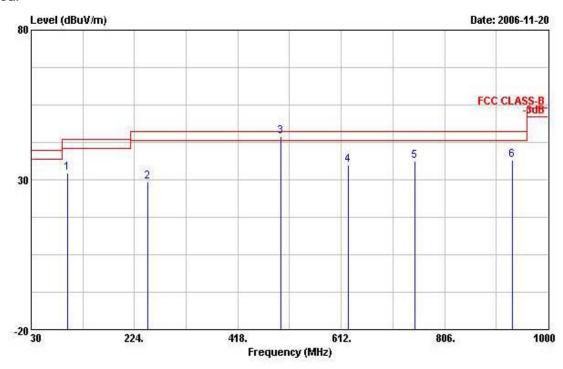


Report No.: FR6O2612AA

4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 1 / 802.11a Ch 36

Horizontal



			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line		Factor dB/m	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m			dB	dB	:
1	106.680	34.33	-9.17	43.50	48.75	12.04	1.44	27.90	Peak
2	141.580	32.49	-11.01	43.50	47.46	11.26	1.86	28.09	Peak
3	249.180	33.70	-12.30	46.00	46.97	12.58	2.50	28.36	Peak
4	498.540	40.96	-5.04	46.00	48.74	18.09	3.81	29.68	QP
5	749.700	38.82	-7.18	46.00	42.96	20.71	4.86	29.70	Peak
6	933.120	36.72	-9.28	46.00	39.88	21.23	5.37	29.76	Peak

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 52 of 104

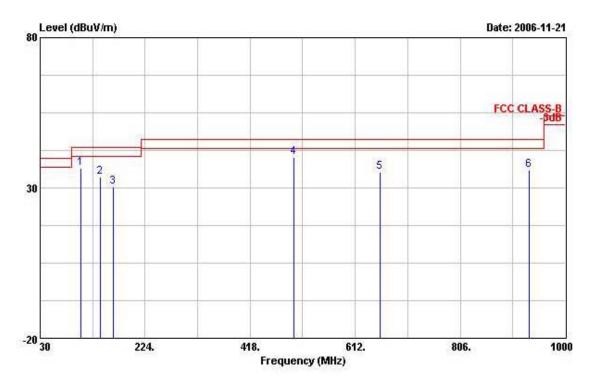
 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

1000	20000000	Limit						
Freq	rever		Line	revel	evel factor		Factor	Remark
MHz	dBuV/m		dBuV/m	dBuV	dB/m	dB	dB	
97.940	32.46	-11.04	43.50	48.13	10.86	1.32	27.85	Peak
249.200	29.46	-16.54	46.00	42.74	12.58	2.50	28.36	Peak
498.540	44.56	-1.44	46.00	52.34	18.09	3.81	29.68	QP
625.540	34.78	-11.22	46.00	40.90	19.47	4.30	29.88	Peak
749.780	36.09	-9.91	46.00	40.23	20.71	4.86	29.70	Peak
933.070	36.64	-9.36	46.00	39.80	21.23	5.37	29.76	Peak
	97.940 249.200 498.540 625.540 749.780	MHz dBuV/m 97.940 32.46 249.200 29.46 498.540 44.56 625.540 34.78 749.780 36.09	Freq Level Limit MHz dBuV/m dB 97.940 32.46 -11.04 249.200 29.46 -16.54 498.540 44.56 -1.44 625.540 34.78 -11.22 749.780 36.09 -9.91	Freq Level Limit Line MHz dBuV/m dB dBuV/m 97.940 32.46 -11.04 43.50 249.200 29.46 -16.54 46.00 498.540 44.56 -1.44 46.00 625.540 34.78 -11.22 46.00 749.780 36.09 -9.91 46.00	Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 97.940 32.46 -11.04 43.50 48.13 249.200 29.46 -16.54 46.00 42.74 498.540 44.56 -1.44 46.00 52.34 625.540 34.78 -11.22 46.00 40.90 749.780 36.09 -9.91 46.00 40.23	Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV dBuV dB/m 97.940 32.46 -11.04 43.50 48.13 10.86 249.200 29.46 -16.54 46.00 42.74 12.58 498.540 44.56 -1.44 46.00 52.34 18.09 625.540 34.78 -11.22 46.00 40.90 19.47 749.780 36.09 -9.91 46.00 40.23 20.71	Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV dB/m dB 97.940 32.46 -11.04 43.50 48.13 10.86 1.32 249.200 29.46 -16.54 46.00 42.74 12.58 2.50 498.540 44.56 -1.44 46.00 52.34 18.09 3.81 625.540 34.78 -11.22 46.00 40.90 19.47 4.30 749.780 36.09 -9.91 46.00 40.23 20.71 4.86	Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 97.940 32.46 -11.04 43.50 48.13 10.86 1.32 27.85 249.200 29.46 -16.54 46.00 42.74 12.58 2.50 28.36 498.540 44.56 -1.44 46.00 52.34 18.09 3.81 29.68 625.540 34.78 -11.22 46.00 40.90 19.47 4.30 29.88 749.780 36.09 -9.91 46.00 40.23 20.71 4.86 29.70

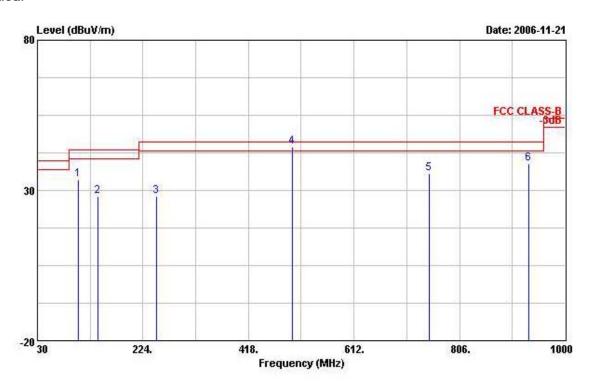
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

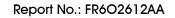

 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 53 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006



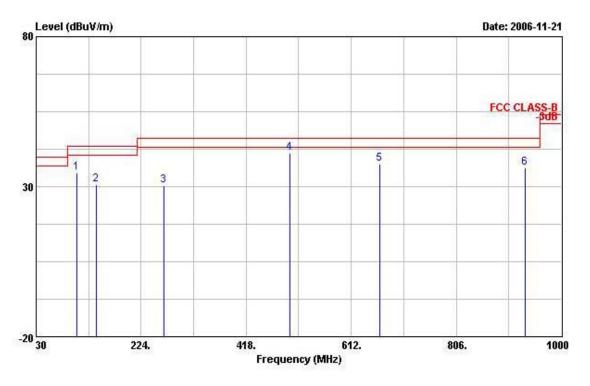
Temperature	erature 26		55%
Test Engineer	Vic Hsiao	Configurations	Mode 2 / 802.11a Ch 36

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line		I Factor dB/m	Loss dB	0 	Remark
	MHz	dBuV/m	dB	dBuV/m					
1	105.660	36.44	-7.06	43.50	50.99	11.92	1.43	27.90	Peak
2	141.550	33.63	-9.87	43.50	48.60	11.26	1.86	28.09	Peak
3	164.830	30.24	-13.26	43.50	46.54	9.89	1.88	28.07	Peak
4	498.510	40.34	-5.66	46.00	48.12	18.09	3.81	29.68	Peak
.5	657.590	35.38	-10.62	46.00	41.33	19.68	4.43	30.05	Peak
6	933.070	35.96	-10.04	46.00	39.12	21.23	5.37	29.76	Peak

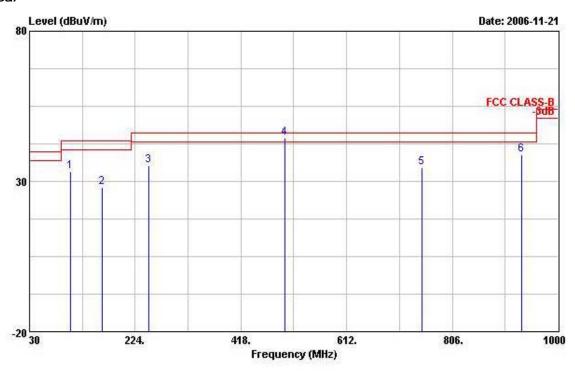


			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line dBuV/m		evel Factor BuV dB/m	Loss	Factor	3
	MHz	dBuV/m	dB				dB	dB	
1	105.660	33.65	-9.85	43.50	48.20	11.92	1.43	27.90	Peak
2	141.550	28.10	-15.40	43.50	43.07	11.26	1.86	28.09	Peak
3	249.220	27.95	-18.05	46.00	41.23	12.58	2.50	28.36	Peak
4 !	498.510	44.56	-1.44	46.00	52.34	18.09	3.81	29.68	QP
5	749.740	35.44	-10.56	46.00	39.58	20.71	4.86	29.70	Peak
6	933.070	38.94	-7.06	46.00	42.10	21.23	5.37	29.76	Peak

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

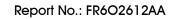
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.



Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 3 / 802.11a Ch 36

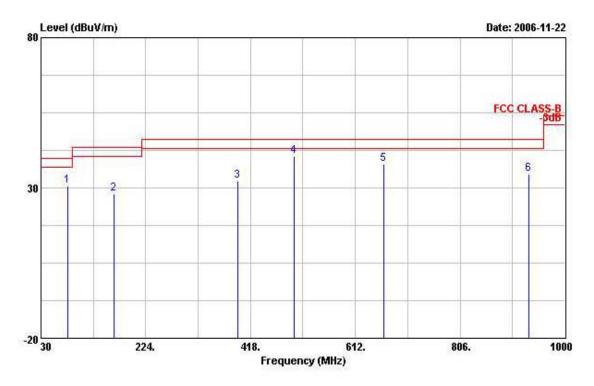
				0ver	Limit	Readi	Intenna	Cable	Preamp	
		Freq	Level	Limit	Line	dBuV	el Factor uV dB/m	Loss	Factor	Remark
		MHz	dBuV/m	- dB	dBuV/m			dB	dB	· · · · · · · · · · · · · · · · · · ·
1		105.660	34.66	-8.84	43.50	49.21	11.92	1.43	27.90	Peak
2		141.550	30.66	-12.84	43.50	45.63	11.26	1.86	28.09	Peak
3		265.710	30.43	-15.57	46.00	42.90	13.55	2.39	28.41	Peak
4	@	498.510	41.19	-4.81	46.00	48.97	18.09	3.81	29.68	Peak
5		665.350	37.47	-8.53	46.00	43.27	19.73	4.49	30.03	Peak
6		933.070	36.28	-9.72	46.00	39.44	21.23	5.37	29.76	Peak

		Level	-11 -1	Limit	ReadAntenna		Cable	Preamp	
	Freq			Line	Level	dBuV dB/m	Loss	::	Remark
	MHz			dBuV/m	dBuV		dB		
1	105.660	33.38	-10.12	43.50	47.93	11.92	1.43	27.90	Peak
2	163.860	27.91	-15.59	43.50	44.21	9.92	1.85	28.07	Peak
3	249.220	35.24	-10.76	46.00	48.52	12.58	2.50	28.36	Peak
4 @	498.510	44.48	-1.52	46.00	52.26	18.09	3.81	29.68	QP
.5	749.740	34.71	-11.29	46.00	38.85	20.71	4.86	29.70	Peak
6	933.070	38.97	-7.03	46.00	42.13	21.23	5.37	29.76	Peak

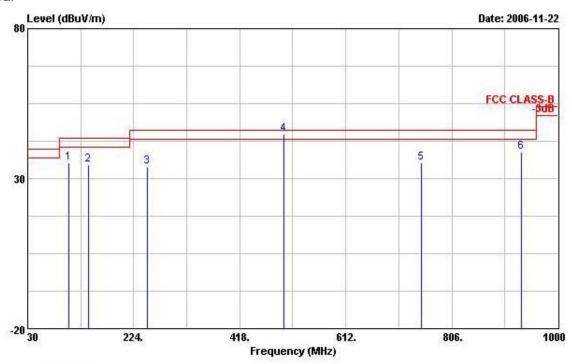

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.


 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 57 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006



Temperature	mperature 26		55%
Test Engineer	Vic Hsiao	Configurations	Mode 4 / 802.11a Ch 36

				Limit	ReadAntenna		Cable Preamp			
	Freq	Level	Limit	Line	Level dBuV	Factor	Loss	Factor	Remark	
	MHz	dBuV/m	dB	$\overline{\mathtt{dBuV/m}}$		dB/m	dB	dB		
1	79.470	30.73	-9.27	40.00	50.01	7.15	1.36	27.79	Peak	
2	164.830	27.89	-15.61	43.50	44.19	9.89	1.88	28.07	Peak	
3	393.750	32.20	-13.80	46.00	41.71	16.25	3.36	29.11	Peak	
4	498.510	40.47	-5.53	46.00	48.25	18.09	3.81	29.68	Peak	
5	665.350	37.75	-8.25	46.00	43.55	19.73	4.49	30.03	Peak	
6	933.070	34.48	-11.52	46.00	37.64	21.23	5.37	29.76	Peak	

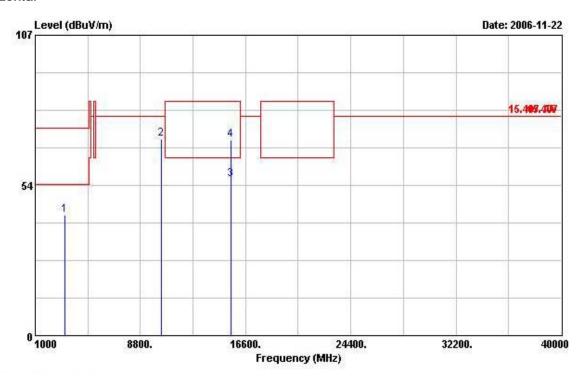
			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	9	Line	1000.00.00.00	evel Factor BuV dB/m	Loss		Remark
	MHz	dBuV/m		dBuV/m			dB		9
1	105.660	35.32	-8.18	43.50	49.87	11.92	1.43	27.90	Peak
2	141.550	34.69	-8.81	43.50	49.66	11.26	1.86	28.09	Peak
3	249.220	33.87	-12.13	46.00	47.15	12.58	2.50	28.36	Peak
4 !	498.510	44.77	-1.23	46.00	52.55	18.09	3.81	29.68	QP
.5	749.740	35.24	-10.76	46.00	39.38	20.71	4.86	29.70	Peak
6	933.070	38.79	-7.21	46.00	41.95	21.23	5.37	29.76	Peak

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 59 of 104

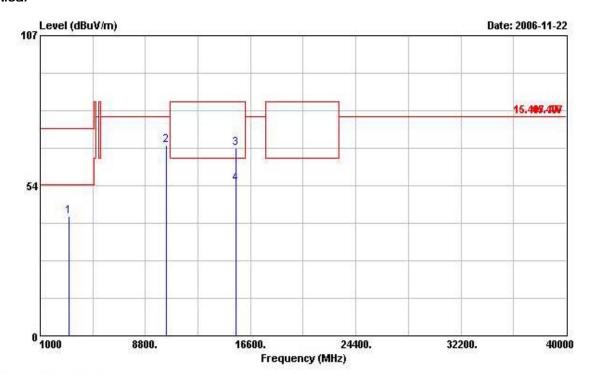

 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

Report No.: FR6O2612AA

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

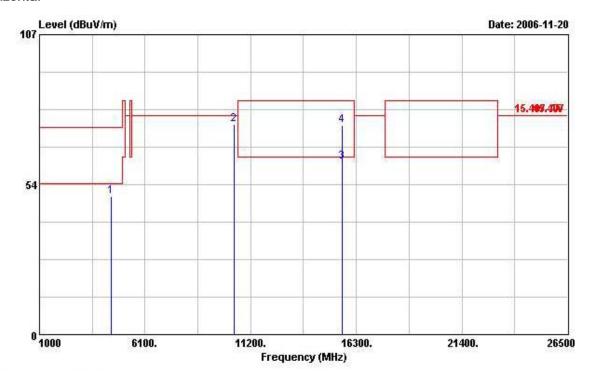
Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 1 / 802.11a Ch 36

Horizontal

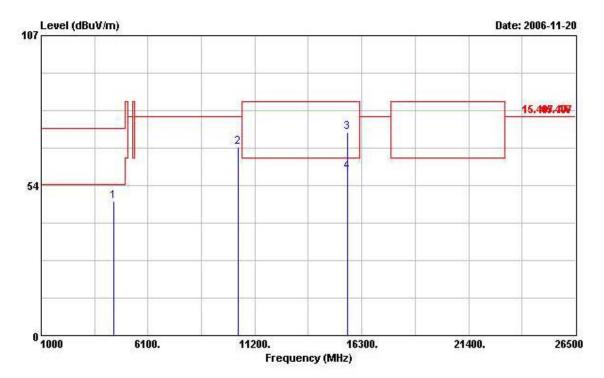

				0ver	Limit	Readi	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	3
1		3198.000	43.07	-30.93	74.00	42.92	30.46	2.41	32.71	PEAK
2	0	10364.000	69.88	-8.42	78.30	59.00	38.83	4.53	32.48	PEAK
3	0	15544.000	55.68	-7.82	63.50	44.25	37.73	6.32	32.62	Average
4	@	15544.000	69.64	-13.86	83.50	58.21	37.73	6.32	32.62	PEAK

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 60 of 104

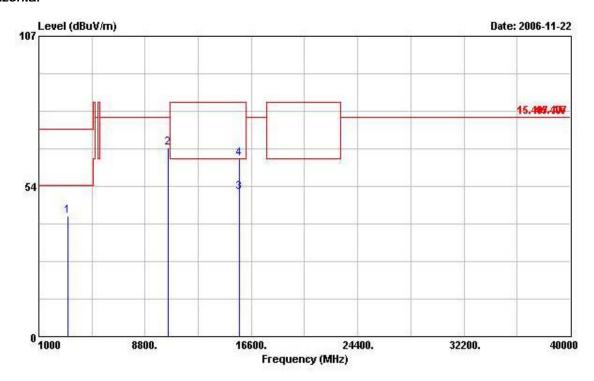
 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006



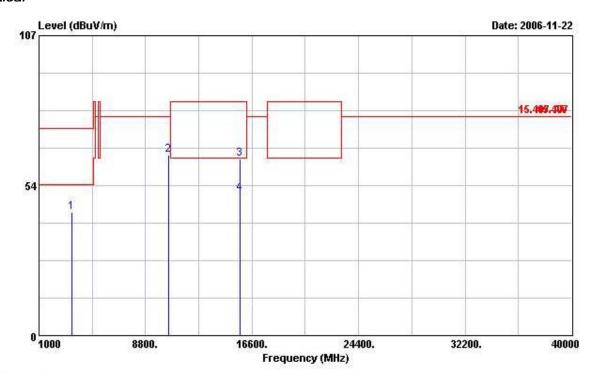
				0ver	Limit	Readi	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1		3108.000	42.69	-31.31	74.00	42.79	30.25	2.36	32.71	PEAK
2	@	10352.000	67.79	-10.51	78.30	56.89	38.85	4.53	32.48	PEAK
3		15528.000	67.04	-16.46	83.50	55.58	37.75	6.32	32.62	PEAK
4	@	15528.000	54.13	-9.37	63.50	42.68	37.75	6.32	32.62	Average
4	@	15528.000	54.13	-9.37	63.50	42.68	37.75	6.32	32.62	Average


Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 1 / 802.11a Ch 40

				0ver	Limit	Readi	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1		4482.000	49.41	-24.59	74.00	46.34	32.50	3.04	32.48	PEAK
2	0	10404.000	75.05	-3.25	78.30	64.16	38.80	4.52	32.43	PEAK
3	0	15600.000	61.46	-2.04	63.50	50.10	37.66	6.34	32.63	Average
4	la .	15600.000	74.55	-8.95	83.50	63.19	37.66	6.34	32.63	PRAK



				0ver	Limit	Readi	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1		4482.000	47.91	-26.09	74.00	44.84	32.50	3.04	32.48	PEAK
2	0	10400.000	67.22	-11.08	78.30	56.33	38.80	4.52	32.43	PEAK
3	0	15600.000	72.45	-11.05	83.50	61.09	37.66	6.34	32.63	PEAK
4	la .	15600 000	58 39	-5 11	63.50	47.03	37.66	6 34	32 63	Average



Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 1 / 802.11a Channel 48

		· P · · · ·		Over			intenna			D
		Freq	rever	Limit	Line	revel	Factor	Loss	ractor	kemark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1		3144.000	42.93	-31.07	74.00	42.92	30.33	2.38	32.71	PEAK
2	@	10476.000	67.26	-11.04	78.30	56.37	38.73	4.52	32.36	PEAK
3	0	15712.000	51.53	-11.97	63.50	40.28	37.51	6.39	32.66	Average
4		15712.000	63.39	-20.11	83.50	52.15	37.51	6.39	32.66	PEAK

			0ver	Limit	Readi	Intenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	Ş.
1	3420.000	43.83	-30.17	74.00	42.98	30.99	2.55	32.69	PEAK
2 @	10476.000	64.48	-13.82	78.30	53.59	38.73	4.52	32.36	PEAK
3	15724.000	63.10	-20.40	83.50	51.86	37.49	6.41	32.66	PEAK
4 @	15724.000	50.57	-12.93	63.50	39.33	37.49	6.41	32.66	Average

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

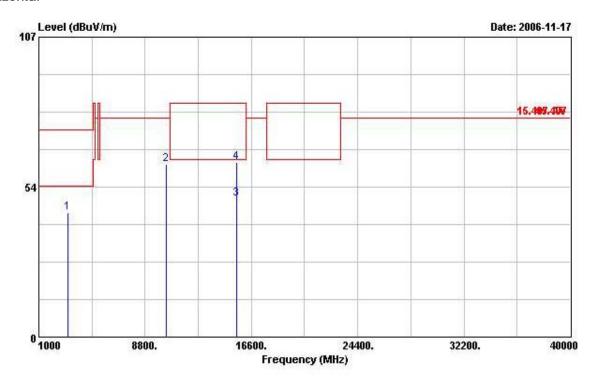
Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

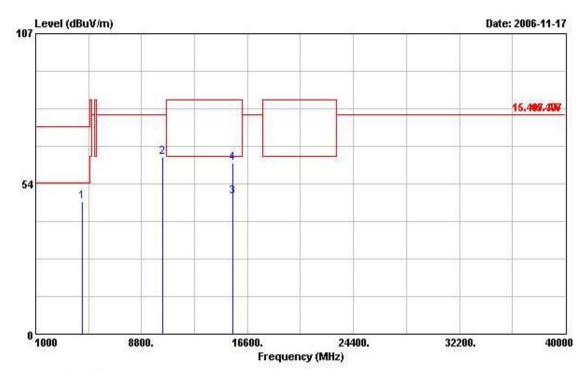
The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

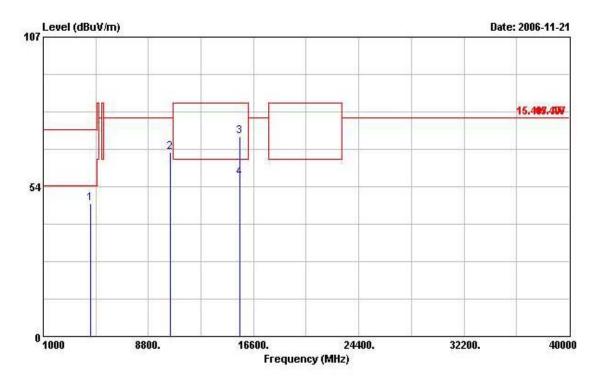

Report Format Version: RF-15.407-2006-6-16-e Page No. : 65 of 104

FCC ID: QZE250 Issued Date : Dec. 01, 2006

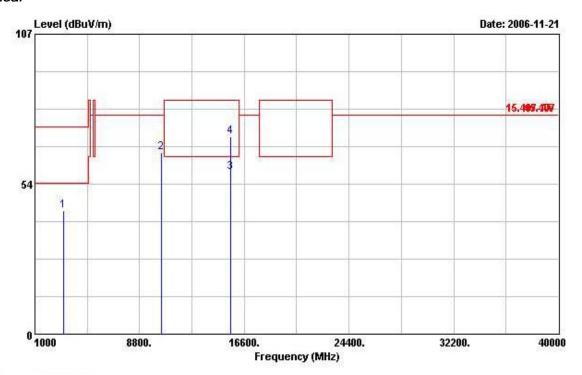


Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 2 / 802.11a Ch 36

			Over	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3135.000	44.19	-29.81	74.00	44.18	30.33	2.38	32.71	
2	10356.000	61.62	-16.68	78.30	50.72	38.85	4.53	32.48	PEAK
3	15540.000	49.22	-14.28	63.50	37.77	37.75	6.32	32.62	Average
4	15540.000	62.29	-21.21	83.50	50.84	37.75	6.32	32.62	PEAK

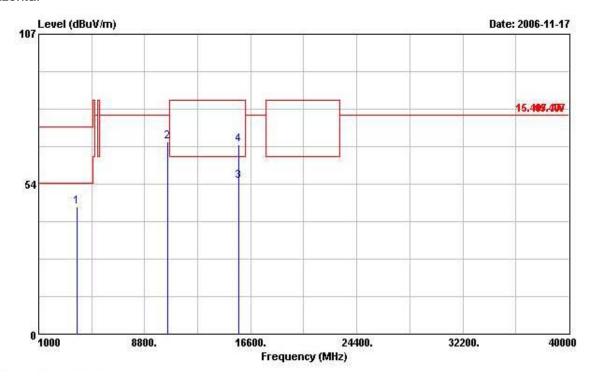


			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	$\overline{\mathtt{dBuV/m}}$	dBuV	dB/m	dB	dB	-
1	4410.000	47.29	-26.71	74.00	44.24	32.52	3.02	32.49	
2	10360.000	62.89	-15.41	78.30	52.00	38.83	4.53	32.48	PEAK
3	15542.000	48.94	-14.56	63.50	37.49	37.75	6.32	32.62	Average
4	15542.000	60.82	-22.68	83.50	49.36	37.75	6.32	32.62	PEAK

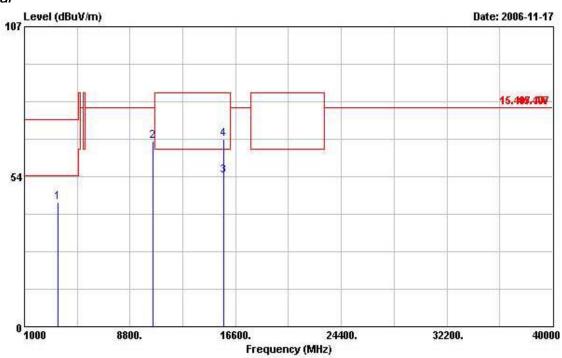


Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 2 / 802.11a Ch 40

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	4482.000	47.39	-26.61	74.00	44.32	32.50	3.04	32,48	Peak
2	10408.000	65.88	-12.42	78.30	54.99	38.80	4.52	32.43	Peak
3	15612.000	71.59	-11.91	83.50	60.23	37.63	6.36	32.63	PEAK
4	15612.000	56.54	-6.96	63.50	45.18	37.63	6.36	32.63	Average



			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3144.000	43.87	-30.13	74.00	43.86	30.33	2.38	32.71	Peak
2	10408.000	64.85	-13.45	78.30	53.96	38.80	4.52	32.43	Peak
3	15604.000	57.59	-5.91	63.50	46.23	37.66	6.34	32.63	Average
4	15604.000	70.54	-12.96	83.50	59.18	37.66	6.34	32.63	Peak



Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 2 / 802.11a Channel 48

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3804.000	45.51	-28.49	74.00	43.26	32.07	2.78	32.60	PEAK
2	10480.000	68.65	-9.65	78.30	57.78	38.72	4.52	32.36	PEAK
3	15720.000	54.54	-8.96	63.50	43.32	37.49	6.39	32.66	Average
4	15720.000	67.46	-16.04	83.50	56.24	37.49	6.39	32.66	PEAK

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2
1	3480.000	44.38	-29.62	74.00	43.32	31.16	2.60	32.69	PEAK
2	10476.000	66.20	-12.10	78.30	55.31	38.73	4.52	32.36	PEAK
3	15716.000	53.84	-9.66	63.50	42.62	37.49	6.39	32.66	Average
4	15716.000	66.98	-16.52	83.50	55.76	37.49	6.39	32.66	PEAK

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

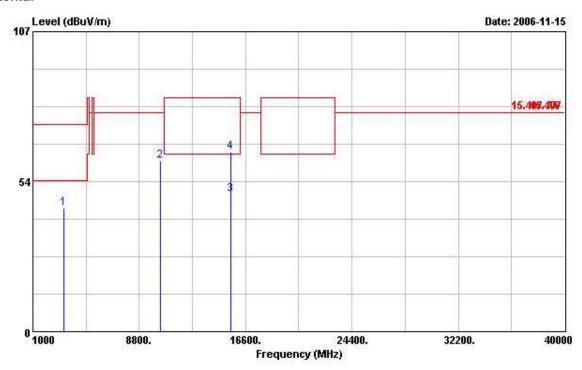
Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

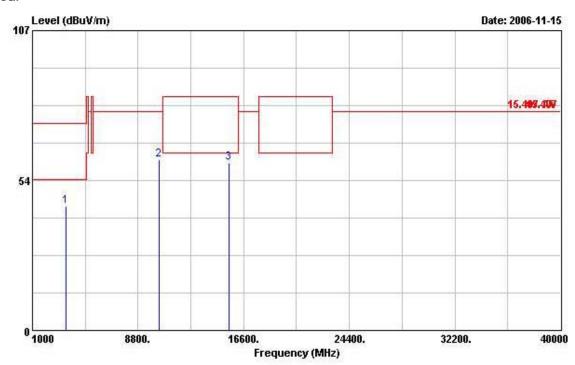
The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].


 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 71 of 104

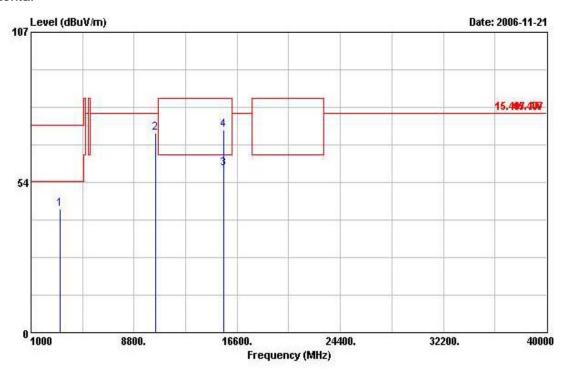
 FCC ID: QZE250
 Issued Date : Dec. 01, 2006



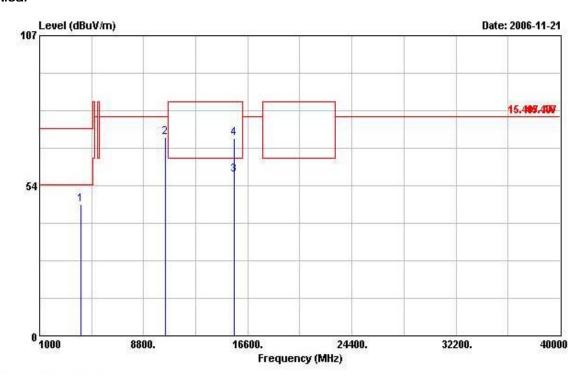
Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 3 / 802.11a Ch 36

	Freq	Level	Over Limit			Antenna Factor			Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	3258.000	44.15	-29.85	74.00	43.78	30.62	2.45	32.70	PEAK
2	10364.000	60.72	-17.58	78.30	49.84	38.83	4.53	32.48	PEAK
3	15544.000	48.97	-14.53	63.50	37.54	37.73	6.32	32.62	Average
4	15544.000	64.15	-19.35	83.50	52.72	37.73	6.32	32.62	PEAK

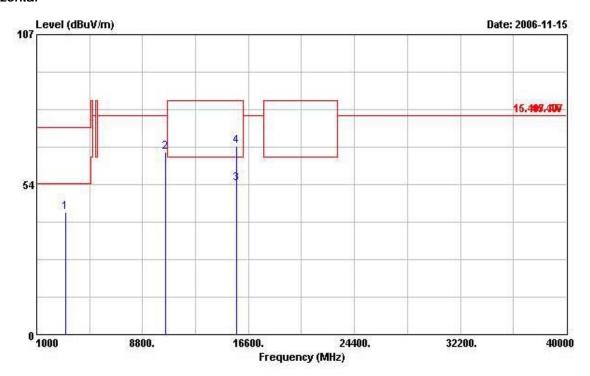
			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3456.000	44.42	-29.58	74.00	43.47	31.08	2.57	32.69	PEAK
2	10368.000	61.03	-17.27	78.30	50.14	38.83	4.53	32.48	PEAK
3	15532.000	60.00	-23.50	83.50	48.55	37.75	6.32	32.62	PEAK


 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 73 of 104

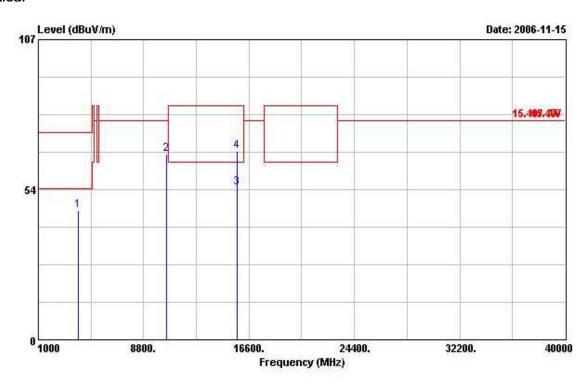
 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006


Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 3 / 802.11a Ch 40

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	$\overline{{\tt dBuV/m}}$	dBuV	dB/m	dB	dB	
1	3192.000	43.93	-30.07	74.00	43.78	30.46	2.41	32.71	PEAK
2	10408.000	71.27	-7.03	78.30	60.37	38.80	4.52	32.43	PEAK
3 @	15600.000	58.31	-5.19	63.50	46.95	37.66	6.34	32.63	Average
4	15600.000	72.29	-11.21	83.50	60.94	37.66	6.34	32.63	PEAK



			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line dBuV/m	ne Level I		Loss	Factor dB	Remark
	MHz	dBuV/m	dB				dB		
1	4092.000	46.73	-27.27	74.00	43.76	32.58	2.92	32.53	PEAK
2	10400.000	70.72	-7.58	78.30	59.82	38.80	4.52	32.43	PEAK
3	15604.000	57.26	-6.24	63.50	45.90	37.66	6.34	32.63	Average
4	15604.000	70.39	-13.11	83.50	59.03	37.66	6.34	32.63	PEAK



Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 3 / 802.11a Channel 48

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	· ·
1	3150.000	43.53	-30.47	74.00	43.52	30.33	2.38	32.71	PEAK
2	10480.000	65.10	-13.20	78.30	54.23	38.72	4.52	32.36	PEAK
3	15712.000	53.94	-9.56	63.50	42.69	37.51	6.39	32.66	Average
4	15712.000	67.34	-16.16	83.50	56.09	37.51	6.39	32.66	PEAK

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3963.000	45.96	-28.04	74.00	43.14	32.50	2.88	32,56	PEAK
2	10488.000	66.30	-12.00	78.30	55.43	38.72	4.52	32.36	PEAK
3	15728.000	54.05	-9.45	63.50	42.82	37.49	6.41	32.66	Average
4	15728.000	67.28	-16.22	83.50	56.05	37.49	6.41	32.66	PEAK

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

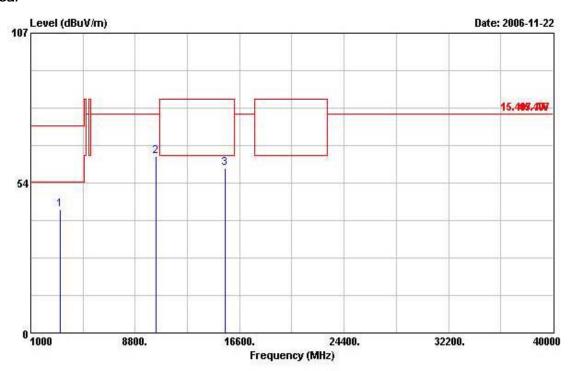
The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

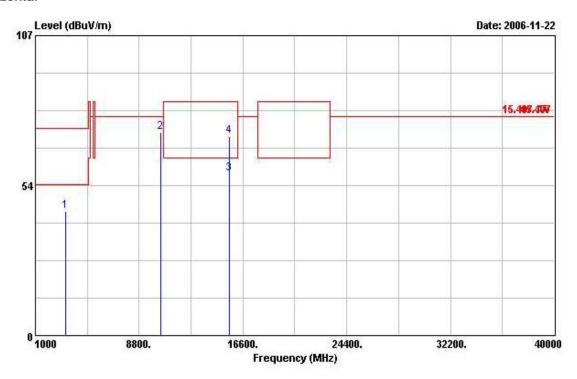
 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 77 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006

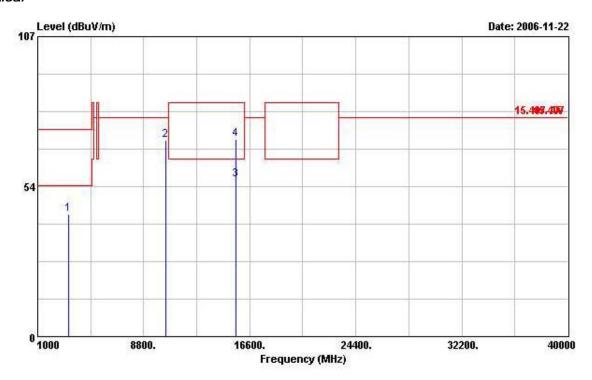


Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 4 / 802.11a Ch 36

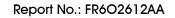
			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	8
1	3135.000	43.19	-30.81	74.00	43.18	30.33	2.38	32.71	PEAK
2	10360.000	59.87	-18.43	78.30	48.98	38.83	4.53	32.48	PEAK
3	15536.000	46.92	-16.58	63.50	35.47	37.75	6.32	32.62	Average
4	15536.000	62.90	-20.60	83.50	51.45	37.75	6.32	32.62	PEAK



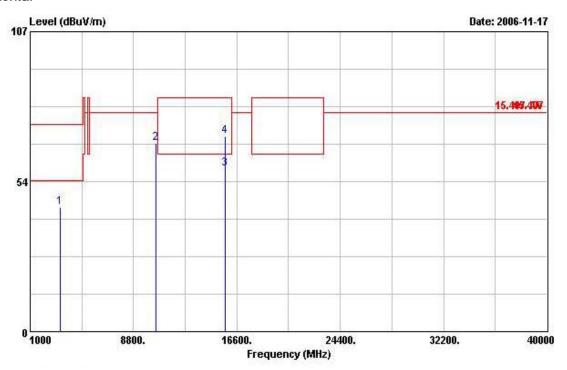
			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3177.000	43.99	-30.01	74.00	43.88	30.41	2.41	32.71	PEAK
2	10356.000	63.06	-15.24	78.30	52.16	38.85	4.53	32.48	PEAK
3	15536.000	58.92	-24.58	83.50	47.46	37.75	6.32	32.62	PEAK



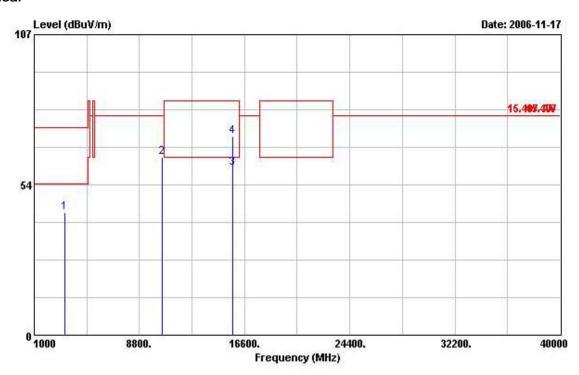
Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 4 / 802.11a Ch 40



			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	3267.000	44.37	-29.63	74.00	44.00	30.62	2.45	32.70	PEAK
2	10408.000	72.68	-5.62	78.30	61.78	38.80	4.52	32.43	PEAK
3	15608.000	57.64	-5.86	63.50	46.26	37.66	6.36	32.63	Average
4	15608.000	71.21	-12.29	83.50	59.83	37.66	6.36	32.63	PEAK



			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	*
1	3258.000	43.50	-30.50	74.00	43.13	30.62	2.45	32.70	PEAK
2	10412.000	69.89	-8.41	78.30	59.01	38.78	4.52	32.43	Peak
3	15604.000	56.11	-7.39	63.50	44.75	37.66	6.34	32.63	Average
4	15604.000	70.41	-13.09	83.50	59.05	37.66	6.34	32.63	PEAK



Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 4 / 802.11a Channel 48

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3279.000	44.45	-29.55	74.00	44.04	30.66	2.45	32.70	PEAK
2	10488.000	67.40	-10.90	78.30	56.53	38.72	4.52	32.36	PEAK
3	15712.000	58.19	-5.31	63.50	46.94	37.51	6.39	32.66	Average
4	15712.000	69.75	-13.75	83.50	58.51	37.51	6.39	32.66	PEAK

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	3249.000	43.56	-30.44	74.00	43.23	30.58	2.45	32.71	PEAK
2	10480.000	63.28	-15.02	78.30	52.41	38.72	4.52	32.36	PEAK
3	15716.000	59.64	-3.86	63.50	48.42	37.49	6.39	32.66	Average
4	15716.000	70.70	-12.80	83.50	59.48	37.49	6.39	32.66	PEAK

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

Report Format Version: RF-15.407-2006-6-16-e Page No. : 83 of 104

FCC ID: QZE250 Issued Date : Dec. 01, 2006

Report No.: FR6O2612AA

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz (78.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1 MHz /1 MHz for Peak

4.7.3. Test Procedures

- 1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 84 of 104

 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

4.7.5. Test Deviation

There is no deviation with the original standard.

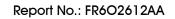
4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 1 / 802.11a Ch 36, 48

Channel 36

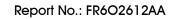

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1 0	5149.300	73.88	-9.62	83.50	36.91	33.64	3.33	0.00	Peak
2 @	5175.200	115.76				33.69	3.37	0.00	Peak
1 0	5149.300	57.98	-5.52	63.50	21.01	33.64	3.33	0.00	Average
2 @	5175.200	104.93				33.69	3.37	0.00	Average

Channel 48

		Freq	Level	Over Limit	Line		Antenna Factor		Preamp Factor	Remark
		MHz	dBuV/m	BuV/m dB dBuV/m dBuV dB/m dB	dB	dB				
1		5105.720	68.30				33.59	3.29	0.00	Peak
2	@	5242.520	114.87	36.57	78.30	77.62	33.80	3.45	0.00	Peak
3		5353.040	68.68				33.96	3.57	0.00	Peak
1	@	5105.720	54.65				33.59	3.29	0.00	Average
2	@	5242.520	104.67	26.37	78.30	67.42	33.80	3.45	0.00	Average
3	@	5353.040	55.03				33.96	3.57	0.00	Average

 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 85 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006


Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 2 / 802.11a Ch 36, 48

Channel 36

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	¥
1	5149.100	80.28	-3.22	83.50	43.31	33.64	3.33	0.00	Peak
2 0	5183.100	121.85				33.69	3.37	0.00	Peak
1	5149.100	56.85	-6.65	63.50	19.88	33.64	3.33	0.00	Average
2 #	5183.100	111.93				33.69	3.37	0.00	Average

Channel 48

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	· · · · · ·
1	5119.760	70.66				33.59	3.33	0.00	Peak
2 @	5242.520	126.59	48.29	78.30	89.34	33.80	3.45	0.00	Peak
3	5399.480	69.66				34.04	3.61	0.00	Peak
1	5119.760	59.48				33.59	3.33	0.00	Average
2 @	5242.520	115.75	37.45	78.30	78.50	33.80	3.45	0.00	Average
3	5399.480	55.84				34.04	3.61	0.00	Average

Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 3 / 802.11a Ch 36, 48

Channel 36

	Freq	Level	Over Limit			Antenna Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1 @	5149.200	81.89	-1.61	83.50	44.92	33.64	3.33	0.00	Peak
2 @	5183.200	120.75				33.69	3.37	0.00	Peak
1 @	5149.200	61.35	-2.15	63.50	24.38	33.64	3.33	0.00	Average
2 @	5183.200	110.24				33.69	3.37	0.00	Average

Channel 48

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dB dBuV/m dBuV dB/m d	dB	dB	8		
1	5119.760	69.51				33.59	3.33	0.00	Peak
2 @	5245.400	123.02	44.72	78.30	85.77	33.80	3.45	0.00	Peak
3	5392.280	69.00				34.01	3.61	0.00	Peak
1	5119.760	58.12				33.59	3.33	0.00	Average
2 @	5245.400	112.55	34.25	78.30	75.30	33.80	3.45	0.00	Average
3	5392.280	55.63				34.01	3.61	0.00	Average

Page No. : 87 of 104 FCC ID: QZE250 Issued Date : Dec. 01, 2006

Temperature	26	Humidity	55%
Test Engineer	Vic Hsiao	Configurations	Mode 4 / 802.11a Ch 36, 48

Channel 36

				0ver	Limit	Readi	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	3 - 5
1		5149.100	78.71	-4.79	83.50	41.74	33.64	3.33	0.00	Peak
2	#	5178.600	121.41				33.69	3.37	0.00	Peak
1		5149.100	56.88	-6.62	63.50	19.91	33.64	3.33	0.00	Average
2	#	5178.600	110.54				33.69	3.37	0.00	Average

Channel 48

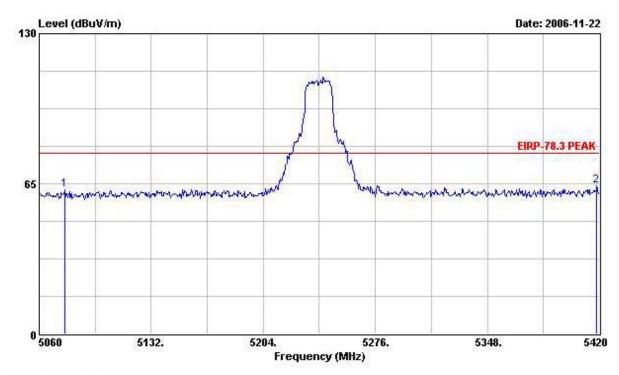
				0ver	Limit	Read	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	ŝ
1		5105.360	68.64				33.56	3.29	0.00	Peak
2	#	5233.880	115.17	36.87	78.30	77.95	33.77	3.45	0.00	Peak
3		5386.520	68.65				34.01	3.57	0.00	Peak
1		5105.360	54.64				33.56	3.29	0.00	Average
2	#	5233.880	104.84	26.54	78.30	67.62	33.77	3.45	0.00	Average
3		5386.520	55.24				34.01	3.57	0.00	Average

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

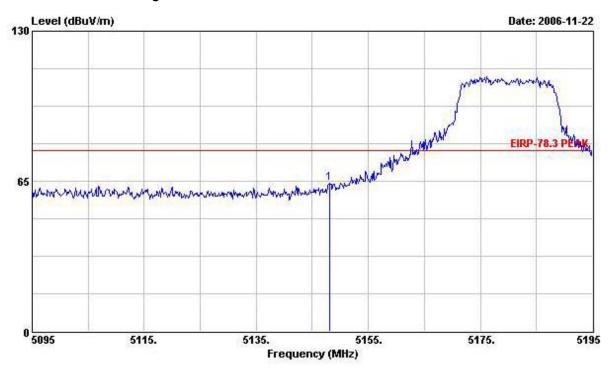
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

The limits above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.


Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

Mode 1
EIRP Emission in Band on Configuration IEEE 802.11a / 5180 MHz



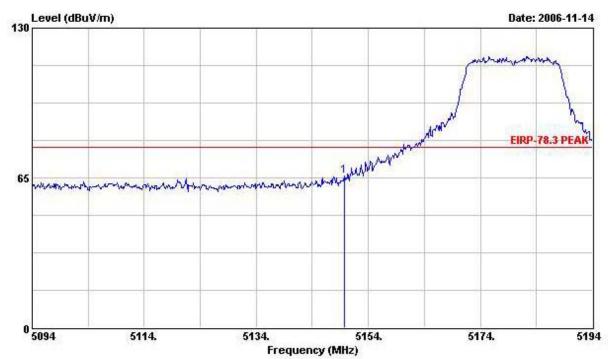
			Over L Limit		ReadAntenna		Cable	Preamp	
	Freq	Level			Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB		dBuV	dB/m	dB	dB	
1	5076.560	62.44	-15.86	78.30	25.62	33.53	3.29	0.00	Peak
2	5418.200	64.03	-14.27	78.30	26.35	34.07	3.61	0.00	Peak

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 89 of 104

 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

				0ver	Over Limit ReadAntenna Cable Preamp					
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1 @	514	18.000	64.34	-13.96	78.30	27.37	33.64	3.33	0.00	Peak

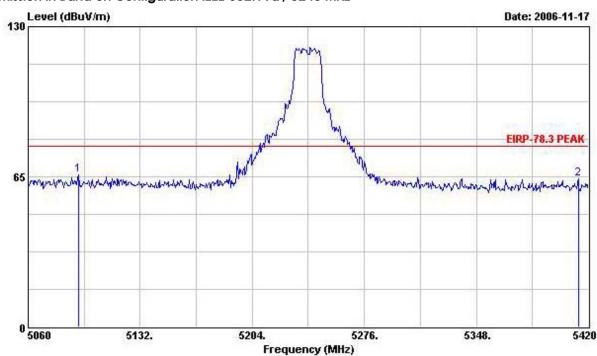
 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 90 of 104


 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

C SPORTON LAR.

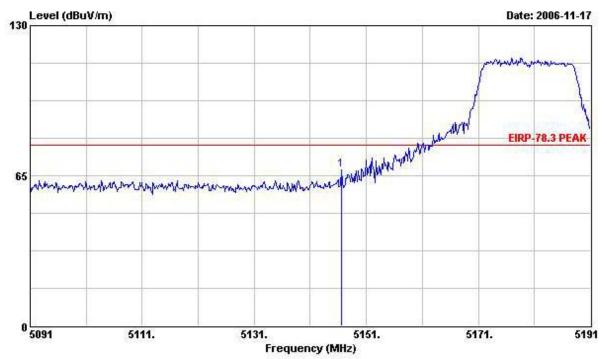
Mode 2

EIRP Emission in Band on Configuration IEEE 802.11a / 5180 MHz


			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	5149.800	66.02	-12.28	78.30	29.05	33.64	3.33	0.00	Peak

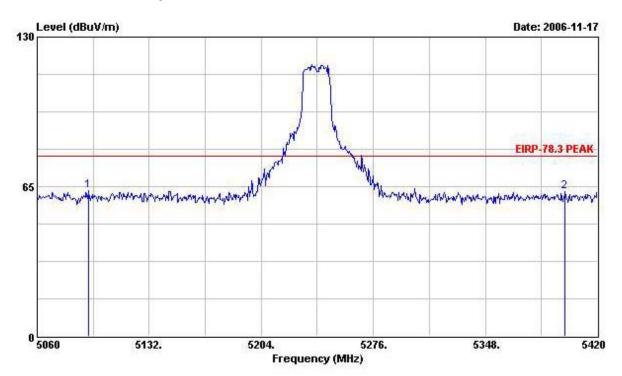
 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 91 of 104

 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

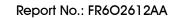

				Limit	ReadAntenna		Cable Preamp			
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		
1	5092.400	65.97	-12.33	78.30	29.12	33.56	3.29	0.00	Peak	
2	5413.520	63.97	-14.33	78.30	26.29	34.07	3.61	0.00	Peak	

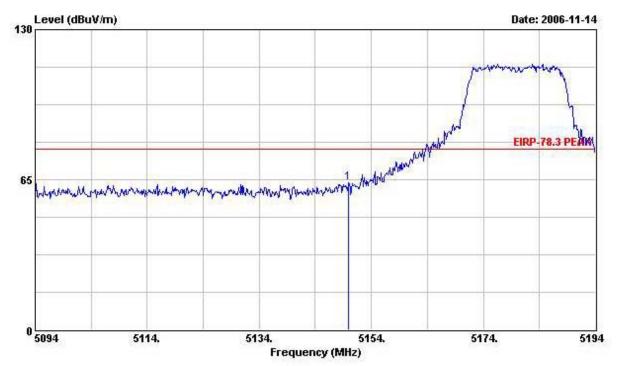
Page No. : 92 of 104
Issued Date : Dec. 01, 2006

Mode 3 EIRP Emission in Band on Configuration IEEE 802.11a / 5180 MHz



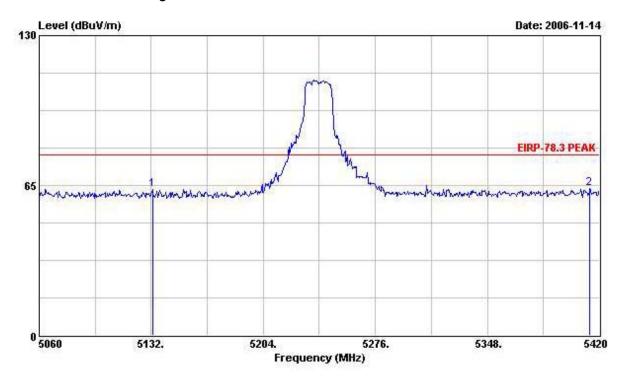
			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	3 3
1	5146.500	67.43	-10.87	78.30	30.46	33.64	3.33	0.00	Peak


: 93 of 104 Page No. FCC ID: QZE250 Issued Date : Dec. 01, 2006



	Freq	Level				Antenna Factor			Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB/m dB	dB	
1	5092.760	63.27	-15.03	78.30	26.42	33.56	3.29	0.00	Peak
2	5399.120	62.94	-15.36	78.30	25.29	34.04	3.61	0.00	Peak

Mode 4 EIRP Emission in Band on Configuration IEEE 802.11a / 5180 MHz



			Over	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	5149.900	63.67	-14.63	78.30	26.70	33.64	3.33	0.00	Peak

Report Format Version: RF-15.407-2006-6-16-e : 95 of 104 Page No. FCC ID: QZE250 Issued Date : Dec. 01, 2006

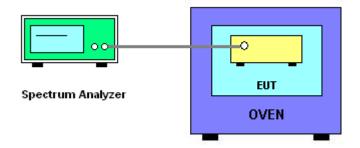
			0ver	Limit	Read	ReadAntenna		Preamp		
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	
	MHz	dBuV/m	dB	$\overline{\mathtt{dBuV/m}}$	dBuV	dB/m	dB	dB	-	
1	5132.720	63.19	-15.11	78.30	26.25	33.61	3.33	0.00	Peak	
2	5413.880	63.51	-14.79	78.30	25.83	34.07	3.61	0.00	Peak	

4.8. Frequency Stability Measurement

4.8.1. Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emissions is maintained within the band of operation under all conditions of normal operation as specified in the user's manual or ±20ppm (IEEE 802.11a specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	10 kHz
VB	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11a specification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -30°C~50°C.

4.8.4. Test Setup Layout

 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 97 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Mode 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200
126.50	5199.9952
110.00	5199.9948
93.50	5199.9956
Max. Deviation (MHz)	0.0052
Max. Deviation (ppm)	1.0000

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
()	5200
-30	5199.9896
-20	5199.9892
-10	5199.9964
0	5199.9984
10	5199.9980
20	5199.9948
30	5199.9912
40	5199.9907
50	5199.9862
Max. Deviation (MHz)	0.0138
Max. Deviation (ppm)	2.6538

 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 98 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006

Mode 2

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200
126.50	5199.9952
110.00	5199.9948
93.50	5199.9956
Max. Deviation (MHz)	0.0052
Max. Deviation (ppm)	1.0000

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)			
()	5200			
-30	5199.9896			
-20	5199.9892			
-10	5199.9964			
0	5199.9984			
10	5199.9980			
20	5199.9948			
30	5199.9912			
40	5199.9907			
50	5199.9862			
Max. Deviation (MHz)	0.0138			
Max. Deviation (ppm)	2.6538			

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 99 of 104

 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

Mode 3 & Mode 4

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200
126.50	5199.9952
110.00	5199.9948
93.50	5199.9956
Max. Deviation (MHz)	0.0052
Max. Deviation (ppm)	1.0000

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)			
()	5200			
-30	5199.9896			
-20	5199.9892			
-10	5199.9964			
0	5199.9984			
10	5199.9980			
20	5199.9948			
30	5199.9912			
40	5199.9907			
50	5199.9862			
Max. Deviation (MHz)	0.0138			
Max. Deviation (ppm)	2.6538			

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 100 of 104

 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: RF-15.407-2006-6-16-e Page No. : 101 of 104 FCC ID: QZE250 Issued Date : Dec. 01, 2006

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer Model No. Serial No. Characteristics				Calibration Remark		
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Feb. 22, 2006	Conduction (CO04-HY)	
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Dec. 19, 2005	Conduction (CO04-HY)	
LISN (Support Unit)	EMCO	3810/2NM	9708-1839	9kHz – 30MHz	Mar. 18, 2006	Conduction (CO04-HY)	
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2006	Conduction (CO04-HY)	
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)	
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 15, 2006	Radiation (03CH03-HY)	
Amplifier	SCHAFFNER	CPA9231A	18667	9 kHz - 2 GHz	Jan. 18, 2006	Radiation (03CH03-HY)	
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 29, 2006	Radiation (03CH03-HY)	
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHZ - 40 GHz	Sep. 21, 2006	Radiation (03CH03-HY)	
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz – 1 GHz	Jul. 24, 2006	Radiation (03CH03-HY)	
Horn Antenna	EMCO	3115	6903	1GHz ~ 18GHz	Mar. 15, 2006	Radiation (03CH03-HY)	
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	NCR	Radiation (03CH03-HY)	
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec.02, 2005	Radiation (03CH03-HY)	
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec.02, 2005	Radiation (03CH03-HY)	
Turn Table	HD	DS 420	420/650/00	0 – 360 degree	N/A	Radiation (03CH03-HY)	
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)	
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Nov. 25, 2006	Conducted (TH01-HY)	
Power Meter	R&S	NRVS	100764	DC ~ 40GHz	Jul, 20, 2006	Conducted (TH01-HY)	
Power Sensor	R&S	NRV-Z51	100666	DC ~ 40GHz	Jul. 20, 2006	Conducted (TH01-HY)	
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun, 10, 2006	Conducted (TH01-HY)	
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Dec. 28, 2005	Conducted (TH01-HY)	
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 02, 2006	Conducted (TH01-HY)	
RF CABLE-1 m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 30, 2005	Conducted (TH01-HY)	
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 30, 2005	Conducted (TH01-HY)	
Oscilloscope	Tektronix	TD\$1012	CO38515	100MHz / 1GS/s	Jun. 20, 2006	Conducted (TH01-HY)	
Signal Generator	R&S SMR40 100116 10MHz ~ 40GH		10MHz ~ 40GHz	Dec. 30, 2005	Conducted (TH01-HY)		
Data Generator	Tektronix DG2030 063-2920-50 0.1 Hz~400MHz Jun. 1				Jun. 16, 2006	Conducted (TH01-HY)	
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	9kHz ~ 30GHz Nov. 25, 2006		

Note: Calibration Interval of instruments listed above is one year. NCR: Non-Calibration required.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 24, 2006*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2006*	Radiation (03CH03-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005*	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 102 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006

6. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 728, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

 Report Format Version: RF-15.407-2006-6-16-e
 Page No.
 : 103 of 104

 FCC ID: QZE250
 Issued Date
 : Dec. 01, 2006

7. NVLAP CERTIFICATE OF ACCREDITATION

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200079-0

Sporton International, Inc. Hwa Ya EMC Laboratory

Tao Yuan Hsien 333 TAIWAN

is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999.

Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-01-01 through 2006-12-31

Effective dates

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2005-05-19)

 Report Format Version: RF-15.407-2006-6-16-e
 Page No. : 104 of 104

 FCC ID: QZE250
 Issued Date : Dec. 01, 2006