	Pass	RB		

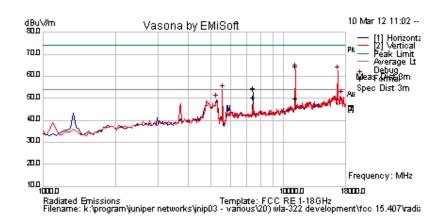
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 181 of 244

802.11n HT-20 5460 Restricted Band-edge

Date: 10.MAR.2012 13:18:27

No power reduction required



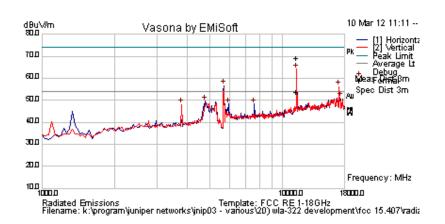
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 182 of 244

Test Freq.	5580 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16739.479	52.9	8.7	0.9	62.5	Peak [Scan]	V					Pass	NRB
5565.130	59.0	4.7	-9.7	54.0	Peak [Scan]	>						FUND
17284.569	41.5	8.6	1.1	51.2	Peak [Scan]	V	100	0	54	-2.8	Pass	NOISE
5258.517	54.5	4.6	-9.7	49.4	Peak [Scan]	Н					Pass	BE
11157.395	60.5	6.9	-3.0	64.4	Peak Max	Н	107	0	74	-9.6	Pass	RB
7439.910	54.2	5.5	-5.4	54.3	Peak Max	Η	98	251	74	-19.7	Pass	RB
11157.395	45.8	6.9	-3.0	49.7	Average Max	Η	107	0	54	-4.3	Pass	RB
7439.910	50.1	5.5	-5.4	50.2	Average Max	Н	98	251	54	-3.8	Pass	RB



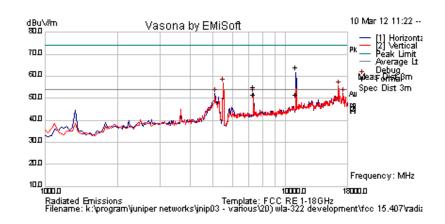
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 183 of 244

Test Freq.	5700 MHz	Engineer	GMH
Variant	802.11n HT-20; 6.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	61.6	4.7	-9.6	56.8	Peak [Scan]	Н						FUND
17114.228	47.2	8.5	0.5	56.2	Peak [Scan]	V					Pass	NRB
17284.569	41.7	8.6	1.1	51.4	Peak [Scan]	V	100	0	54	-2.6	Pass	NOISE
4747.495	55.0	4.4	-9.7	49.7	Peak [Scan]	Н					Pass	BE
7609.218	47.7	5.5	-5.0	48.2	Peak [Scan]	Н	100	0	54	-5.8	Pass	RB
5939.880	52.2	4.9	-8.8	48.2	Peak [Scan]	Н					Pass	BE
3793.587	55.2	3.8	-10.9	48.0	Peak [Scan]	V	100	0	54	-6.0	Pass	RB
11399.880	64.8	6.8	-2.3	69.4	Peak Max	V	105	17	74	-4.6	Pass	RB
11399.880	49.3	6.8	-2.3	53.9	Average Max	V	105	17	54	-0.1	Pass	RB

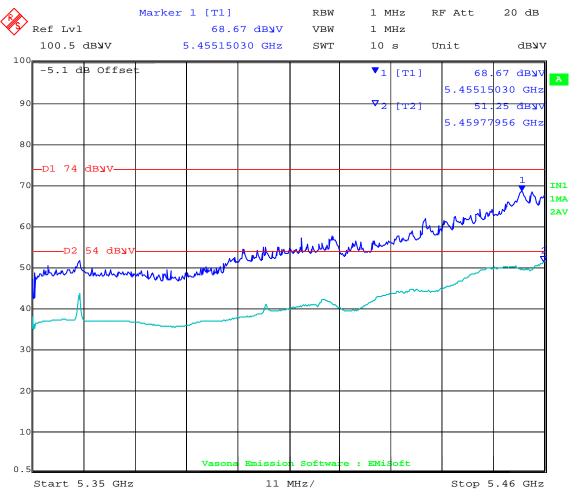


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 184 of 244

Test Freq.	5510 MHz	Engineer	GMH
Variant	802.11n HT-40; 13.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks


Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5496.994	62.0	4.6	-9.6	57.0	Peak [Scan]	V						FUND
16535.070	46.4	8.8	0.4	55.6	Peak [Scan]	V					Pass	NRB
17284.569	42.6	8.6	1.1	52.3	Peak [Scan]	Н	100	0	54	-1.7	Pass	NOISE
5088.176	57.5	4.6	-9.9	52.1	Peak [Scan]	Н					Pass	BE
11019.068	60.4	7.0	-3.1	64.2	Peak Max	Н	108	7	74	-9.8	Pass	RB
7346.513	55.4	5.5	-5.6	55.3	Peak Max	Н	98	255	74	-18.8	Pass	RB
11019.068	47.7	7.0	-3.1	51.5	Average Max	Н	108	7	54	-2.5	Pass	RB
7346.513	51.9	5.5	-5.6	51.8	Average Max	Н	98	255	54	-2.2	Pass	RB

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 185 of 244

802.11n HT-40 5460 Restricted Band-edge

Date: 10.MAR.2012 13:19:07

No power reduction required

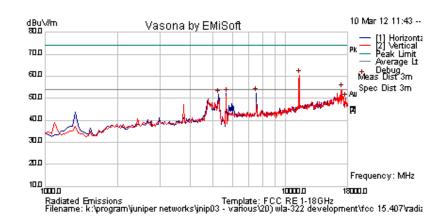
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 186 of 244

Test Freq.	5590 MHz	Engineer	GMH
Variant	802.11n HT-40; 13.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16671.343	49.1	8.7	0.7	58.5	Peak [Scan]	V					Pass	NRB
5531.062	57.4	4.6	-9.7	52.3	Peak [Scan]	Н						FUND
17352.705	40.9	8.7	1.3	50.9	Peak [Scan]	Н	100	0	54	-3.1	Pass	NOISE
7404.810	49.9	5.5	-5.4	50.0	Peak [Scan]	Н	100	0	54	-4.0	Pass	RB
5258.517	55.1	4.6	-9.7	49.9	Peak [Scan]	Н					Pass	BE
5939.880	52.0	4.9	-8.8	48.0	Peak [Scan]	Н					Pass	BE
11118.236	59.5	6.9	-3.1	63.3	Peak Max	Н	98	3	74	-10.7	Pass	RB
11118.236	44.6	6.9	-3.1	48.4	Average Max	Н	98	3	54	-5.6	Pass	RB



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 187 of 244

Test Freq.	5670 MHz	Engineer	GMH
Variant	802.11n HT-40; 13.5 MCS	Temp (°C)	18.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	ART = 18	Press. (mBars)	1013
Antenna	INTERNAL	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17012.024	45.3	8.5	0.3	54.0	Peak [Scan]	Н	100	0	54	0.0	Pass	NRB
5667.335	57.2	4.7	-9.7	52.2	Peak [Scan]	Н						FUND
5258.517	56.9	4.6	-9.7	51.8	Peak [Scan]	Η					Pass	BE
17693.387	41.1	8.8	0.3	50.2	Peak [Scan]	Η	100	0	54	-3.9	Pass	NOISE
11356.713	58.6	6.8	-2.4	63.0	Peak Max	V	106	15	74	-11.0	Pass	RB
7559.880	53.7	5.5	-5.0	54.1	Peak Max	Н	98	142	74	-19.9	Pass	RB
11356.713	43.2	6.8	-2.4	47.7	Average Max	>	106	15	54	-6.3	Pass	RB
7559.880	48.8	5.5	-5.0	49.3	Average Max	Н	98	142	54	-4.7	Pass	RB

To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 188 of 244

5.1.7.2. Radiated Spurious Emissions – 30MHz – 1000MHz

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength
R = Measured Receiver Input Amplitude
AF = Antenna Factor
CORR = Correction Factor = CL – AG + NFL
CL = Cable Loss
AG = Amplifier Gain

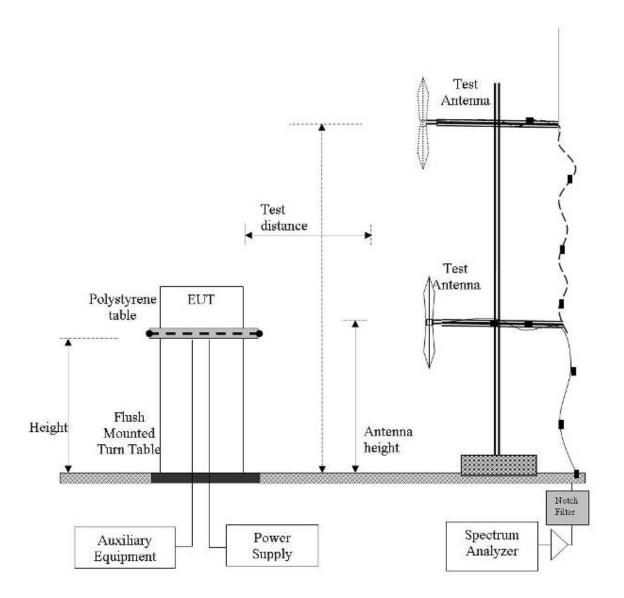
For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

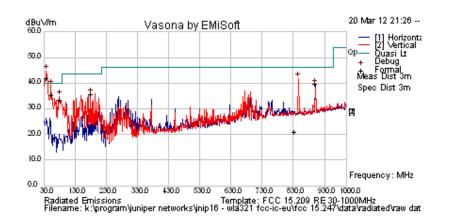
Level (dB μ V/m) = 20 * Log (level (μ V/m))


 $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 189 of 244

Radiated Emission Measurement Setup - Below 1 GHz



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 190 of 244

Test Freq.	Ch 36 (5180 MHz)	Engineer	GMH
Variant	Digital Emissions	Temp (°C)	22
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	38
Power Setting	16	Press. (mBars)	1007
Antenna	integral		
Test Notes 1			
Test Notes 2		·	

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
38.920	51.9	3.6	-16.6	38.9	Quasi Max	٧	98	98	40	-1.1	Pass	
54.179	55.5	3.7	-24.0	35.2	Quasi Max	>	104	104	40.0	-4.8	Pass	
834.588	22.4	6.9	-8.5	20.8	Quasi Max	>	186	186	46.0	-25.2	Pass	
81.188	53.1	4.0	-23.7	33.4	Quasi Max	>	113	113	40.0	-6.6	Pass	
179.749	51.3	4.5	-19.9	35.8	Peak [Scan]	>	113	113	43.5	-7.7	Pass	
900.849	40.3	7.1	-7.8	39.6	Peak [Scan]	V	113	113	46.0	-6.4	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 191 of 244

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	ency(MHz) Field Strength Field Strength (μV/m) (dBμV/m)		Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

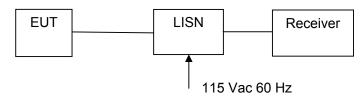
Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 192 of 244

5.1.8. AC Wireline Conducted Emissions (150 kHz - 30 MHz)


FCC, Part 15 Subpart C §15.207

Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Not required - EUT is POE only.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 193 of 244

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 194 of 244

5.1.9. Dynamic Frequency Selection (DFS

5.1.9.1. Test Procedure and Setup

FCC, Part 15 Subpart C §15.407(h)
FCC 06-96 Memorandum Opinion and Order
Industry Canada RSS-210 A9.4

5.1.9.2. Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value		
	(see note)		
≥ 200 milliwatt	-64 dBm		
< 200 milliwatt	-62 dBm		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna			

5.1.9.3. DFS Response requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the 99% power bandwidth See Note 3.

Note 1: The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate *Channel* changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012

Page: 195 of 244

5.1.9.4. Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Number	Minimum	Minimum
Type	(µsec)	(µsec)	of	Percentage of	Trials
			Pulses	Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

Long Pulse Radar Test Waveform

Long Ful	se itauai	I COL Wav	CIOIIII				
Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Type	Width	Width	(µsec)	of Pulses	of <i>Bursts</i>	Percentage	Trials
	(µsec)	(MHz)		per Burst		of	
						Successful	
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more than 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

To: FCC 47 CFR Part 15,407 & IC RSS-210

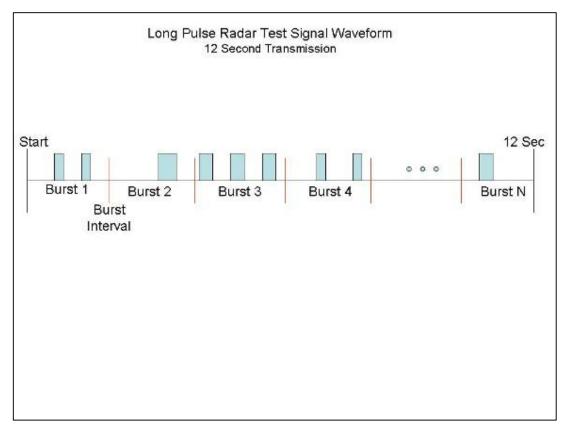
Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 196 of 244

Each waveform is defined as follows:

1) The transmission period for the Long Pulse Radar test signal is 12 seconds.

- 2) There are a total of 8 to 20 *Bursts* in the 12 second period, with the number of *Bursts* being randomly chosen. This number is *Burst Count*.
- 3) Each *Burst* consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each *Burst* within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a *Burst* will have the same pulse width. Pulses in different *Burst*s may have different pulse widths.
- 5) Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a *Burst* will have the same chirp width. Pulses in different *Bursts* may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a *Burst*, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a *Burst*, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to <code>Burst_Count</code>. Each interval is of length (12,000,000 / <code>Burst_Count</code>) microseconds. Each interval contains one <code>Burst</code>. The start time for the <code>Burst</code>, relative to the beginning of the interval, is between 1 and [(12,000,000 / <code>Burst_Count</code>) (Total <code>Burst_Length</code>) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each <code>Burst</code> is chosen independently.

To: FCC 47 CFR Part 15.407 & IC RSS-210


Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 197 of 244

A representative example of a Long Pulse radar test waveform:

1) The total test signal length is 12 seconds.

- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each *Burst* is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, *Burst* 1 is randomly generated (1 to 1,500,000 minus the total *Burst* 1 length + 1 random PRI interval) at the 325,001 microsecond step. *Burst* 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. *Burst* 2 falls in the 1,500,001 3,000,000 microsecond range).

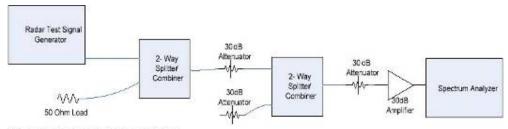
Graphical representation of the Long Pulse radar Test Waveform.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 198 of 244

5.1.9.5. Frequency Hopping Radar Test Waveform

Frequency Hopping Radar Test Waveform

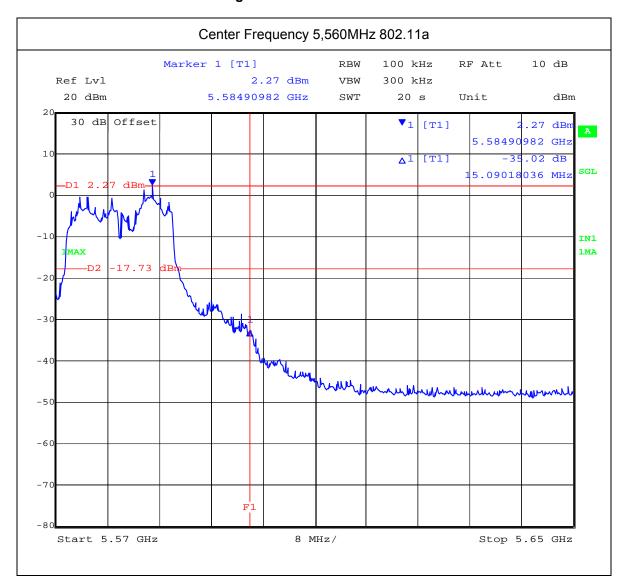

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Trials
	(µsec)		Нор	(kHz)	Length	Successful	
					(msec)	Detection	
6	1	333	9	.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

5.1.9.6. Radar Waveform Calibration

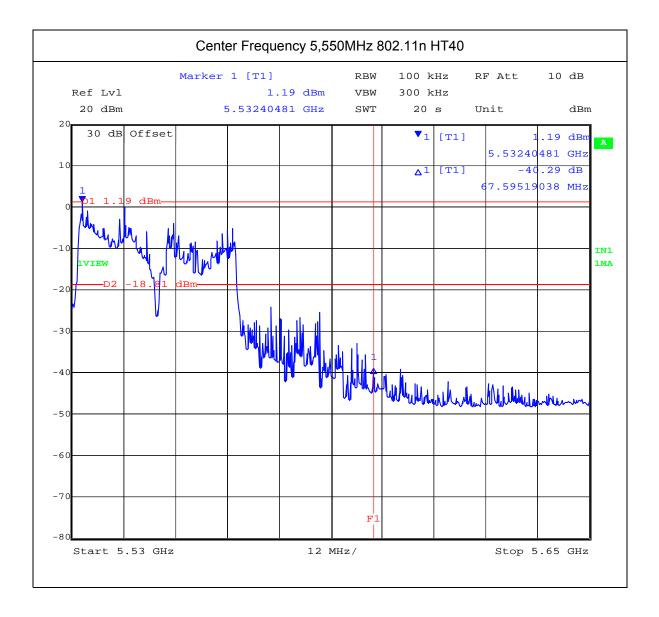
The following equipment setup was used to calibrate the conducted Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm (Ref Section 5.1). The 30dB amplifier gain was entered as an amplitude offset on the spectrum analyzer.

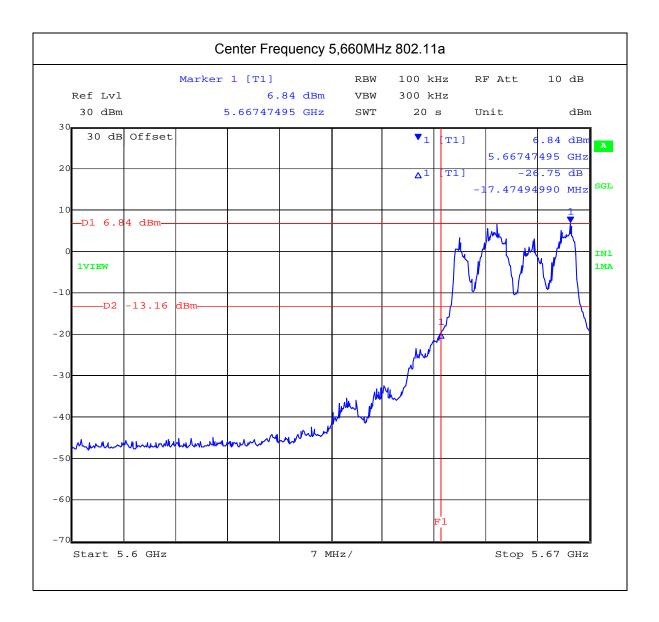

Conducted Calibration Setup

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 199 of 244


5.1.9.7. Weather Radar Band Edge Plots

To: FCC 47 CFR Part 15.407 & IC RSS-210

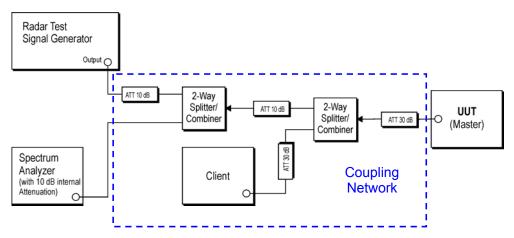

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 200 of 244

To: FCC 47 CFR Part 15.407 & IC RSS-210

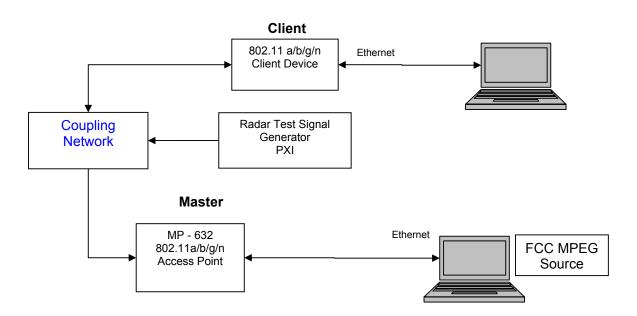

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 201 of 244

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 202 of 244


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 203 of 244


5.1.9.8. Test Set Up:

Block Diagram(s) of Test Setup

Setup for Conducted Measurements where the EUT is the Master with injection of Radar Test Waveforms at the Master.

Support Equipment Configuration

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 204 of 244

The EUT is a Master Device with radar detection.

Applicability of DFS Requirements Prior to Use of a Channel (Ref Table 1 of FCC 06-96)

Requirement	Operational Mode				
	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Applicability of DFS requirements during normal operation (Ref Table 2 of FCC 06-96)

Requirement	Operation	Operational Mode							
	Master	Client Without Radar Detection	Client With Radar Detection						
DFS Detection Threshold	Yes	Not required	Yes						
Channel Closing Transmission Time	Yes	Yes	Yes						
Channel Move Time	Yes	Yes	Yes						
U-NII Detection Bandwidth	Yes	Not required	Yes						

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 205 of 244

For the frequency band 5,470 - 5,725 MHz, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm. The EUT was tested in HT-40 mode.

Declared minimum antenna gain 0 dBi. ;

Radar receive signal level = -62 dBm + minimum antenna gain + 1 dB

= -62 + 0 + 1

Radar receive signal level = -61 dBm

Measurement Results - Dynamic Frequency Selection (DFS)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57% Pressure: 999 to 1012 mbar

Radio parameters.

Test methodology: Conducted

Device Type: Master Transmit Power: Maximum

Operational Details - Dynamic Frequency Selection (DFS)

Operational Modes: 802.11a & 802.11n HT40

Data Rates: 6mpbs 802.11a/ 0MCS 802.11n

Note No video pixilation was observed during the video stream at these rates. Video frames per second were noted to be at 30fps.

Video Streaming Method - Dynamic Frequency Selection (DFS)

Using the VideoLan player a video stream was setup on the master laptop with the destination being the client laptop. The video profile chosen for the video stream is "MPEG-2 + MPGA (TS)". On the client laptop the VideoLan player was setup to listen to an incoming video stream from the master device.

The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is used during this video stream.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 206 of 244

5.1.9.9. Dynamic Frequency Selection (DFS) Test Results

5.1.9.10.UNII Detection Bandwidth:

All UNII channels for this device have identical channel bandwidths and DFS testing was completed on channel 5,500 MHz (802.11a) and 5510MHz (HT40).

The generating equipment is configured as shown in the Conducted Test Setup above. A single Burst of the short pulse radar Type 1 through 6 was produced at 5,500 MHz (802.11a) and 5,510 MHz (802.11n HT40) at a level of -61 dBm (Ref Section 5.1). The EUT is set up as a standalone device (no associated Client and no traffic).

A single radar Burst is generated for a minimum of 10 trials, and the response of the EUT is noted. The EUT must detect the Radar Waveform 90% or more of the time.

The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted as F_H .

The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted as F_L .

The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = $F_H - F_L$

The U-NII Detection Bandwidth must be at least 80% of the EUT transmitter 99% power Table of results are continued on the next page.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 207 of 244

EUT Frequency= 5,500 MHz 802.11a (Detection = √, No Detection = 0)											
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
-12											%
-11	0	0									<90%
-10											100%
-9		1			1	1					100%
-8	V	V		V	1	V			V	V	100%
-7		1		1	1	1			$\sqrt{}$	V	100%
-6	V	V		V	1	V			V	V	100%
-5		1			1	1			1	√	100%
-4					V					√	100%
-3	1	1	1	1	1	1	V	1	V	√	100%
-2		V			1					√	100%
-1	1	1	V	V	1	1	V	1			100%
F ₀		V			V					$\sqrt{}$	100%
+1	V	V		1	1	V	$\sqrt{}$		V	√	100%
+5	1	1	1	1	1	1	V	1	1	√	100%
+10	1	1	V	1	1	1	V	1	1	√	100%
+11	1	1	1	1	1	1	1	1	1	√	100%
+12	V	V	V	1	V	V	V	V	V	V	100%
+13	1	1	1	1	1	1	1	1	1	√	100%
+14	V	1	1	1	1	1	√	1	1	√	100%
+15	V	1	$\sqrt{}$	1	1	1	1	1	1	√	100%
+16	V	V	V	V	V	V	V	V	V	V	100%
+17	V	V	1	1	1	1	1	1	1	√	100%
+18	V	V	1	1	1	1	1	1	1	√	100%
+19	V	V	V	1	1	V	V	V	V	V	100%
+20	V	V	V	V	V	V	V	V	V	V	100%
+21	V	V	V	V	V	V	V	V	V	V	100%
+22	V	V	V	1	V	V	V	V	V	V	100%
+23	V	V	V	1	V	V	V	V	V	V	100%
+24	V	V	V	1	1	V	V	1	V	√ √	100%
+25	V	V	V	V	V	V	V	V	V	V	100%
+26	1	1	V	V	V	V	V	V	V	\ √	100%
+27	1	1	V	1	1	1	V	1	1	√ √	100%
+28	V	V	V	V	V	V	V	V	V	V	100%
+29	V	1	V	V	V	V	V	1	V	\ √	100%
+30	V	V	V	V	V	V	0	V	V	1	90%
+31	0	0		<u> </u>	<u> </u>	<u> </u>	Ť		<u>'</u>	,	<90%
+32	Ť	٦									%
Detection Bandwidth = Fu	-		-20 -20	E 41	<u> </u>	- 40	N // L		<u> </u>		1 /0

Detection Bandwidth = F_{H} - F_{L} = 5530-5490 = 40 MHz

EUT 99% Bandwidth = 17.134 MHz (ref. bandwidth channel 5500 MHz)

17.134 MHz *80% = 13.707MHz

For each frequency step the minimum percentage detection is 90%

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 208 of 244

EUT Frequency= 5,510 MHz 802.11n HT40 (Detection = √, No Detection = 0)											
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
-21	0	0									<90%
-20		7	7		7		7	7		7	100%
-19		7	7		7		7	7		7	100%
-18		7	7		7		7	7		7	100%
-17		\checkmark			\checkmark						100%
-16		7	7		7		7	7		√	100%
-15		\checkmark			\checkmark						100%
-14										V	100%
-13											100%
-12											100%
-11											100%
-10											100%
-9											100%
-8											100%
-7										V	100%
-6											100%
-5											100%
-4											100%
-3											100%
-2					\checkmark			\checkmark			100%
-1	1			1					1		100%
F ₀	$\sqrt{}$		$\sqrt{}$	V		1	$\sqrt{}$		V	V	100%

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 209 of 244

FLIT Frequency=	5 5	10 1	/Hz	. <u>8</u> 0	2 1	1n F	IT4	Λ (Γ) oto	ction	$n = \sqrt{No Detection = 0}$
Radar Frequency (MHz)	1	2	3	4	5	6	7	8	9	10	Detection Rate (%)
F ₀	1	√	√ √	√	√	√ √	√	√	√	√	100%
+1		1				1				√	100%
+2										√	100%
+3	V	V				V				V	100%
+4	V	V				V				V	100%
+5		V				V				V	100%
+6		1				1					100%
+7		1				1					100%
+8											100%
+9					\checkmark						100%
+10											100%
+11											100%
+12											100%
+13											100%
+14											100%
+15											100%
+16											100%
+17					\checkmark						100%
+18					\checkmark						100%
+19											100%
+20											100%
+21	0	0									<90%
Detection Bandwidth = F_H - F_L = 5530-5490 = 40 MHz											
EUT 99% Bandwidth = 36.472 MHz (ref. bandwidth channel 5510 MHz)											
36.472 MHz *80% = 29.177 MHz											

For each frequency step the minimum percentage detection is 90%

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 210 of 244

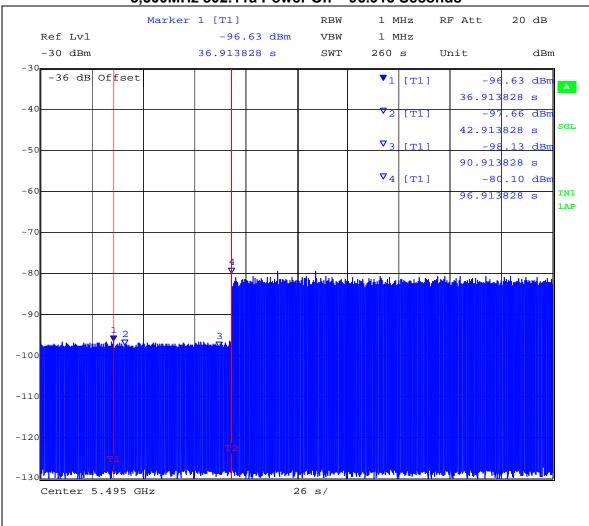
5.1.9.11.Initial Channel Availability Check Time

This test verifies that the EUT does not emit pulse, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms.

The U-NII device is powered on and be instructed to operate at 5,500MHz 802.11a and 5,510MHz 802.11n HT40. At the same time the EUT is powered on, the spectrum analyzer is set for zero span with a 1 MHz resolution bandwidth at 5,500& 5,510 MHz with a 260 second sweep time. The analyzer's sweep will be started the same time power is applied to the U-NII device.

The EUT should not transmit any pulse or data transmissions until at least 1 minute after the completion of the power-on cycle.

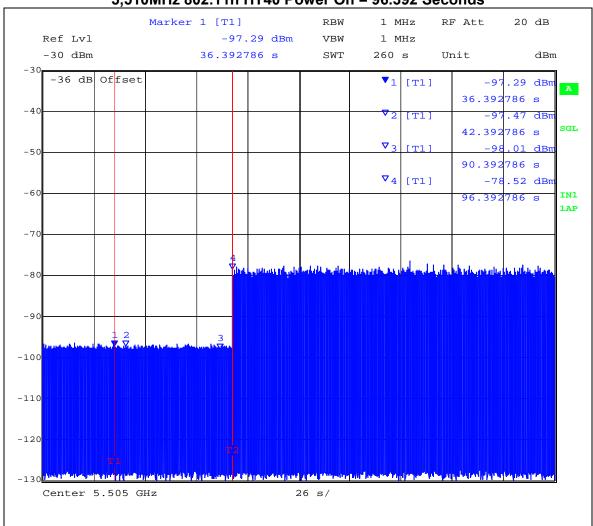
The first red marker line shown on the following plot denotes the instant when the EUT starts its power-up sequence i.e. T_0 (as defined within the FCC's MO&O 06-96 Normative Reference 2). The power-up reference T_0 is determined by the time it takes for the EUT to start "beaconing" i.e. initial beacon – 60 secs = end of power-up.


The Channel Availability Check Time commences at instant T_0 and will end no sooner than T_0 + 60 seconds.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 211 of 244

EUT power up and Initial Channel Availability Check Time 5,500MHz 802.11a Power On = 96.913 Seconds



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 212 of 244

EUT power up and Initial Channel Availability Check Time 5,510MHz 802.11n HT40 Power On = 96.392 Seconds

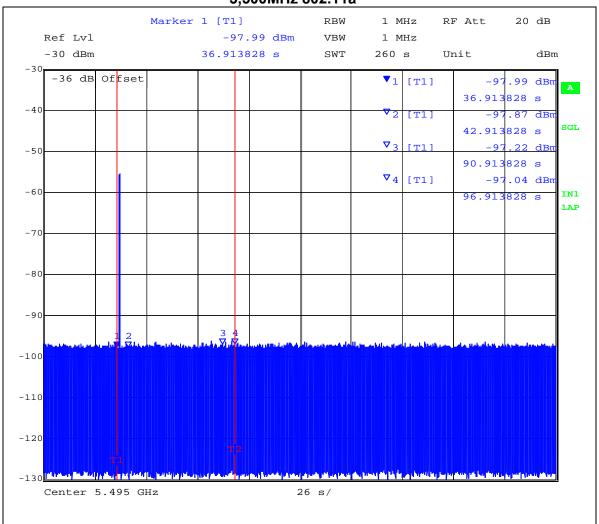
To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 213 of 244

5.1.9.12.Radar Burst at the Beginning of the Channel Availability Check Time:

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold +6 dB (-62 dBm Ref Section 6.1.7) occurs at the beginning of the Channel Availability Check Time.

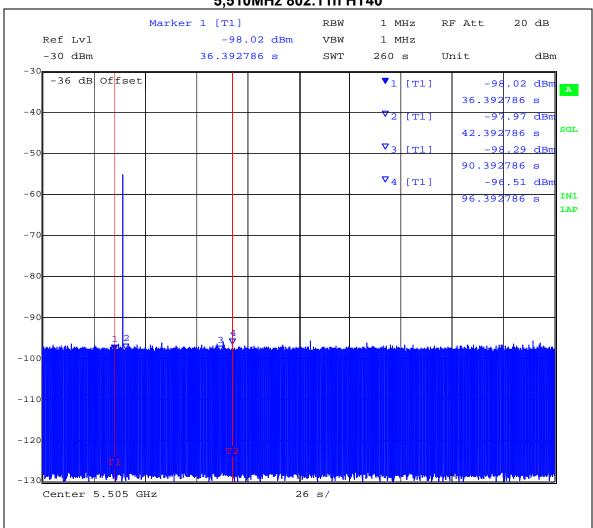
A single Burst of short pulse of radar Type 1 will commence within a 6 second window starting at T_0 (first red marker line on the following plot).


Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5,500MHz 802.11a & 5,510MHz 802.11n HT40 will continue for 2.5 minutes after the radar burst has been generated.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 214 of 244

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,500MHz 802.11a



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 215 of 244

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,510MHz 802.11n HT40

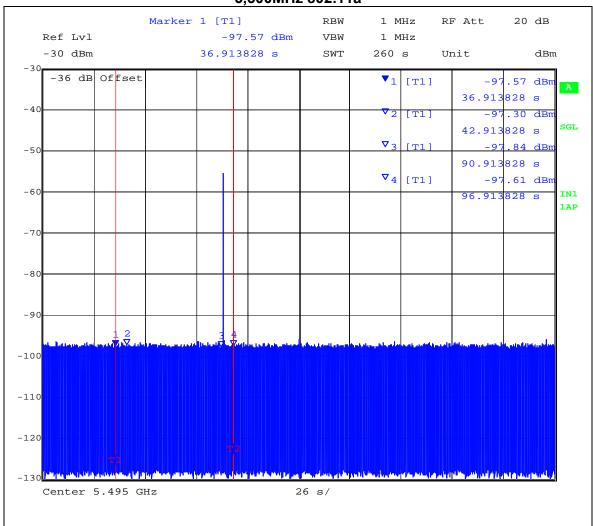
To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 216 of 244

5.1.9.13.Radar Burst at the End of the Channel Availability Check Time:

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold occurs at the end of the Channel Availability Check Time.

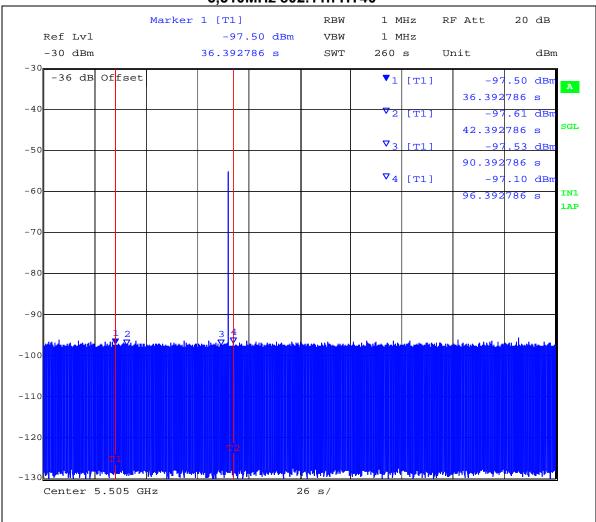
A single Burst of short pulse of radar type 1 will commence within a 6 second window starting at T_0 + 54 seconds. The window will commence at marker 2 and end at the red frequency line T_2 .


Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5,500MHz 802.11a & 5,510MHz 802.11n HT40 will continue for 2.5 minutes after the radar burst has been generated.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 217 of 244

Channel Availability Check Time at T0 + 54 seconds Check Time 5,500MHz 802.11a



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 218 of 244

Channel Availability Check Time at T0 + 54 seconds Check Time 5,510MHz 802.11n HT40

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 219 of 244

5.1.9.14.In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

FCC §15.407(h)(2)(iii)

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the EUT (Master). The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is streamed from the master device (AP) to the client.

Channel Closing Transmission Time - Measurement

A Type 1 waveform was introduced to the EUT, from which a 12 second transmission record was digitally captured, collecting nearly 250M samples of data, which included in excess of 600 ms of pre-trigger data. This Type 1 waveform had an integral marker built into its construction, marking the start of the radar waveform play, which directly triggered the PXI digitizer's data capture via the PXI backplane trigger bus.

The test system was set-up to capture all transmission data for access point events above a threshold level of -50 dBm. The test equipment time stamps all captured events with respect to T_0 (zero time indicating the start of the measurements sequence) starting the 612.1 ms pre-trigger period followed by the radar type 1 burst period.

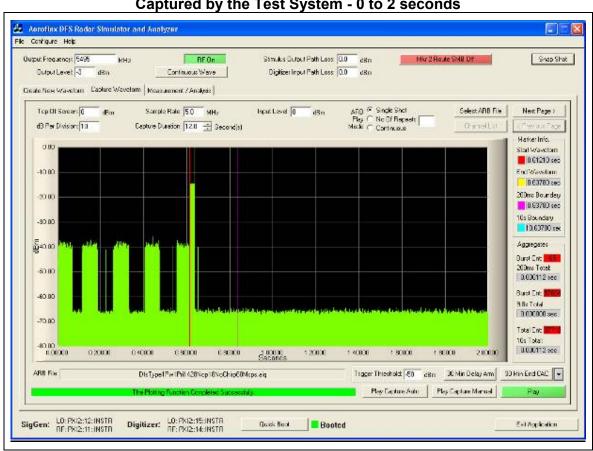
Radar (Type 1) Pre-trigger period 612.1 ms

Type 1 burst period 25.70 ms

(The period of the 18 pulse burst includes [18 pulses *1.428mS PRI] = 25.704 ms. Then add 1 μ s pulse width for the final pulse.)

Channel Closing Transmission Time starts immediately after the last radar pulse is transmitted i.e. 637.8 ms after the start of the trace capture period.

To: FCC 47 CFR Part 15.407 & IC RSS-210

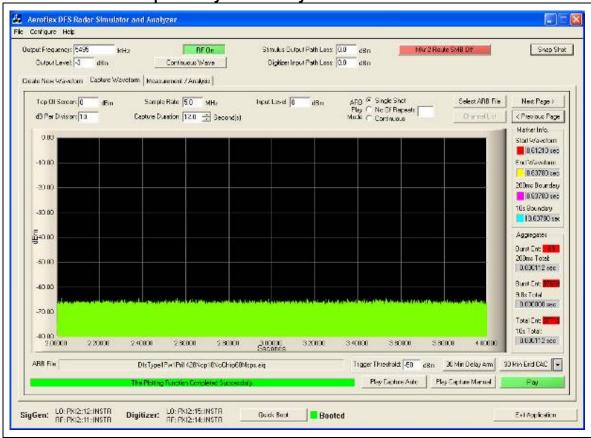

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 220 of 244

Therefore, pulses seen after this 637.8 ms boundary are identified and totaled to provide an aggregate total of transmissions in order to determine whether the EUT is compliant with the Channel Closing Transmission Time requirements as described in MO&O FCC 06-96. In this case, it was found that an aggregate total of <u>0.00 ms</u> of transmission time accrued. This value is found at the right hand side at the foot of the following plot (10s Total).

Channel Closing Transmission Time 5,500 MHz (802.11a) = <u>1.756 mSecs (limit</u> 260 mSecs)

Channel Move Time 5,500MHz (802.11a) = 0.5222 Secs (limit 10 Secs)

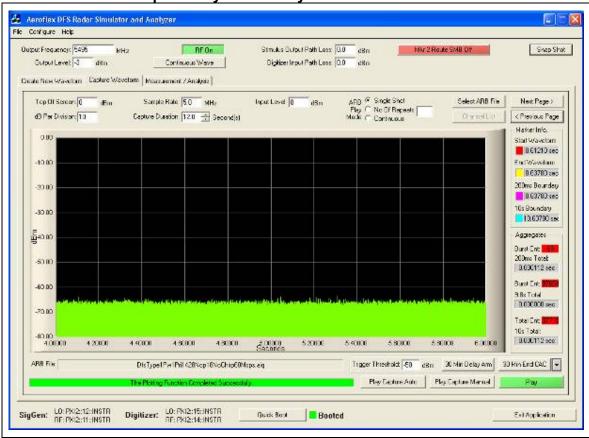
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 2 seconds


From the plot above it can be seen that the transmission activity within the 200 mS window is 0.592 mS (see 200 mS Total). From the following plots which shows all additional activity within the remained of the 10 sec measurement window it can be determined that the aggregate transmission is 1.164 mS. This is less than the 60 mS limit.

To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 221 of 244

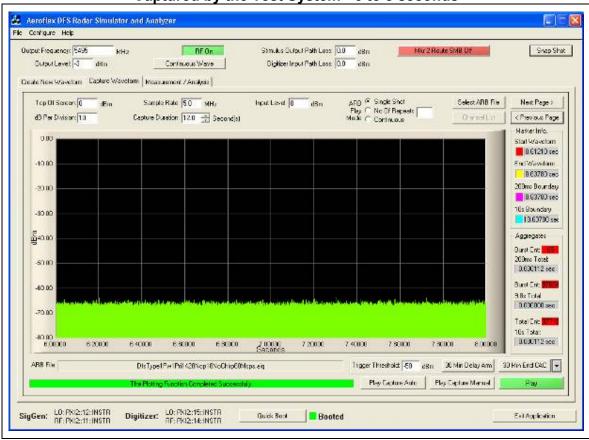
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 2 to 4 seconds



To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 222 of 244

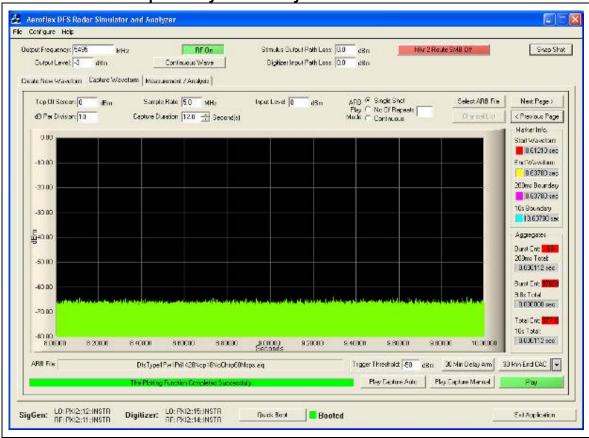
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 4 to 6 seconds



To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 223 of 244

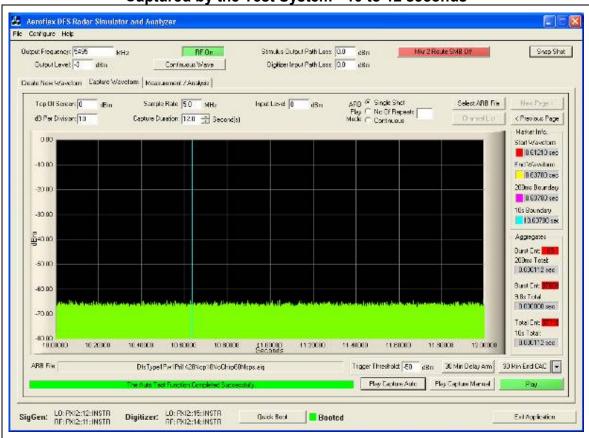
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 6 to 8 seconds



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 224 of 244

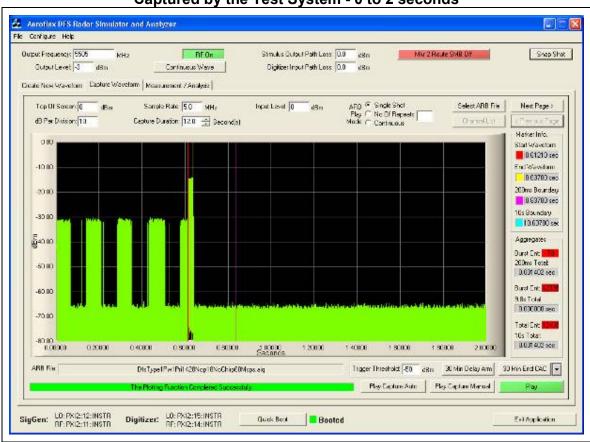
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 8 to 10 seconds



To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 225 of 244

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 10 to 12 seconds

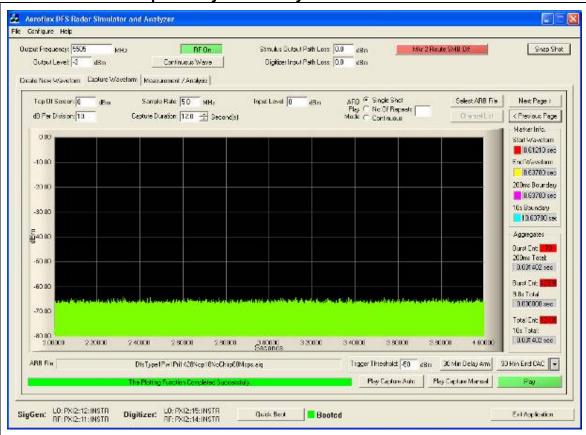

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 226 of 244

Channel Closing Transmission Time 5,510 MHz (802.11n HT40) = 1.718 <u>mSecs</u> (<u>limit 260 mSecs</u>)

Channel Move Time 5,510 MHz (802.11n HT40) = <u>0.5122 Secs (limit 10 Secs)</u>

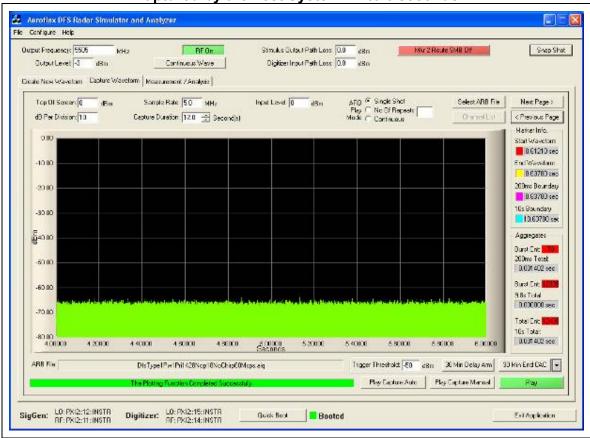
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 2 seconds


From the plot above it can be seen that the transmission activity within the 200 mS window is 0.569 mS (see 200 mS Total). From the following plots which shows all additional activity within the remained of the 10 sec measurement window it can be determined that the aggregate transmission is 1.149 mS. This is less than the 60 mS limit.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 227 of 244

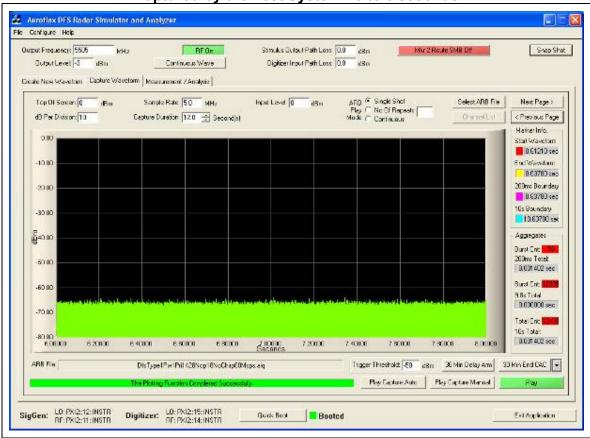
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 2 to 4 seconds



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 228 of 244

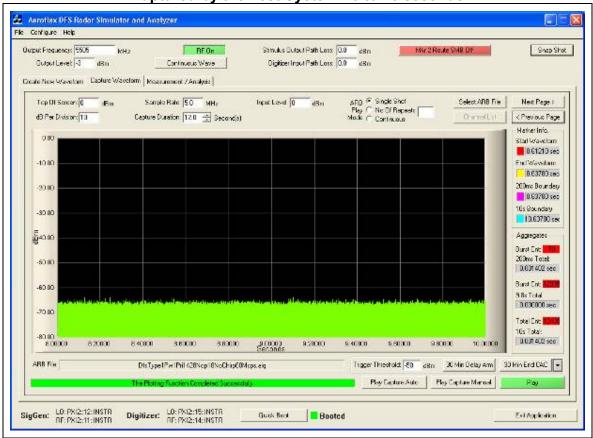
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 4 to 6 seconds



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 229 of 244

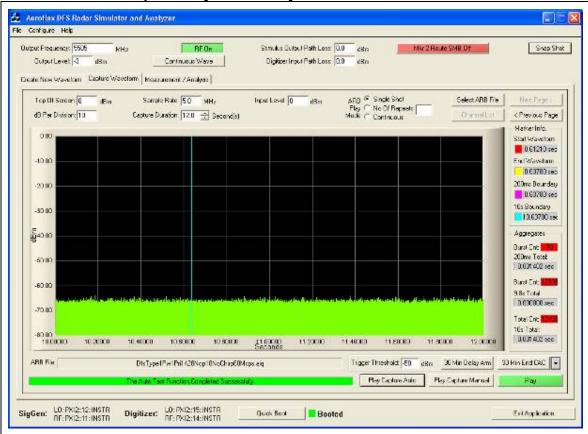
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 6 to 8 seconds



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 230 of 244

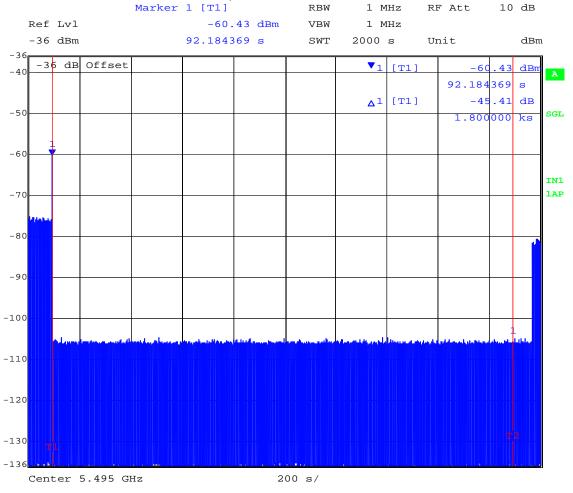
Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 8 to 10 seconds



To: FCC 47 CFR Part 15,407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 231 of 244

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 10 to 12 seconds


To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 232 of 244

30 Minute Non-Occupancy Period

The EUT is monitored for more than 30 minutes following the channel close/move time to verify no transmissions resume on this Channel.

30 Minute Non-Occupancy Period Type 1 Radar 5,500MHz 802.11a

Date: 5.AUG.2011 04:10:49

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 233 of 244

30 Minute Non-Occupancy Period Type 1 Radar 5,510 MHz802.11n HT40

Date: 5.AUG.2011 05:04:48

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 234 of 244

5.1.9.15. Statistical Performance Check

The steps below define the procedure to determine the minimum percentage of detection when a radar burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5,500MHz 802.11a and 5,510MHz 802.11n HT40.

The Radar Waveform generator sends the individual waveform for each of the radar types 1-6. Statistical data will be gathered to determine the ability of the device to detect the radar test waveforms. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. The percentage of successful detection is calculated by:

Total # of detections ÷ Total # of Trials × 100 = Probability of Detection

The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in the Radar Test Waveforms section.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 235 of 244

Verification of Detection 5,500MHz 802.11a

Trial #	Detection = √, No Detection = 0					
	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6
1	\checkmark	√			$\sqrt{}$	V
2	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
3	$\sqrt{}$	√	$\sqrt{}$	√	$\sqrt{}$	√
4	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	V
5	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	\checkmark	
6	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
7	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	\checkmark	
8	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		\checkmark	$\sqrt{}$
9	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
10	$\sqrt{}$	\checkmark	\checkmark	\checkmark	0	\checkmark
11	$\sqrt{}$	√	$\sqrt{}$		\checkmark	√
12	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		\checkmark	$\sqrt{}$
13	$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
14	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		\checkmark	$\sqrt{}$
15	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
16	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	\checkmark
17	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
18	$\sqrt{}$	\checkmark	\checkmark	\checkmark	0	$\sqrt{}$
19	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	√
20	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
21	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
22	V	V	V	V	√	√
23	V	V	V	√	0	√
24	V	V	V	V	√	V
25	V	V	V	V	√	√
26	V		√	√	√	V
27	V		√ √	√	√	√
28	V		√	V	√	V
29	V		√ √	V	√	√
30	V	$\sqrt{}$	√	V	√	√
Detection Percentage	100% (>60%)	100% (>60%)	100% (>60%)	100% (>60%)	90% (>80%)	100% (>70%)

In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is required and calculated as follows;

 $(P_d1 + P_d2 + P_d3 + P_d4)/4 = 90\% + 66.6\% + 80.0\% + 86.6\%)/4 = 80.8\% (> 80\%)$

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 236 of 244

Verification of Detection 5,510MHz 802.11n HT40

Trial #	Detection = √, No Detection = 0					
	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6
1	√	$\sqrt{}$			$\sqrt{}$	V
2	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$
3	\checkmark	\checkmark	$\sqrt{}$	\downarrow	\checkmark	$\sqrt{}$
4	$\sqrt{}$	\checkmark	√	√	$\sqrt{}$	$\sqrt{}$
5	√	V	√		√	V
6	√	V	√		√	$\sqrt{}$
7	√	V	√	V	V	√
8	\checkmark	$\sqrt{}$	$\sqrt{}$		\checkmark	$\sqrt{}$
9	√	√	√	$\sqrt{}$	$\sqrt{}$	V
10	√	V	√		0	√
11	\checkmark	$\sqrt{}$	$\sqrt{}$		\checkmark	$\sqrt{}$
12	√	$\sqrt{}$	√		$\sqrt{}$	$\sqrt{}$
13		$\sqrt{}$	√		$\sqrt{}$	$\sqrt{}$
14	√	0	√		$\sqrt{}$	$\sqrt{}$
15	$\sqrt{}$	√	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$
16	\checkmark	\checkmark	$\sqrt{}$	\downarrow	\checkmark	$\sqrt{}$
17	$\sqrt{}$	\checkmark	$\sqrt{}$	\downarrow	\checkmark	$\sqrt{}$
18	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
19	\checkmark	\checkmark	$\sqrt{}$	\downarrow	\checkmark	\checkmark
20	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	\checkmark	
21	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\downarrow	\checkmark	$\sqrt{}$
22	\checkmark	\checkmark	$\sqrt{}$	\vee	\checkmark	$\sqrt{}$
23	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	0	
24	\checkmark	\checkmark	$\sqrt{}$	\downarrow	\checkmark	$\sqrt{}$
25	\checkmark	\checkmark	$\sqrt{}$	\vee	\checkmark	$\sqrt{}$
26	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
27		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$
28			V			V
29			V		$\sqrt{}$	V
30		V		1		√
Detection Percentage	100% (>60%)	96.6% (>60%)	100% (>60%)	100% (>60%)	93.3% (>80%)	100% (>70%)

In addition an average minimum percentage of successful detection across all four Short pulse radar test waveforms is required and calculated as follows;

 $(P_d1 + P_d2 + P_d3 + P_d4) / 4 = (100\% + 96.6\% + 100\% + 100\%) / 4 = 97.475\% (> 80\%)$

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 237 of 244

Measurement Uncertainty Time/Power

Measurement uncertainty			
-	-	Time	4%
	-	Power	1.33dB

Traceability

Test Equipment Used

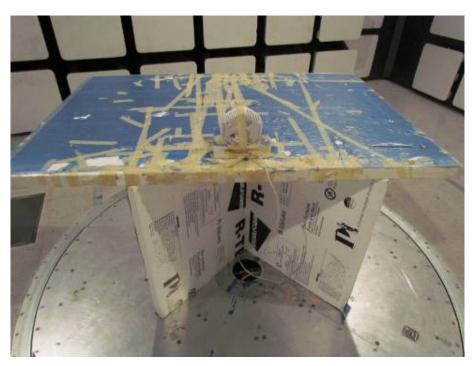
 $0072,\,0083,\,0098,\,0116,\,0132,\,0158,\,0313,\,0314,\,0193,\,0223,\,0252,\,0253,\,0251,\,0256,\,0328,\,0329$

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 238 of 244

6. PHOTOGRAPHS

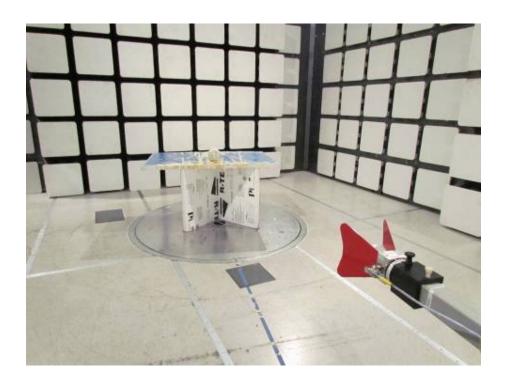
6.1. Conducted Test Setup



To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 239 of 244

6.2. Radiated Test Setup < 1 GHz


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 240 of 244

6.3. Radiated Test Setup > 1 GHz

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 241 of 244

6.4. Dynamic Frequency Selection (DFS)

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 242 of 244

To: FCC 47 CFR Part 15.407 & IC RSS-210

Serial #: JNIP16-U2 Rev B Issue Date: 16th May 2012 Page: 243 of 244

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 12
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 12
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 12
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 12
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 12
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 12
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 12
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 12
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 12
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A
0301	5.6 GHz Notch Filter	Micro-Tronics	RBC50704	001	N/A
0302	5.25 GHz Notch Filter	Micro-Tronics	BRC50703	002	N/A
0303	5.8 GHz Notch Filter	Micro-Tronics	BRC50705	003	N/A
0304	2.4GHzHz Notch Filter	Micro-Tronics		001	N/A

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com