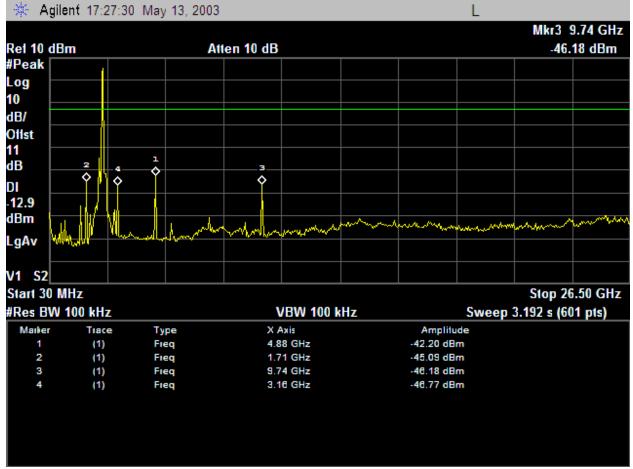

(low channel conducted spurious)

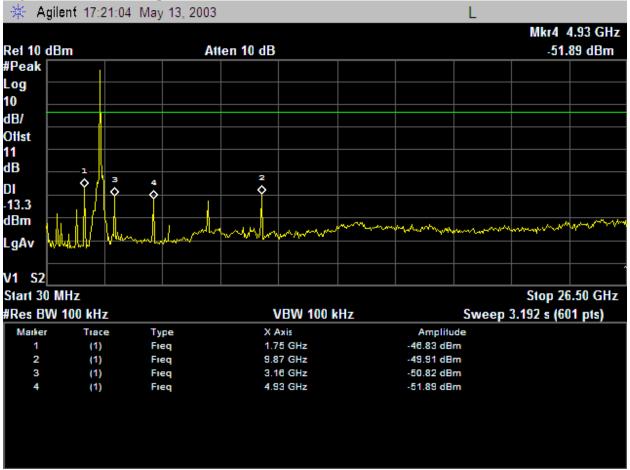

Page 36 of 78

(middle channel reference)

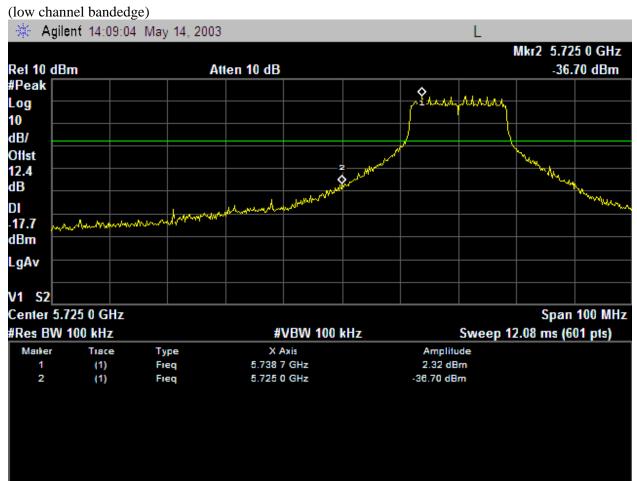
** A	Agilent 17:2	25:13 May	13, 2003					L		
								М	kr1 2.436	
Ref 10			Att	en 10 dB					7.	13 dBm
#Peak Log					MM	MAMA.				
10				M		1	M			
dB/				XV	'		V W.			
Offst				1			- M			
11 dB				/						
DI -12.9		, d	Virne 1					1 por	۱.	
dBm	utint	M M	- W					V	$\mathcal{M}_{\mathcal{M}}$	
LgAv	when	<i>,</i>							<u> </u>	My Whent
V1 S2	2									
S3 FC AA										
¤(1):	`									
FTun										
Swp										
Center	2.437 00 (GHz							Spar	n 50 MHz
#Res E	3W 100 kHz	Z		١	/BW 100 k	Hz	Sweep 6.04 ms (601 pts)			

Page 37 of 78

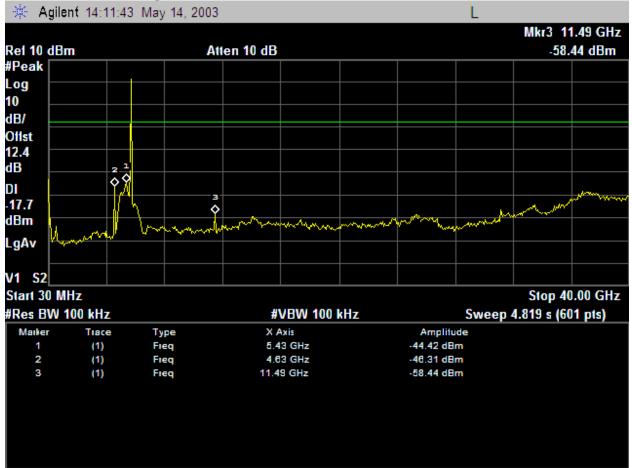
(middle channel conducted spurious)


Page 38 of 78

(high channel bandedge)


Page 39 of 78

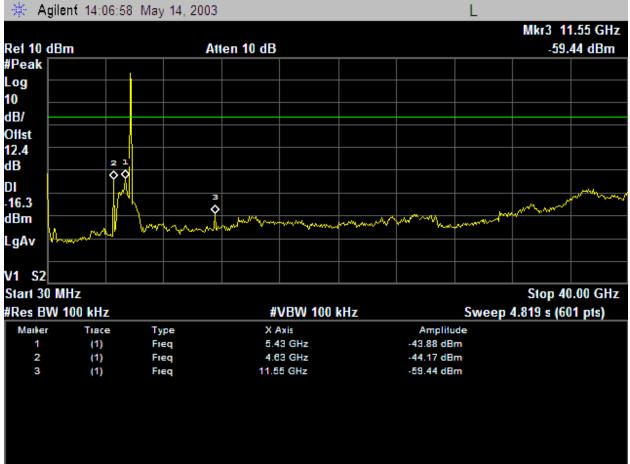
(high channel conducted spurious)


Page 40 of 78

CONDUCTED SPURIOUS EMISSIONS (5.8 GHZ a MODE)

Page 41 of 78

(low channel conducted spurious)


Page 42 of 78

(middle channel reference)

🔆 Agilent 14	:05:27 May	14, 2003				L			
							Μ	kr1 5.792	50 GHz
Ref 10 dBm		Att	en 10 dB					3.	69 dBm
#Peak									
Log				h.h.a.a.a	MANAN	>			
10			ľ	WINCH PARK	1	1			
dB/			(
Offst									
12.4									
dB			1 A Call			When .			
DI		ж.	איין			"MANNA			
-16.3	++	with					Max.		
dBm		Just Provide State					WAY		
LgAv		п [.]						What is	
mound	how we have a second							AND	www.dult.tom.co
S3 FC									
AA									
¤(1):									
FTun									
Swp									
Center 5.785 00	GHz							Spa	n 75 MHz
#Res BW 100 k	Hz		#	VBW 100 I	kHz		Sweep 9	9.08 ms (6	

Page 43 of 78

(middle channel conducted spurious)

Page 44 of 78

瘚 Agilent 14:01:13 May 14, 2003 L Mkr2 5.850 2 GHz -50.37 dBm Ref 10 dBm Atten 10 dB #Peak ¢ Log 10 dB/ Offst 12.4 dB DI march. φ -16.7 mon under mon rich propher mount dBm LgAv V1 S2 Center 5.850 0 GHz Span 150 MHz #Res BW 100 kHz #VBW 100 kHz Sweep 18.12 ms (601 pts) Mailer Tiace Amplitude Туре X Axis 5.798 8 GHz 3.27 dBm (1) Fieq 5.850 2 GHz -50.37 dBm 2 (1) Fieq

(high channel bandedge)

Page 45 of 78

Agilent 14:03:31 May 14, 2003 瘚 Display Mkr2 5.43 GHz Ret 10 dBm Atten 10 dB -43.63 dBm Full Screen #Peak Log Display Line 10 -16.73 dBm dB/ <u>On</u> <u>Cif</u> Offst 12.4 1 2 $\diamond \diamond$ dB DI -16.7 YW. dBm Limits+ LgAv Start 30 MHz Stop 40.00 GHz Active Fctn #Res BW 100 kHz Position • #VBW 100 kHz Sweep 4.819 s (601 pts) Mailer Tiace Туре X Axis Amplitude Bottom (1) Fieq 4.63 GHz -42.89 dBm 1 5.43 GHz -43.63 dBm 2 (1) Freq Title ► Preferences. Copyright 2000-2002 Agilent Technologies

(high channel conducted spurious)

Page 46 of 78

7.6. RADIATED EMISSIONS

LIMITS

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

\$15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels within the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels within the 5.8 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:

Page 48 of 78

ADJACENT RESTRICTED BAND (b MODE, LOW CHANNEL, HORIZONTAL)

🔆 Aç	gilent 14	L	Display								
	8.2 dBµ\	/	#Atten	0 dB				Mkr1	2.387 73 55.39		Full Screen
#Peak Log 10											Display Line 74.00 dBµV
dB/ Offst 23.2											<u>On Cif</u>
dB DI 74.0											
dBµV LgAv							. na . hi ata	Aland	holmon	n the second second	Limits►
V1 S2 S3 FC	;	^{₩₩} ₩~~~~~₩~~~	the state of the s	et was all and the	daran na da	www.wh	Na e constante e	a Mara			Active Fctn Position • Top
AA ¤(1): FTun Swp											Title •
Start 2	.310 00 0			#1	BW 1.	117			2.390 00		Preferences +
#Res BW 1 MHz #VBW 1 MHz Sweep 1 ms (601 pts) Copyright 2000-2002 Agilent Technologies											

Page 49 of 78

REPORT NO: 03U1984-1 EUT: DUAL MODE 2.4GHz / 5GHz MODULE FOR ACCESS POINT

DATE: JUNE 11, 2003 FCC ID: QZE100

🔆 Agi	ilent 14	:00:57	May 13,	2003					F	τ X	Display
Rel 108 #Peak	.2 dBµ\	/	#Atten	0 dB				Mkr1	2.389 73 47.94		Full Screen
Log 10 dB/ Offst											Display Line 54.00 dBµV <u>On <u>C</u>:f</u>
23.2 dB DI											
54.0 dBµV LgAv										i	Limits
V1 S2 S3 FC AA				<u> </u>				~		New York	Active Fctn Position • Top
¤(1): FTun Swp											Title •
Start 2. #Res B\	W 1 MH	Z			/BW 10	Hz	Swee		 2.390 00 8 s (601		Preferences •
Соругід	ht 2000-	2002 A	gilent Te	chnologi	es						

Page 50 of 78

ADJACENT RESTRICTED BAND (b MODE, LOW CHANNEL, VERTICAL)

🔆 Ag	ilent 13	L	Display									
	Mkr1 2.389 73 GHz Rel 108.2 dBμV #Atten 0 dB 54.48 dBμV Peak Display Line											
Log 10 dB/	Dish	olay L 10 dB									Display Line 74.00 dBµV <u>On Q:f</u>	
Offst 23.2 dB DI												
74.0 dBµV LgAv								λ		1 	Limits	
V1 S2 S3 FC AA		endersen son son son son son son son son son so	4°449448 4 - 4 244	n Avigod w	yww.web.ew	adaqtdar,ddar,qdardd	e or the second s	an harbola	w./##~~ & ~		Active Fctn Position • _{Top}	
¤(1): FTun Swp											Title •	
	Start 2.310 00 GHzStop 2.390 00 GHz#Res BW 1 MHzVBW 1 MHzSweep 1 ms (601 pts)										Preferences •	
Соругід	ht 2000-	2002 Ag	gilent Te	chnologi	es							

Page 51 of 78

REPORT NO: 03U1984-1 EUT: DUAL MODE 2.4GHz / 5GHz MODULE FOR ACCESS POINT

DATE: JUNE 11, 2003 FCC ID: QZE100

🔆 Ag	ilent 13:55	45 May 13,	2003					L	Display
Ref 108 #Peak	8.2 dBµV	#Atten	0 dB			Mkr1	2.389 60 47.23		Full Screen
Log 10 dB/ Offst 23.2 dB									Display Line 54.00 dBµV <u>On <u>C</u>:f</u>
DI 54.0 dBµV LgAv									Limits•
V1 S2 S3 FC AA ¤(1):			~			~		- and a second	Active Fctn Position • Top
	.310 00 GH W 1 MHz	Z	#VBV	V 10 Hz	Swe		2.390 00 8 s (601		Title • Preferences •
		2 Agilent Te						,	

Page 52 of 78

楽… Agilent 14:11:55 May 13, 2003 Peak Search L Mkr1 2.490 46 GHz Ref 108.2 dBµV #Atten 0 dB 60.26 dBµV Next Peak #Peak Log 10 Next Pk Right dB/ Offst 23.2 dB Next Pk Left DI 74.0 י ¢ dBµV Min Search LgAv V1 S2 Pk-Pk Search S3 FC AA ¤(1): FTun Mkr © CF Swp More Start 2.483 50 GHz Stop 2.500 00 GHz 1 c1 2 #Res BW 1 MHz Sweep 1 ms (601 pts) #VBW 1 MHz Copyright 2000-2002 Agilent Technologies

ADJACENT RESTRICTED BAND (b MODE, HIGH CHANNEL, HORIZONTAL)

Page 53 of 78

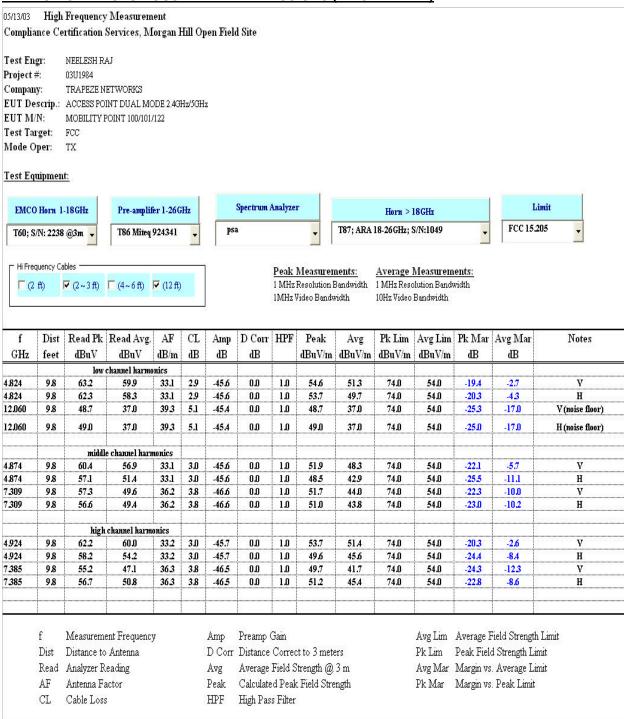
🔆 Ag	ilent 14:10:4	9 May 13,	2003						L	Peak Search
Ret 108 #Peak	8.2 dBµV	#Atten	0 dB				Mkr1	2.487 5 52.60	2 GHz dBµV	Next Peak
Log 10 dB/ Offst										Next Pk Right
23.2 dB DI										Next Pk Lett
54.0 dBμV LgAv										Min Search
V1 S2 S3 FC AA									**************************************	Pk-Pk Search
¤(1): FTun Swp										Mkr © CF
	itart 2.483 50 GHz Stop 2.500 00 GHz Res BW 1 MHz #VBW 10 Hz Sweep 1.287 s (601 pts)									
Copyrig	ht 2000-2002	Agilent Te	chnologie	S						

Page 54 of 78

迷 A	gilent 14	:16:43 I	May 13,	2003						L	Peak Search
#Peak	8.2 dBµ∖	/	#Atten	0 dB				Mkr1	2.490 18 59.82		Next Peak
Log 10 dB/ Offst											Next Pk Right
23.2 dB DI											Next Pk Lett
74.0 dBµ∨ LgAv	hunder	and the section of the		and the stand of the stand	1 0 0 0 0 0 0 0 0 0	and a stranger	mart land was	Logilon	a _{ran} yadi ⁿ ist ^a sina	1997 Darlywynau	Min Search
V1 S2 S3 F0	;										Pk-Pk Search
¤(1): FTun Swp											Mkr © CF
	2.483 50 BW 1 MH			#V	BW 1 N	IHz	Sı		2.500 00 ms (601		More 1 ct 2
Соругі	ght 2000	2002 Ag	gilent Te	chnologi	es						

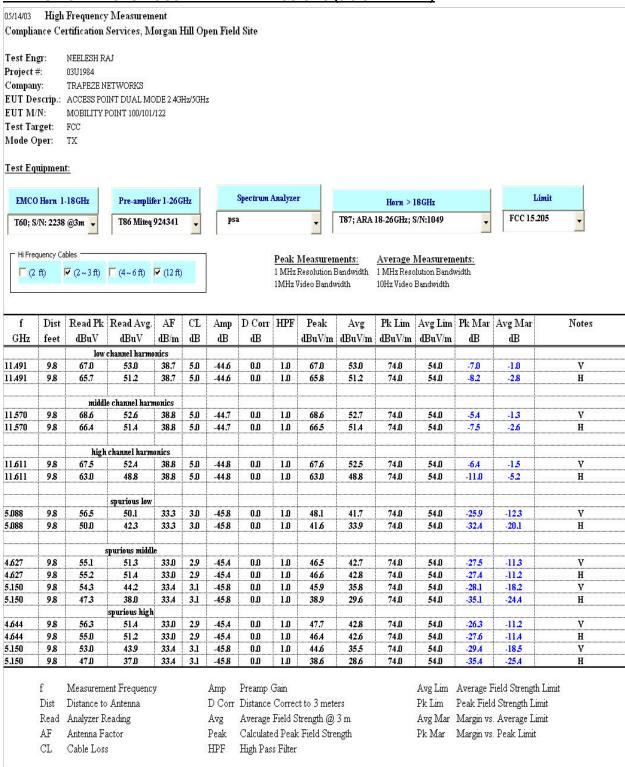
ADJACENT RESTRICTED BAND (b MODE, HIGH CHANNEL, VERTICAL)

Page 55 of 78


REPORT NO: 03U1984-1 EUT: DUAL MODE 2.4GHz / 5GHz MODULE FOR ACCESS POINT

DATE: JUNE 11, 2003 FCC ID: QZE100

🔆 Ag	ilent 14:15:4	7 May 13, 2	2003					L	Display
	.2 dBµV	#Atten) dB			Mkr1	2.487 74 51.93		Full Screen
#Peak Log 10 dB/ Offst 23.2 dB									Display Line 54.00 dBµV <u>On <u>C</u>:f</u>
DI 54.0 dBμV LgAv		1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						Limits•
V1 S2 S3 FC AA ¤(1):									Active Fctn Position • Top
FTun Swp									Title ►
	483 50 GHz W 1 MHz) GHz ^ pts)	Preferences •						
Соругід	ht 2000-2002	Agilent Tec	hnologie	s					


Page 56 of 78

HARMONIC AND SPURIOUS RADIATED EMISSIONS (2.4 GHZ BAND)

Page 57 of 78

HARMONIC AND SPURIOUS RADIATED EMISSIONS (5.8 GHZ BAND)

Page 58 of 78

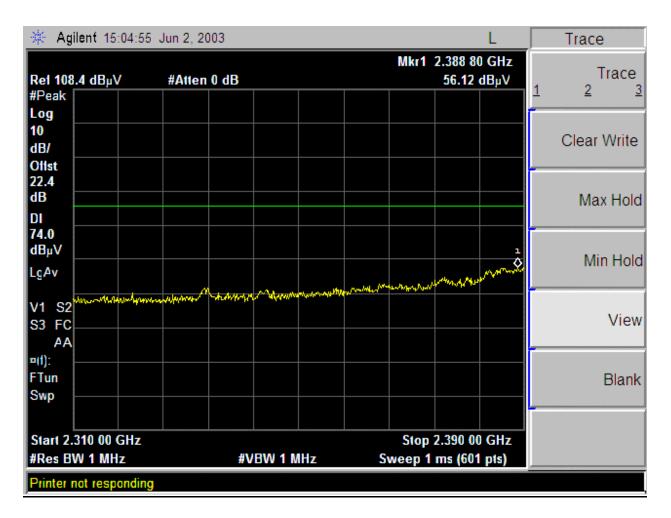
CO-LOCATION

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.


The dominant transmitter (2.4 GHz band) is set to the channel with the highest peak output power. The non-dominant transmitter (5.2 GHz and 5.8 GHz) is set to the channel with the highest peak output power in each non-dominant band.

The spurious performance of the dominant transmitter is investigated and measured.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 59 of 78

<u>CO-LOCATION ADJACENT RESTRICTED BAND (LOW CHANNEL, HORIZONTAL)</u> (HIGHEST POWER CHANNEL OF DOMINANT TRANSMITTER)

Note: frequency of non-dominant transmitter has no effect on bandedge emissions of dominant transmitter.

Page 60 of 78

🔆 Ag	jilent 15	:07:00	Jun 2, 2	003						L	Peak Search
#Peak	8.4 dBµ\	/	#Atter	0 dB				Mkr1	2.389 47 49.33		Next Peak
Log 10 dB/ Offst											Next Pk Right
22.4 dB DI											Next Pk Lett
54.0 dBμV LgAv										i	Min Search
V1 S2 S3 FC AA	;			ļ	<u>~</u>		Jours	~~~~~	M-nd	NW MAN	Pk-Pk Search
¤(1): FTun Swp											Mkr © CF
	.310 00 W 1 MH			#\	/BW 10	Hz	Swee		2.390 00 8 s (601		More 1 ct 2
Printer	not resp	onding									

Note: frequency of non-dominant transmitter has no effect on bandedge emissions of dominant transmitter.

Page 61 of 78

<u>CO-LOCATION ADJACENT RESTRICTED BAND (LOW CHANNEL, VERTICAL)</u> (HIGHEST POWER CHANNEL OF DOMINANT TRANSMITTER)

🔆 Agilent 14:48:32 .	Jun 2, 2003			L	Peak Search
Ret 108.4 dBµV #Peak	#Atten 0 dB		Mkr1	2.383 07 GHz 55.21 dBµ∨	Next Peak
Log 10 dB/ Ofist					Next Pk Right
22.4 dB DI					Next Pk Lett
74.0 dBµV LgAv			an in the det of the	1-	Min Search
LgAv V1 S2 ^{walrvwwl1/ulrvwll} S3 FC AA	n han prophysical and	ahandanti Autol almuduti at	A A A A A A A A A A A A A A A A A A A		Pk-Pk Search
¤(1): FTun Swp					Mkr © CF
Start 2.310 00 GHz #Res BW 1 MHz	#V	BW 1 MHz		2.390 00 GHz ms (601 pts)	More 1 ct 2
Copyright 2000-2002 Ag	gilent Technologi	es			

Note: frequency of non-dominant transmitter has no effect on bandedge emissions of dominant transmitter.

Page 62 of 78

REPORT NO: 03U1984-1	
EUT: DUAL MODE 2.4GHz / 5GHz MODULE FOR ACCESS PC	DINT

🔆 Agiler	nt 14:46:48	Jun 2, 2003				F	۲L ا	Peak Search
Ret 108.4 #Peak	dBµV	#Atten 0 d	B		Mkr1	2.385 87 48.90		Next Peak
Log 10 dB/ Offst								Next Pk Right
22.4 dB DI								Next Pk Lett
54.0 dBµV LgAv								Min Search
V1 S2 S3 FC AA					~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ^{pr} r	why	Pk-Pk Search
¤(1): — FTun Swp —								Mkr © CF
Start 2.310 #Res BW			#VBW 10 F	lz Swe	Stop ep 6.23	2.390 00 8 s (601		More 1 ct 2
Copyright 2	2000-2002 A	gilent Techn	ologies					

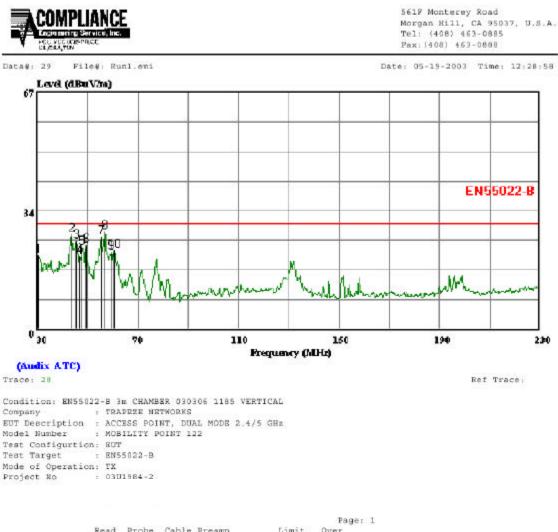
Note: frequency of non-dominant transmitter has no effect on bandedge emissions of dominant transmitter.

Page 63 of 78

HARMONIC AND SPURIOUS RADIATED EMISSIONS (CO LOCATION)

06/02/03 C ompli :	-	- 19 5 9 - 5	7 Measurem Services, M		fill Oj	pen Fiel	d Site			•					
Project Compar EUT De EUT M Test Ta	#: 03U) 1y: TRA escrip.: /N: MC rget: F	PEZE NET ACCESS P BILITY P(CC	WORKS OINT, DUA DINT 100/1(ION w/ ch 52	01/102				IHz)							
<u>Test Eq</u>	uipmen	<u>t:</u>													
EMC) Horn 1	-18GHz	Pre-amplif	èr 1-26G	Hz		Spectrum .	Analyze	r		Horn > :	18GHz		Liı	nit
T59; S	5/N: 3245	5 @3m 🗸	T34 HP 84	49B	•	PSA	L.		•				•	FCC 15.20)5 -
	quency Ca		✓ (4~6 ft)	🔽 (12 ft)				1 MHz	<u>Measurer</u> Resolution l Video Bandv	Bandwidth		<u>Measurem</u> Jution Bandu Bandwidth			
f	Dist	Read Pk	Read Avg.	1 1	CL	Amp	D Coit	HPF	Peak	Avg				Avg Mar	Notes
GHz	feet	dBuV	dBuV	dB/m	dB	dB	dB		dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	
4.824	1RAN 9.8	SMIT ON 241 54.5	51 <i>3</i>	33.1	0.9	-34.6	0.0	1.0	54.9	51.7	74.0	54.0	-19.1	-23	v
4.824	9.8	52.9	50.1	33.1	0.9	-34.6	0.0	1.0	53.3	50.5	74.0	54.0	-20.7	-35	H
				_											
1RAP 4.824	9.8	N 2412MHZ. 53.6	AND 5260MH 51.2	Z 33.1	0.9	-34.6	0.0	1.0	54.0	51.6	74.0	54.0	-20.0	-2.4	H
4.824	9.8	53.3	50.6	33.1	0.9	-34.6	0.0 Q.0	1.0	53.7	51.0	74.0	54.0 54.0	-20.0	-2.4	v n
		•									•				
******		· · · · · · · · · · · · · · · · · · ·	AND 5785MH				0.0	10			7 40	640	00.5		77
4.824 4.824	9.8 9.8	53.1 53.0	50 <i>.5</i> 49.1	33.1 33.1	0.9 0.9	-34.6 -34.6	0.0 0.0	1.0 1.0	53.5 53.4	50.9 49.5	74.0 74.0	54.0 54.0	-20.5 -20.6	-3.1 -4.5	H V
	7.0		7711		00	-070		1.0	va	-72		V 1 N	U Um-		•
	f Dist Read AF CL	Measureme Distance to Analyzer R Antenna Fa Cable Loss	eading actor	у		Amp D Corr Avg Peak HPF	Average	Corre Field S ed Peal	ct to 3 met Strength @ k Field Stre	3 m		Pk Lim Avg Mar	Peak Fiel Margin vs	Field Strength : d Strength Lim : Average Lim : Peak Limit	it

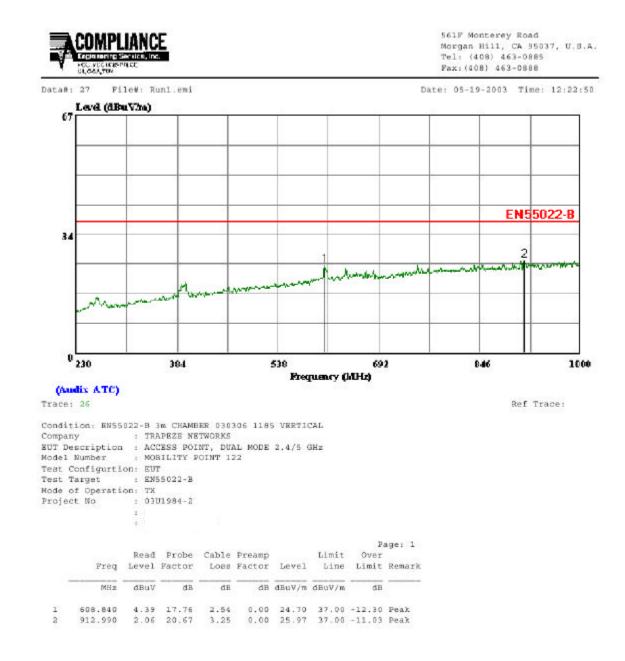
Page 64 of 78


SPURIOUS RADIATED EMISSIONS BELOW 1 GHZ (WORST-CASE CONFIGURATION)

No spurious emissions detected above the noise floor below 1GHz.

Page 65 of 78

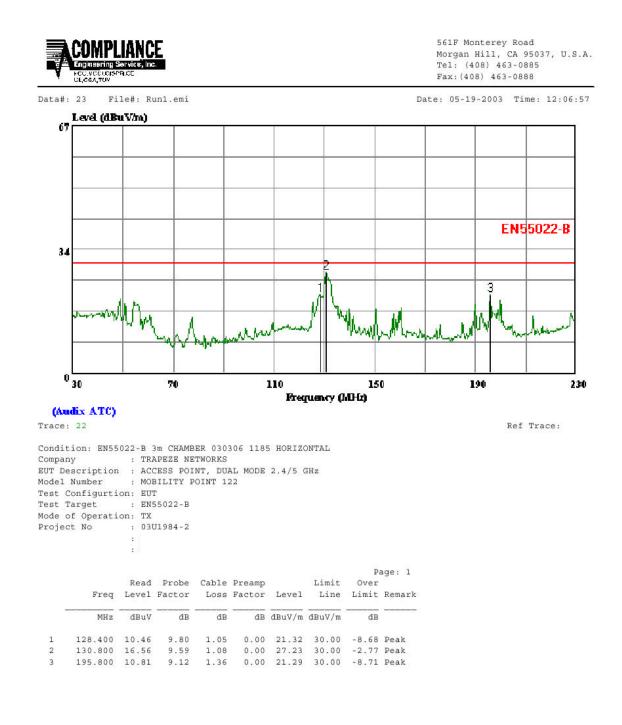
DIGITAL DEVICE RADIATED EMISSIONS


(vertical)

	Read	Probe	Cable	Preamp		Limit		
Freq					Level	Line		Remark
MHz	dBuV	dB	dB	dB	dBuV/m	dBuV/m	đB	
30,400	3,37	16.99	0.55	0.00	20.91	30.00	-9.09	Peak
43.800	10.01	16.02	0.64	0.00	26.67	30.00	-3.33	Peak
45.400	8.40	15.80	0.65	0.00	24.86	30.00	-5.14	Peak
46.800	4.54	15.45	0.66	0.00	20.65	30.00	-9.35	Peak
47.800	7.38	15.22	0.66	0.00	23.26	30.00	-6.74	Peak
49.400	8.15	14.87	0.67	0.00	23.69	30.00	-6.31	Peak
55,400	12.64	12.75	0.71	0.00	26.10	30.00	-3.90	Peak
56.800	14.55	12.27	0.74	0.00	27.55	30.00	-2.45	Peak
59.400	9.52	11.38	0.74	0.00	21.64	30.00	-8.36	Peak
60.800	10.77	10,91	0.72	0.00	22.40	30.00	-7.60	Peak
	MH2 30.400 43.800 45.400 46.800 47.800 49.400 55.400 55.400 59.400	Preq Level MHz dBuV 30,400 3,37 43,800 10.01 45,400 8,40 46,800 4,54 47,800 7,38 9,400 8,15 55,400 12,64 56,800 14,55 59,400 9,52	MHz dBuV dB 30,400 3,37 16.99 43,800 10.01 16.02 45,400 8.40 15.80 46,800 4.54 15.45 47,800 7.38 15.22 49,400 8.15 14.87 55,400 12.64 12.75 56,800 14.55 12.27 59,400 9.52 11.38	Preq Level Factor Loss MHz dBuV dB dB 30,400 3.37 16.99 0.55 43,800 10.01 16.02 0.64 45,400 8.40 15.80 0.65 46,800 4.54 15.45 0.66 47,800 7.38 15.22 0.66 49,400 8.15 14.87 0.67 55,400 12.64 12.75 0.74 59,400 9.52 11.38 0.74	Preq Level Factor Loss Factor MHz dBuV dB dB dB dB 30,400 3.37 16.99 0.55 0.00 43,800 10.01 16.02 0.64 0.00 45,400 8.40 15.80 0.65 0.00 46,800 4.54 15.45 0.66 0.00 47,600 7.38 15.22 0.66 0.00 49,400 8.15 14.87 0.67 0.00 55,400 12.64 12.75 0.71 0.00 59,400 9.52 11.38 0.74 0.00	Preq Level Factor Loss Factor Level MHz dBoV GB dB dB dB dB dB dBuV/m 30,400 3.37 16.99 0.55 0.00 20.91 43,800 10.01 16.02 0.64 0.00 26.67 45,400 8.40 15.80 0.65 0.00 24.86 46,800 4.54 15.45 0.66 0.00 23.26 47,800 7.38 15.22 0.66 0.00 23.69 55,400 8.15 14.87 0.67 0.00 23.69 55,400 12.64 12.75 0.71 0.00 23.69 55,400 12.64 12.75 0.71 0.00 23.69 55,400 12.64 12.75 0.74 0.00 27.55 59.400 9.52 11.38 0.74 0.00 21.64	Preq Level Factor Loss Factor Level Line MHz dBuV 6B dB dB dB dB dBuV/m dBuV/m 30,400 3.37 16.99 0.55 0.00 20.91 30.00 43,800 10.01 16.02 0.64 0.00 26.67 30.00 45,400 8.40 15.80 0.65 0.00 24.86 30.00 46,800 4.54 15.45 0.66 0.00 23.26 30.00 47,800 7.38 15.22 0.66 0.00 23.26 30.00 49.400 8.15 14.87 0.67 0.00 23.69 30.00 55.400 12.64 12.75 0.71 0.00 26.10 30.00 56.800 14.55 12.27 0.74 0.00 27.55 30.00 59.400 9.52 11.38 0.74 0.00 21.64 30.00	Read Probe Cable Preamp Limit Over Preq Level Factor Loss Factor Level Limit Limit MHz dBuV GB dB dB dB dB dBuV/m dB 30,400 3.37 16.99 0.55 0.00 20.91 30.00 -9.09 43,800 10.01 16.02 0.64 0.00 26.67 30.00 -3.33 45.400 8.40 15.80 0.65 0.00 24.86 30.00 -5.14 46,800 4.54 15.45 0.66 0.00 23.26 30.00 -6.74 49.400 8.15 14.87 0.67 0.00 23.69 30.00 -6.31 55.400 12.64 12.75 0.71 0.00 25.15 30.00 -2.45 59.400 9.52 11.38 0.74 0.00 21.64 30.00 -8.36

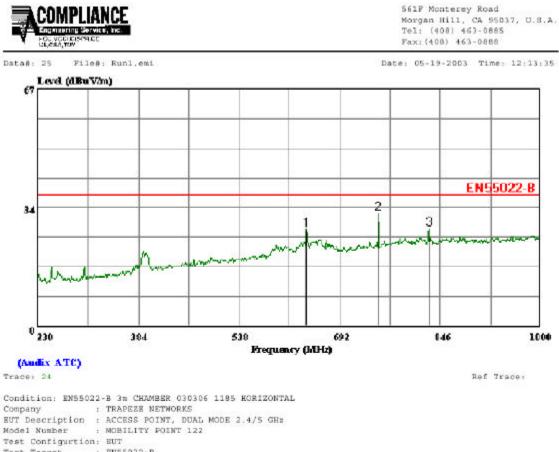
Page 66 of 78

DATE: JUNE 11, 2003 FCC ID: OZE100



Page 67 of 78

REPORT NO: 03U1984-1 EUT: DUAL MODE 2.4GHz / 5GHz MODULE FOR ACCESS POINT


DATE: JUNE 11, 2003 FCC ID: OZE100

(horizontal)

Page 68 of 78

DATE: JUNE 11, 2003 FCC ID: OZE100

Test Configurtion: EUT Test Target : EN55022-B Mode of Operation: TX Project No : 0301984-2 : Read Probe Cable Preanp Limit Over Freq Level Factor Loss Factor Level Line Limit Remark

	MHz	dBuV	dB	dB	dB	dBuV/m	dBuV/m	dB	
1	641.180	6.49	18.06	2.71	0.00	27.26	37.00	-9.74	Peak
2	751.290	9.76	19.22	2.91	0.00	31.89	37.00	-5.11	Peak
3	828.290	4.37	20.02	3.03	0.00	27.42	37.00	-9.58	Peak

Page 69 of 78

7.7. **POWERLINE CONDUCTED EMISSIONS**

LIMIT

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

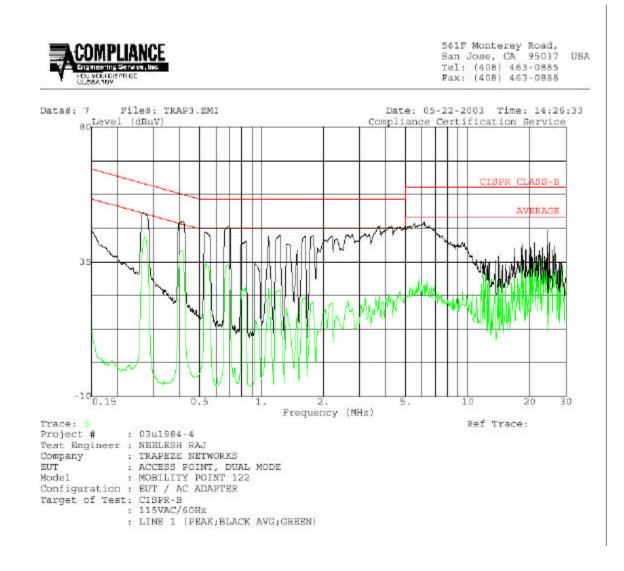
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane.

The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

Line conducted data is recorded for both NEUTRAL and HOT lines.

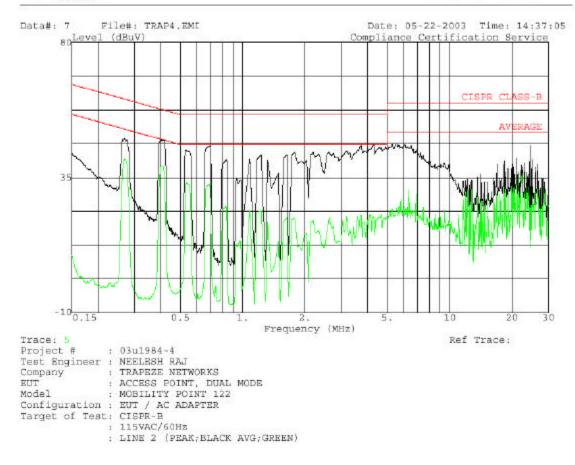

RESULTS

No non-compliance noted:

Freq.		Reading		Closs	Limit	EN_B	Marg	in	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	3) QP AV QP (dB) AV (dB)	L1/L2			
0.42	48.45	227	38.72	0.00	58.37	48.37	-9.92	-9.65	L1
3.74	47.00		23.47	0.00	56.00	46.00	-9.00	-22.53	L1
0.69	46.72		33.92	0.00	56.00	46.00	-9.28	-12.08	L1
0.69	45.40		32.31	0.00	56.00	46.00	-10.60	-13.69	L2
4.92	45.86		21.37	0.00	56.00	46.00	-10.14	-24.63	L2
0.42	47.22	22	38.55	0.00	58.31	48.31	-11.09	-9.76	L2
6 Worst	 Data								

COMPLIANCE CERTIFICATION SERVICES

DATE: JUNE 11, 2003 FCC ID: OZE100



Page 71 of 78

DATE: JUNE 11, 2003 FCC ID: OZE100

561F Monterey Road, San Jose, CA 95037 USA Tel: (408) 463-0885 Fax: (408) 463-0888

Page 72 of 78