
Power Density Plot on Configuration Draft n MCS8 40MHz Ant. A1 + Ant. A2 + Ant. A3 / 5230 MHz

Date: 13.FEB.2008 10:23:13

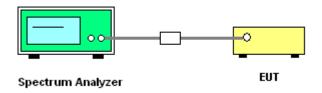
Report Format Version: 03 Page No. : 38 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	1000 kHz (Peak Trace) / 1000 kHz (Average Trace)
VB	3000 kHz (Peak Trace) / 300 kHz (Average Trace)
Detector	Peak (Peak Trace) / Sample (Average Trace)
Trace	Max Hold
Sweep Time	60s

4.5.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set the spectrum analyzer span to view the entire emissions bandwidth. The largest difference between the following two traces (Peak Trace and Average Trace) must be ≤ 13 dB for all frequencies across the emissions bandwidth. Submit a plot.
- 3. Peak Trace: Set RBW = 1 MHz, VBW \geq 3 MHz with peak detector and max-hold settings.
- 4. Average Trace: Method #3—video averaging with max hold--and sum power across the band. Set span to encompass the entire emissions bandwidth (EBW) of the signal. Set sweep trigger to "free run". Set RBW = 1 MHz. Set VBW \geq 1/T (Draft n VBW = 3000kHz \geq 1/4 μ s). Use sample detector mode if bin width (i.e., span/number of points in spectrum) < 0.5 RBW. Otherwise use peak detector mode. Set max hold. Allow max hold to run for 60 seconds.
- 5. Measuring multiple antennas, the connector is required to link with spectrum analyzer through a combiner.

4.5.4. Test Setup Layout

Report Format Version: 03 Page No. : 39 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.5.5. Test Deviation

There is no deviation with the original standard.

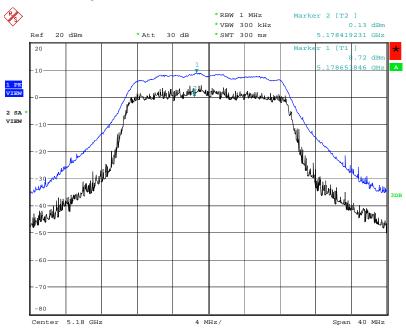
4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Peak Excursion

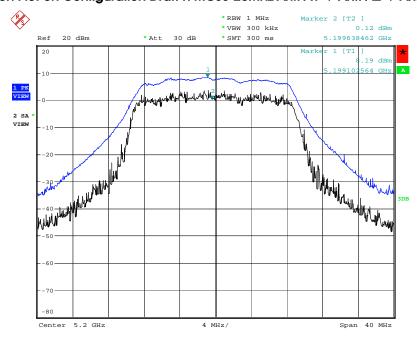
Temperature	26	Humidity	60%
Test Engineer	Sam Chen	Configurations	Draft n

Configuration Draft n MCS8 20MHz Ant. A1 + Ant. A2 + Ant. A3


Channel	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
36	5180 MHz	8.59	13	Complies
40	5200 MHz	8.07	13	Complies
48	5240 MHz	8.06	13	Complies

Configuration Draft n MCS8 40MHz Ant. A1 + Ant. A2 + Ant. A3

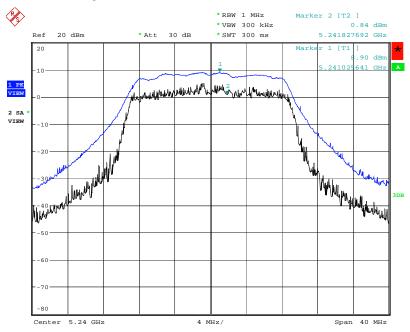
Channel	Frequency Peak Excursion (dB)		Max. Limit (dB)	Result	
38	5190 MHz	8.85	13	Complies	
46	5230 MHz	8.91	13	Complies	


Report Format Version: 03 Page No. : 40 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

Peak Excursion Plot on Configuration Draft n MCS8 20MHz Ant. A1 + Ant. A2 + Ant. A3 / 5180 MHz

Date: 19.SEP.2008 13:46:52

Peak Excursion Plot on Configuration Draft n MCS8 20MHz Ant. A1 + Ant. A2 + Ant. A3 / 5200 MHz



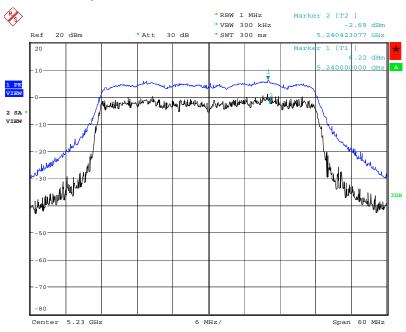
Date: 19.SEP.2008 13:49:11

Report Format Version: 03 Page No. : 41 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

Peak Excursion Plot on Configuration Draft n MCS8 20MHz Ant. A1 + Ant. A2 + Ant. A3 / 5240 MHz

Date: 19.SEP.2008 13:52:58

Peak Excursion Plot on Configuration Draft n MCS8 40MHz Ant. A1 + Ant. A2 + Ant. A3 / 5190 MHz



Date: 19.SEP.2008 14:00:12

Report Format Version: 03 Page No. : 42 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

Peak Excursion Plot on Configuration Draft n MCS8 40MHz Ant. A1 + Ant. A2 + Ant. A3 / 5230 MHz

Date: 19.SEP.2008 14:03:03

Report Format Version: 03 Page No. : 43 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m).; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

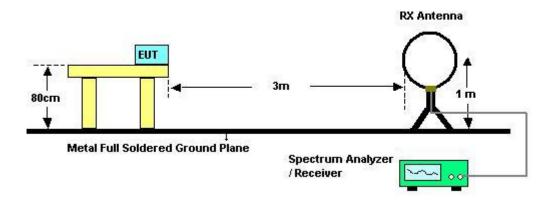
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

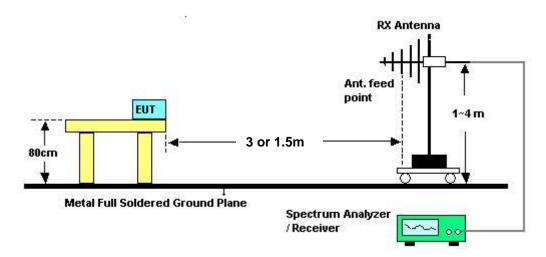
Report Format Version: 03 Page No. : 44 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.6.3. Test Procedures

Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.


- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: 03 Page No. : 45 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008



4.6.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

Above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: 03 Page No. : 46 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24	Humidity	56%
Test Engineer	Roy Huang	Configurations	Normal Link

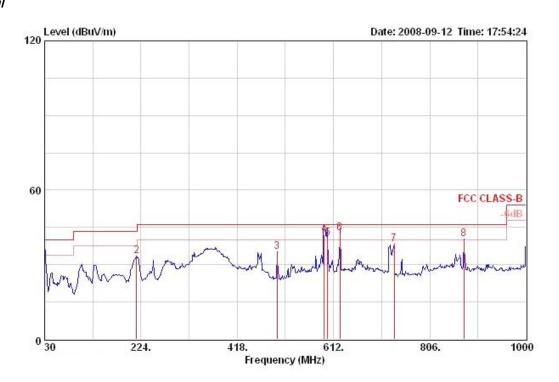
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

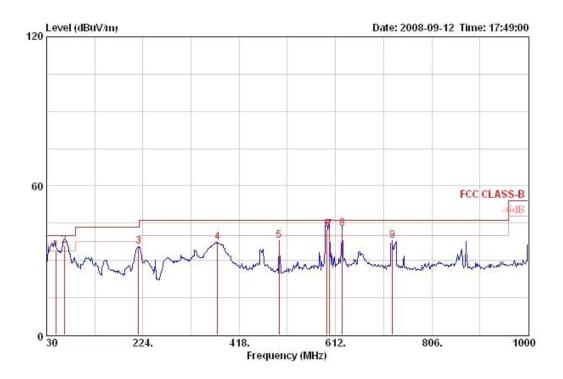
Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$


Report Format Version: 03 Page No. : 47 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24	Humidity	56%
Test Engineer	Roy Huang	Configurations	Mode 2


Horizontal

			0ver	Limit	Readi	Antenna	Preamp	Cable			Table	Ant
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pol/Phase	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dВ			deg	cm
1	30.000	30.46	-9.54	40.00	39.00	18.76	27.80	0.50	QP	HORI ZONTAL	0	100
2	215.270	33.37	-10.13	43.50	48.49	10.19	27.07	1.76	Peak	HORI ZONTAL	0	100
3	498.510	35.06	-10.94	46.00	42.86	17.60	28.09	2.70	Peak	HORI ZONTAL	0	100
4 !	593.360	42.18	-3.82	46.00	48.70	18.69	28.10	2.89	QP	HORI ZONTAL	0	157
5 !	599.880	40.67	-5.33	46.00	47.10	18.77	28.10	2.90	QP	HORI ZONTAL	12	165
6 @	624.990	42.82	-3.18	46.00	49.00	18.85	28.07	3.05	QP	HORIZONTAL	163	141
7	734.220	38.12	-7.88	46.00	43.23	19.32	27.86	3.44	Peak	HORI ZONTAL	0	100
8 !	874.870	40.48	-5.52	46.00	44.09	20.34	27.45	3.50	Peak	HORIZONTAL	0	100

Report Format Version: 03 Page No. : 48 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

Vertical

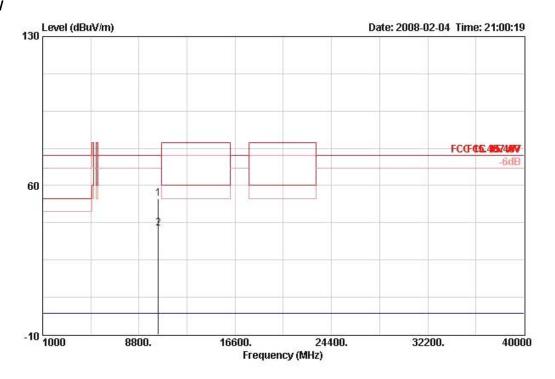
			Over	Limit	Read	Antenna	Preamp	Cable			Table	Ant
	Freq	Level	Limit	Line	Level	Factor	Factor	Loss	Remark	Pol/Phase	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	3	14:34	deg	cm
1	49.100	33.93	-6.07	40.00	52.20	8.83	27.80	0.70	QP	VERTICAL	346	100
2 !	65.740	35.93	-4.07	40.00	56.10	6.69	27.74	0.88	QP	VERTICAL	11	186
3	215.270	35.70	-7.80	43.50	50.81	10.19	27.07	1.76	Peak	VERTICAL	0	400
4	374.350	37.21	-8.79	46.00	47.00	15.38	27.42	2.25	Peak	VERTICAL	0	400
5	498.510	38.00	-8.00	46.00	45.79	17.60	28.09	2.70	Peak	VERTICAL	0	400
6 !	595.000	42.39	-3.61	46.00	48.90	18.70	28.10	2.89	QP	VERTICAL	56	100
7 !	600.200	42.47	-3.53	46.00	48.90	18.77	28.10	2.90	QP	VERTICAL	0	100
8 !	625.580	42.79	-3.21	46.00	48.96	18.85	28.07	3.05	QP	VERTICAL	0	400
9	726.460	37.92	-8.08	46.00	43.14	19.27	27.89	3.41	Peak	VERTICAL	0	400

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: 03 Page No. : 49 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

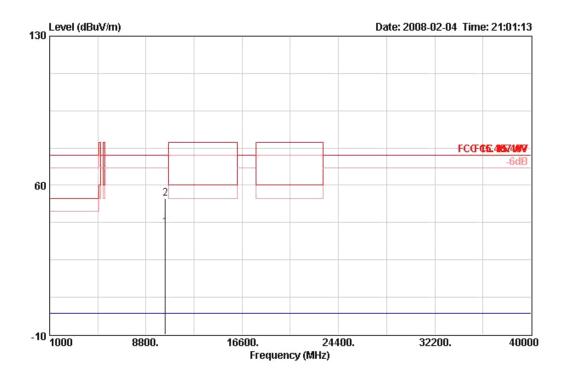


4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature	26	Humidity	60%
Test Engineer	Jax Chen	Configurations	Draft n MCS8 20MHz Ch 36 Ant. A1 + Ant. A2 +
		9	Ant. A3

Horizontal

1


Vuor	Lovel	Over	Limit Line		Antenna				Ant Pos	Table	Pol/Phase
rreq	reser	ыще	Line	rever	FACCUE	LUSS	Factor	Remark	PUS	Pos	POI/PHASE
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg	
10359.150	53.70	-20.60	74.30	41.12	38.37	9.32	35.12	PEAK	100	0	HORIZONTAL

 Report Format Version: 03
 Page No. : 50 of 71

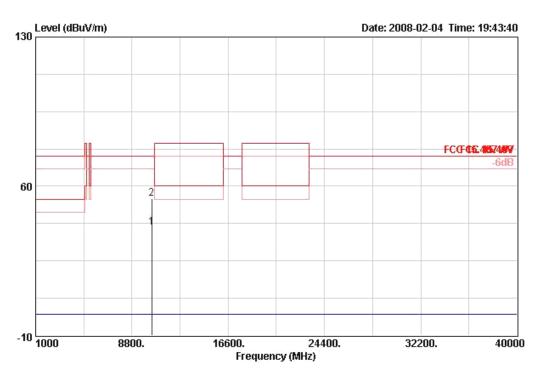
 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Vertical

2

Freq	Level				Antenna Factor		_		Ant Pos	Table Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBuV		dB	dB			dea	
10362.400	53.67	-20.63	74.30	41.09	38.37	9.32	35.12	PEAK	100	360	VERTICAL

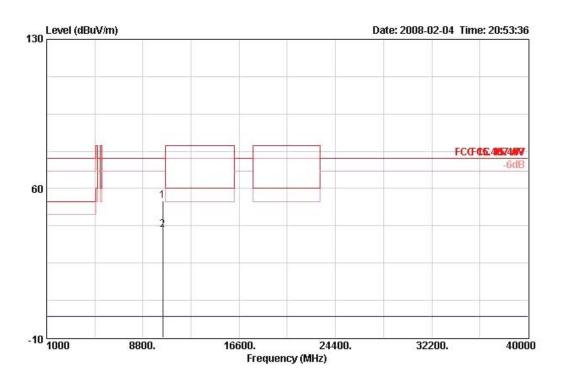
 Report Format Version: 03
 Page No. : 51 of 71


 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Temperature	26	Humidity	60%
Tost Engineer	Jax Chen	Configurations	Draft n MCS8 20MHz Ch 40 Ant. A1 + Ant. A2 +
Test Engineer	Jux Chen	Comiguidions	Ant. A3

Horizontal

2


				01	rer	Liz	mit	Re	eadi	Ante	nna	Cal	ole	Prea	mp.		Ant	Table	
1	Freq	Le	re1	Lir	mit	L	ine	Lev	re1	Fact	tor	Lo	oss	Fact	or	Remark	Pos	Pos	Pol/Phase
<u></u>	MHz	dBu	I/m		dВ	dBu	V/m	dl	BuV	di	B/m		dВ		dВ			deg	· · · · · · · · · · · · · · · · · · ·
10299	420	54	22	-19	9.0	74	30	41	64	20	3.0	9	36	25	05	DEBL	144	221	HOPT TONTAL

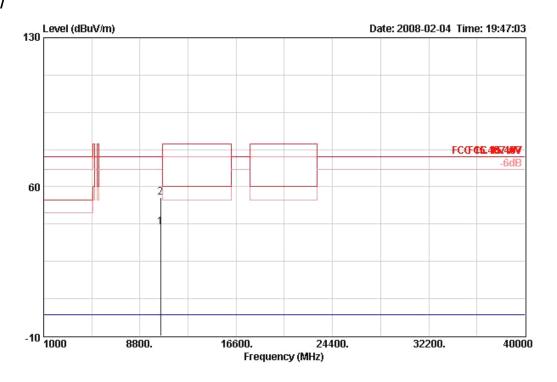
 Report Format Version: 03
 Page No. : 52 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Vertical

1

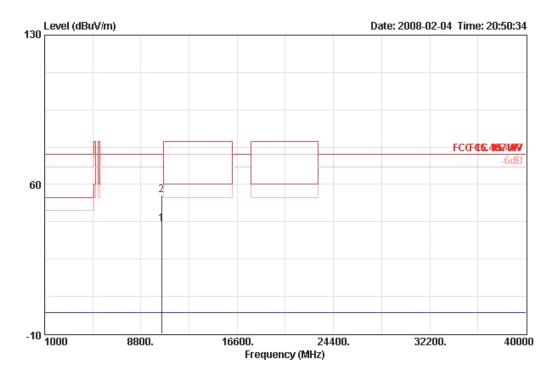
Freq	Level				Factor			Remark	Pos	Pos	Pol/Phase
MHz	dBuV/m	dВ	dBuV/m	dBuV	dB/m	dB	dB	1	cm -	deg	
10398.010	54.13	-20.17	74.30	41.45	38.38	9.36	35.05	PEAK	100	0	VERTICAL


 Report Format Version: 03
 Page No. : 53 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Temperature	26	Humidity	60%
Tost Engineer	Jax Chen	Configurations	Draft n MCS8 20MHz Ch 48 Ant. A1 + Ant. A2 +
Test Engineer	Jax Chen	Configurations	Ant. A3

Horizontal


		0ver	Limit	Readi	Antenna	Cable	Preamp		Ant	Table	
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m		dB/m	dB	dB			deg	
	CO 00 5 90				1770,880					· · · · · ·	
10480 600	55 17	-19 13	24 30	42 32	38 40	9 41	34 96	DEBK	100	23	HORT ZONTAL

 Report Format Version: 03
 Page No. : 54 of 71

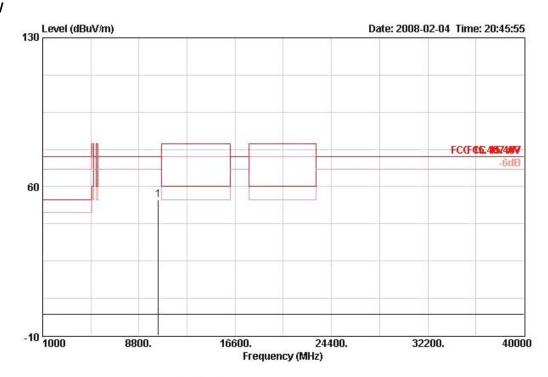
 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Vertical

2

		0ver	Limit	Readi	Antenna	Cable	Preamp		Ant	Table	
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos Pol/Pha	se.
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg	
10481.180	55.09	-19.21	74.30	42.24	38.40	9.41	34.96	PEAK	100	360 VERTICA	L

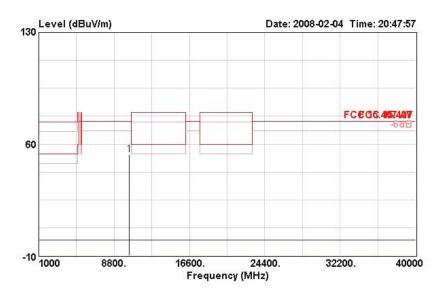
 Report Format Version: 03
 Page No. : 55 of 71


 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Temperature	26	Humidity	60%
Tost Engineer	Jax Chen	Configurations	Draft n MCS8 40MHz Ch 38 Ant. A1 + Ant. A2 +
Test Engineer	Jux Chen	Comiguidions	Ant. A3

Horizontal

1

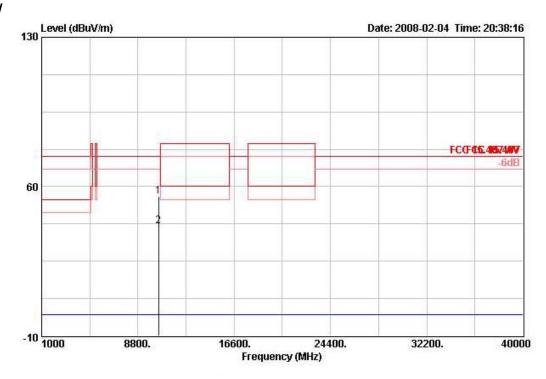

Freq	Level		Limit Line						Ant Pos	Table Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		- CIN	deg	<u> </u>
10380.740	53.74	-20.56	74.30	41.11	38.38	9.34	35.09	PEAK	100	0	HORIZONTAL

 Report Format Version: 03
 Page No. : 56 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Vertical

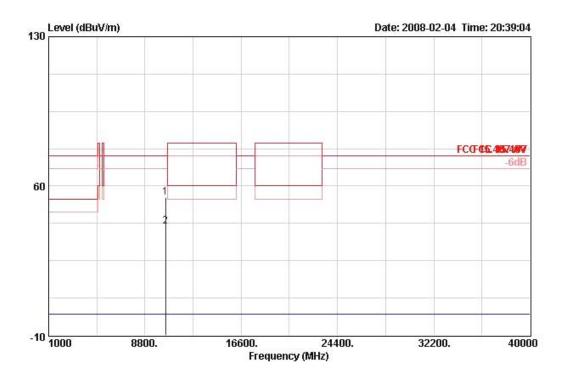
	Freq	Level				Antenna Factor				Ant Pos	Table Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	ш ————	cm.	deg	<u> </u>
1 @	10379.430	53.45	-20.85	74.30	40.82	38.38	9.34	35.09	PEAK	100	360	VERTICAL


 Report Format Version: 03
 Page No. : 57 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Temperature	26	Humidity	60%
Test Engineer	Jax Chen	Configurations	Draft n MCS8 40MHz Ch 46 Ant. A1 + Ant. A2 +
lesi Engineei	Jux Chen	Comiguidions	Ant. A3

Horizontal



	Freq	Level				Antenna Factor				Ant Pos	Table Pos Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	- dB	1)	cm.	deg
1	10458.960	55.44	-18.86	74.30	42.65	38.39	9.39	34.99	PEAK	112	191 HORIZONTAL

 Report Format Version: 03
 Page No. : 58 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Vertical

		0ver	Limit	Readi	Antenna	Cable	Preamp		Ant	Table	
Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cau	deg	
10459.950	54.43	-19.87	74.30	41.63	38.39	9.39	34.99	PEAK	117	0	VERTICAL

Note:

1

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

 Report Format Version: 03
 Page No. : 59 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

4.7. Radiated Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m).; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1 MHz /1 MHz for Peak

4.7.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
- In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

Report Format Version: 03 Page No. : 60 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Radiated Band Edge and Fundamental Emissions

Temperature	26	Humidity	60%
Test Engineer	lay Chan	Configurations	Draft n MCS8 20MHz Ch 36, 40, 48 Ant. A1 +
Test Engineer	Jax Chen	Configurations	Ant. A2 + Ant. A3

Channel 36

				0ver	Limit	Readi	Intenna	Cable	Preamp		Ant	Table	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm.	deg	<u></u>
1 6	3	5149.200	79.52	-0.48	80.00	39.31	33.67	6.54	0.00	PEAK	115	202	HORIZONTAL
2 6	3	5150.000	59.18	-0.82	60.00	18.97	33.67	6.54	0.00	AVERAGE	115	202	HORIZONTAL
3 6	3	5178.200	122.70			82.41	33.73	6.55	0.00	PERK	115	202	HORIZONTAL
4 6	3	5181.600	107.15			66.87	33.73	6.55	0.00	AVERAGE	115	202	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 48

			0ver	Limit	Readi	Intenna	Cable	Preamp		Ant	Table	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg	
1	5142.800	69.97	-10.03	80.00	29.77	33.67	6.53	0.00	PEAK	131	209	HORIZONTAL
2 !	5146.000	57.64	-2.36	60.00	17.43	33.67	6.54	0.00	AVERAGE	131	209	HORIZONTAL
3 @	5236.800	122.96			82.56	33.82	6.58	0.00	PEAK	131	209	HORIZONTAL
4	5238.800	108.73			68.33	33.82	6.58	0.00	AVERAGE	131	209	HORI ZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Report Format Version: 03 Page No. : 61 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

Temperature	20	Humidity	70%
Test Engineer	Jax Chen	Configurations	Draft n MCS8 40MHz Ch 38, 46, Ant. A1 + Ant. A2
lesi Erigirieei	Jax Chen	Cornigurations	+ Ant. A3

Channel 38

			0ver	Limit	Read?	Intenna	Cable	Preamp		Ant	Table	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		- Cam	deg	<u> </u>
1 @	5149.360	78.29	-1.71	80.00	38.08	33.67	6.54	0.00	PEAK	142	207	HORI ZONTAL
2 @	5150.000	59.70	-0.30	60.00	19.48	33.67	6.54	0.00	AVERAGE	142	207	HORIZONTAL
3 @	5185.200	99.28			58.99	33.73	6.55	0.00	AVERAGE	142	207	HORI ZONTAL
4 @	5198.400	115.46			75.14	33.76	6.57	0.00	PEAK	142	207	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

			Over	Limit	Readi	Intenna	Cable	Preamp		Ant	Table	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	Pol/Phase
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg	<u> </u>
1 @	5148.400	71.05	-8.95	80.00	30.84	33.67	6.54	0.00	PEAK	105	310	HORI ZONTAL
2 @	5150.000	56.90	-3.10	60.00	16.69	33.67	6.54	0.00	AVERAGE	105	310	HORIZONTAL
3 @	5238.800	116.70			76.30	33.82	6.58	0.00	PERK	105	310	HORIZONTAL
4 @	5240.800	101.85			61.45	33.82	6.58	0.00	AVERAGE	105	310	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

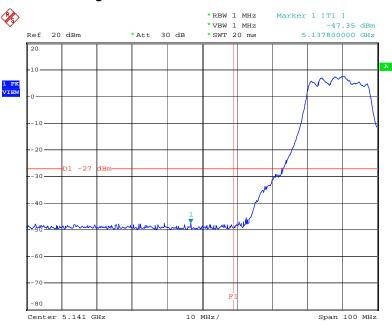
Note:

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

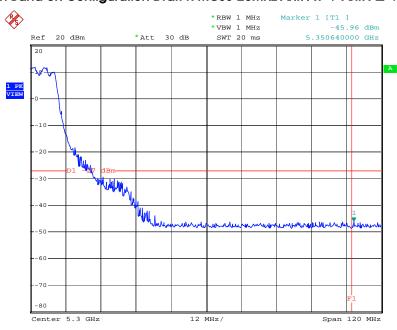
The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

The Radiated Band-edge tests were performed at Vertical and Horizontal and the worst-case was found at Horizontal. All the results have been recorded in this report.

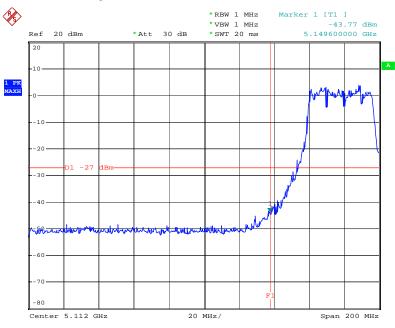
Report Format Version: 03 Page No. : 62 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008



EIRP Emission in Band on Configuration Draft n MCS8 20MHz Ant. A1 + Ant. A2 + Ant. A3 / 5180 MHz

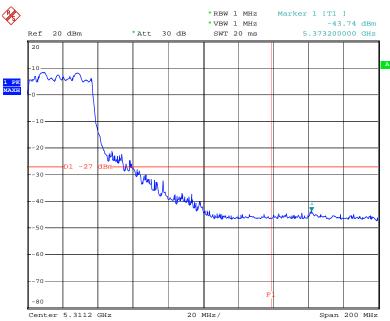
Date: 13.FEB.2008 10:26:00

EIRP Emission in Band on Configuration Draft n MCS8 20MHz Ant. A1 + Ant. A2 + Ant. A3 / 5240 MHz



Date: 27.FEB.2008 11:02:07

Report Format Version: 03 Page No. : 63 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008



EIRP Emission in Band on Configuration Draft n MCS8 40MHz Ant. A1 + Ant. A2 + Ant. A3 / 5190 MHz

Date: 13.FEB.2008 10:24:53

EIRP Emission in Band on Configuration Draft n MCS8 40MHz Ant. A1 $\,+\,$ Ant. A2 $\,+\,$ Ant. A3 $/\,$ 5230 MHz

Date: 27.FEB.2008 11:13:46

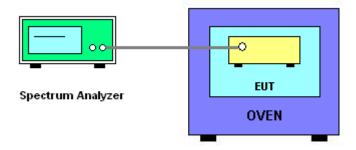
Report Format Version: 03 Page No. : 64 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.8. Frequency Stability Measurement

4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ±20ppm (IEEE 802.11a specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	10 kHz
VB	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 3. The transmitter output (antenna port) was connected to the spectrum analyser.
- 4. EUT have transmitted absence of modulation signal and fixed channelize.
- 5. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 6. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 7. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11a specification).
- 8. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 9. Extreme temperature rule is -30°C~50°C.
- Measuring multiple antennas, the connector is required to link with Spectrum Analyzer through a combiner.

4.8.4. Test Setup Layout

Report Format Version: 03 Page No. : 65 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)			
(V)	5200			
126.50	5200.0623			
110.00	5200.0551			
93.50	5200.0656			
Max. Deviation (MHz)	0.065600			
Max. Deviation (ppm)	12.62			

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)			
()	5200			
-30	5200.0649			
-20	5200.0565			
-10	5200.0214			
0	5200.0088			
10	5200.0001			
20	5199.9889			
30	5199.9783			
40	5199.9776			
50	5199.9512			
Max. Deviation (MHz)	0.064900			
Max. Deviation (ppm)	12.48			

 Report Format Version: 03
 Page No. : 66 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: 03 Page No. : 67 of 71 FCC ID: QZE303 Issued Date : Sep. 19, 2008

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100132	9kHz – 2.75GHz	Jul. 14, 2007	Conduction (CO04-HY)
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Mar. 03, 2008	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Mar. 31, 2007	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Mar. 31, 2008	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz	Mar. 22, 2007	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz – 30MHz	Mar. 22, 2008	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2007	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2008	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz –30MHz	May 09, 2007	Conduction (CO04-HY)
ISN	SCHAFFNER	ISN T400	21653	9kHz –30MHz	Mar. 27, 2008	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
Isolation Transformer	Erika Fiedler OHG	D-65396 Walluf	58	45MHz-2.15GHz	N/A	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 14, 2007	Radiation (03CH03-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 14, 2008	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	COA9231A	18667	9 kHz - 2 GHz	Jan. 14, 2008	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jun. 07, 2007	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	1 GHz - 26.5 GHz Jul. 21, 2008	
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz Jan. 22, 2007*		Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100305	9 kHz - 40 GHz	Sep. 27, 2007	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2006*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz May 23, 2008*		Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237 30 MHz – 1 GHz Jul. 21, 2007		Jul. 21, 2007	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz – 1 GHz	Jul. 12, 2008	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741 1GHz ~ 18GHz May 04, 2007		May 04, 2007	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	Apr. 04, 2008	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	NCR	Radiation (03CH03-HY)

 Report Format Version: 03
 Page No. : 68 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec. 03, 2007	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec. 03, 2007	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Dec. 17, 2007	Conducted (TH01-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Jan. 10, 2008	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 11, 2008	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100458	DC ~ 30GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100458	DC ~ 30GHz	Jul. 11, 2008	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun. 27, 2007	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jul. 11, 2008	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	May 04, 2007*	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	May 30, 2008*	Conducted (TH01-HY)
DC Power Source	OC Power Source G.W.		C671845	DC 1V ~ 60V	Mar. 03, 2007	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Mar. 13, 2008	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2007	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 01, 2007	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 01, 2007	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Mar. 07, 2007	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Mar. 10, 2008	Conducted (TH01-HY)
oscilloscope	Tektonix	TDS380	B016197	400MHz/ 2GS/s	Jun. 27, 2008	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

 Report Format Version: 03
 Page No. : 69 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

^{*} Calibration Interval of instruments listed above is two year.

6. TEST LOCATION

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

 Report Format Version: 03
 Page No. : 70 of 71

 FCC ID: QZE303
 Issued Date : Sep. 19, 2008

7. TAF CERTIFICATE OF ACCREDITATION

Certificate No.: L1190-070110

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

Accreditation Number : 1190

Originally Accredited : December 15, 2003

Effective Period : January 10, 2007 to January 09, 2010

Accredited Scope : Testing Field, see described in the Appendix

Accreditation Program for Designated Testing Laboratory

Specific Accreditation . for Commodities Inspection

Program Accreditation Program for Telecommunication Equipment

Testing Laboratory

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: January 10, 2007

P1, total 9 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when used without the Appendix.

 Report Format Version: 03
 Page No.
 : 71 of 71

 FCC ID: QZE303
 Issued Date
 : Sep. 19, 2008