

Emissions Test Report

EUT Name: LAN Option Board

EUT Model: ILC/ILN

FCC Title 47, Part 15, SubpartC, RSS-210 Issue 7

Prepared for:

Bob Mason Elster Electricity, LLC

208 South Rogers Lane Raleigh, NC 27610 Tel: 919 212-4700

Fax: 919 212-5108

Prepared by:

TUV Rheinland of North America

762 Park Avenue

Youngsville, NC 27596 Tel: (919) 554-0901 Fax: (919) 556-2043 http://www.tuv.com/

Report/Issue Date: 02 January 2007 Report Number: 30662119.001

Statement of Compliance

Manufacturer: Elster Electricity, LLC

208 South Rogers Lane Raleigh, NC 27610 919 212-4700

Requester / Applicant: Bob Mason

Name of Equipment: LAN Option Board
Operation Frequency Range 902.8 MHz to 927.6
Type of Equipment: Intentional Radiator

Application of Regulations: FCC Title 47, Part 15, SubpartC, RSS-210 Issue 7

Test Dates: 02 November 2006 to 15 August 2007

Guidance Documents:

Emissions: FCC 47 CFR Part 15, RSS-210 Issue 7

Test Methods:

Emissions: ANSI C63.4:2003

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland of North America, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that a sample of one, of the equipment described above, has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report contains data that are not covered by NVLAP accreditation. This report shall not be reproduced except in full, without the written authorization of the laboratory.

	12 September 2007
NVLAP Signatory	 Date

מאלאף	F©	Industry Canada
200094-0	90552 and	IC3755
200094-0	100881	

200094-0

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

Table of Contents

1	EX	ECUTIVE SUMMARY	4
	1.1	SCOPE	
	1.2	PURPOSE	
	1.3	SUMMARY OF TEST RESULTS	
	1.4	SPECIAL ACCESSORIES	
	1.5	EQUIPMENT MODIFICATIONS	
2	LA	BORATORY INFORMATION	5
	2.1	ACCREDITATIONS & ENDORSEMENTS	5
	2.2	TEST FACILITIES	6
	2.3	MEASUREMENT UNCERTAINTY	7
	2.4	CALIBRATION TRACEABILITY	7
3	PR	ODUCT INFORMATION	8
	3.1	PRODUCT DESCRIPTION	9
	3.2	EQUIPMENT CONFIGURATION	9
4	EN	IISSIONS	10
	4.1	CHANNEL SEPARATION PART 15.247(A)(1)	10
	4.2	PSEUDORANDOM HOPPING ALGORITHM FCC PART 15.247(A)(1)	12
	4.3	OCCUPIED BANDWIDTH FCC PART 15.247(A)(1)(I)	
	4.4	PEAK OUTPUT POWER FCC PART 15.247(B)(2)	21
5	EN	IISSIONS	22
	5.1	RADIATED EMISSIONS	22
	5.2	SPURIOUS EMISSIONS FCC PART 15.247(C)	
	5.3	FREQUENCY HOPPING SPREAD SPECTRUM SYSTEMS FCC PART 15.247(G)	48
	5.4	INCORPORATION OF INTELLIGENCE WITHIN A FREQUENCY HOPPING SPREAD SPECTRUM	
		EM FCC PART 15.247(H)	
	5.5	FREQUENCY STABILITY FCC PART 15.215(C)	48
	5.6	CONDUCTED EMISSIONS	
6	TE	ST EQUIPMENT USE LIST	70
7	SE	CONDARY TEST EQUIPMENT USE LIST	70

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Title 47, Part 15, SubpartC, RSS-210 Issue 7 based on the results of testing performed on 02 November 2006 through 15 August 2007 on the LAN Option Board Model No. ILC/ILN manufactured by Elster Electricity, LLC. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Table 1 - Summary of Test Results

Test	Test Method(s)	Test Parameters	Measurement	Result
Channel Separation	FCC Part 15.247(a)(1)	Greater of 25 kHz or 20 dB bandwidth	405 kHz	compliant
Pseudorandom Hopping Algorithm				compliant
Time of Occupancy	FCC Part 15.247(a)(1)(i)	=<0.4 sec in 10 sec.	0.390 sec in 10sec	compliant
Occupied Bandwidth	FCC Part 15.247(a)(1)(i)	=<500kHz	404 kHz	compliant
Peak Output Power	FCC Part 15.247(b)(2)	0.25 Watts	0.236 Watts	compliant
Spurious Emissions	FCC Part 15.247(C)	Table FCC Part 15.209	48.19dBuV/m @ 3meters Average	compliant
Frequency Hopping Spread Spectrum Systems	FCC Part 15.247(g)			compliant
Incorporation of Intelligence	FCC Part 15.247(h)			compliant
Frequency Stability	FCC Part 15.215(c)	Containment of 20 dB bandwidth between 902 and 928	902.476 MHz 927.885 MHz	compliant
Conducted Emissions	47 CFR Part 15.207, ANSI C63.4:2003, RSS- 210 Issue 7	Table FCC Part 15.207	34.81 dBuV Average	compliant

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

No modifications were found to be necessary in order to achieve compliance.

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at the 762 Park Ave. Youngsville, N.C 27596 address is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90552 and 100881). The laboratory scope of accreditation includes: Title 47 CFR Part 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 25 and ISO 9002 (Lab code 200094-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

Registration No. IC3755

2.1.4 Japan - VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at the 762 Park Ave. Youngsville, N.C 27596 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration No. R-1174 and C-1236).

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

2.1.5 Acceptance By Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland of North America at the 762 Park Ave. Youngsville, N.C 27596 address test results and test reports within the scope of the laboratory NIST / NVLAP accreditation will be accepted by each member country.

2.2 Test Facilities

All of the test facilities are located at 762 Park Ave., Youngsville, North Carolina 27596, USA.

2.2.1 Emission Test Facility

The Open Area Test Site and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2005, at a test distance of 3 and 10 meters. This site has been described in reports dated May 12, 1997, submitted to the FCC, and accepted by letter dated June 25, 1997 (31040/SIT 1300F2). The site is listed with the FCC and accredited by NVLAP (code 200094-0). The 5m semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2005, at a test distance of 3 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7m x 3.7m x 3.175mm thick aluminum floor connected to PE ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6m x 0.8m x 0.8m high non-conductive table with a 3.175mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50cm x 50cm x 3.175mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. For each of the other tests, the HCP is removed.

RF Field Immunity testing is performed in a 7.3m x 3.7m x 3.2m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a $4.9 \text{m} \times 3.7 \text{m} \times 3.175 \text{mm}$ thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st addition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or co-variances of these other quantities weighted according to how the measurement result varies with changes in these quantities. The term standard uncertainty is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

The test system for conducted emissions is defined as the LISN, spectrum analyzer, coaxial cables, and pads. The test system for radiated emissions is defined as the antenna, spectrum analyzer, pre-amplifier, coaxial cables, and pads. The conducted test system has a combined standard uncertainty of \pm 1.2 dB. The radiated test system has a combined standard uncertainty of \pm 1.6 dB. The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Guide 25.

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

3 Product Information

Figure 1 – Photo of Meter Model No. ZD3200K20xx with External Antenna adapter

Figure 2 – Photo of Meter Model No. ZDC300K00xx with Internal Antenna

3.1 Product Description

The information for all equipment used in the tested system, including: descriptions of cables, clock and microprocessor frequencies, EMI critical components, and accessory equipment has been supplied by the manufacturer and is listed in the EMC Test Plan found in Section 7.

3.2 Equipment Configuration

A description and justification of the equipment configuration is given in the EMC Test Plan. The EUT was tested as described in the EMC Test Plan and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to warm up to normal operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce worse case radiation and place the EUT in the most susceptible state.

Two meters with the same LAN Option Board were presented for testing as follows:

ZDC300K00xx - Form 2S A3 ALPHA Meter/Node, 120 to 480VAC 3W, 60Hz

ZD3200K20xx - Form 9S A3 ALPHA Meter/Collector, external antenna ready, 120 to 480VAC, 4Wy or 4Wd, 60Hz.

Preliminary radiated scans were taken on both meters to determine "worst case". No noticeable difference was found between the two and therefore, Radiated and Conducted Emissions data was taken on ZDC300K00xx because it contained the internal antenna as the end product would.

All remaining testing was performed with the ZD3200K20xx meter as it already had an external antenna connector.

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

4 Emissions

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.4:2003, RSS-210 Issue 7. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.1 Channel Separation Part 15.247(a)(1)

Frequency hopping Systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Bandwidth=404 kHz

Channel Separation=405 kHz

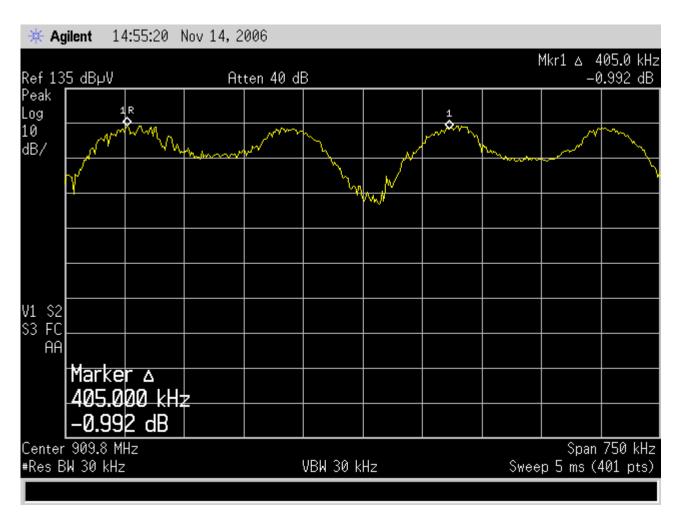


Figure 3 – Channel Separation Low Band

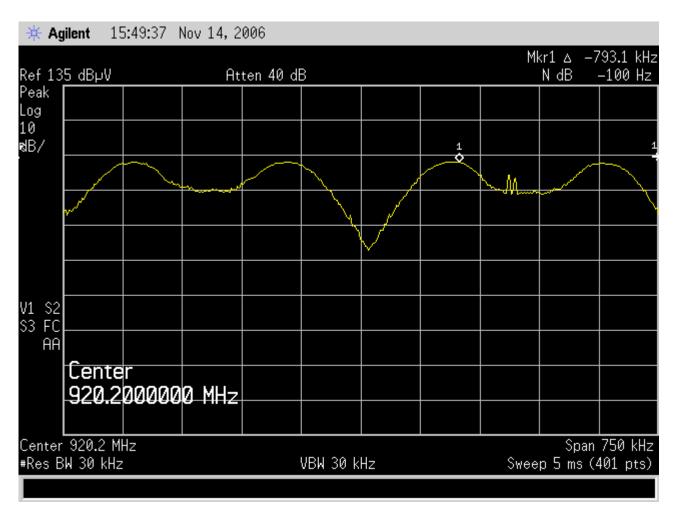


Figure 4 – Channel Separation High band

4.2 Pseudorandom Hopping Algorithm FCC Part 15.247(a)(1)

The system shall hop to channel frequencies that are selected from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their transmitters and shall shift frequencies in synchronization with the transmitted signals.

The pseudo-random hop table is used to determine the transmitter's frequency hop sequence. The transmitter is slow hopping frequency system where the entire data packet is sent on a single channel. After sending a data packet, the transmitter uses the next channel in the pseudo-random hop table. Each frequency in the hop table is used before the transmitter will hop to a frequency already used. The receiver is a single IF system whose bandwidth is 330 kHz. When not synchronized to a transmitting device, the receiver is constantly hopping across the 25 channels scanning for a valid preamble from a transmitter. Once a valid preamble is detected, the receiver is synchronized to the transmitter and receives the data packet. After the transmission, the receiver returns to the scanning mode where it can look for another packet from either the same device or a different device.

Index	Channel	Network #1 "Low Band" Center Frequency (MHz)	Network #2 "High Band" Center Frequency (MHz)
1	12	907.2	920.0
2	29	914.0	926.8
3	5	904.4	917.2
4	19	910.0	922.8
5	11	906.8	919.6
6	23	911.6	924.4
7	26	912.8	925.6
8	13	907.6	920.4
9	22	911.2	924.0
10	15	908.4	921.2
11	1	902.8	915.6
12	25	912.4	925.2
13	4	904.0	916.8
14	21	910.8	923.6
15	14	908.0	920.8
16	27	913.2	926.0
17	8	905.6	918.4
18	31	914.8	927.6
19	18	909.6	922.4
20	16	908.8	921.6
21	7	905.2	918.0

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

Index	Channel	Network #1 "Low Band" Center Frequency (MHz)	Network #2 "High Band" Center Frequency (MHz)
22	20	910.4	923.2
23	3	903.6	916.4
24	28	913.6	926.4
25	6	904.8	917.6

Sample hop table

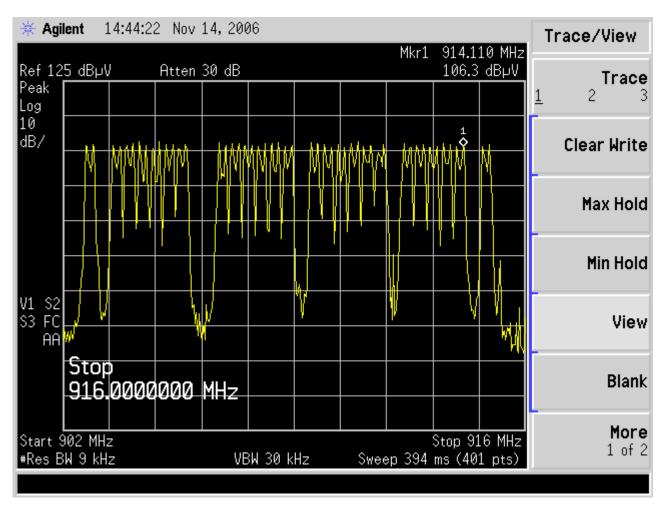


Figure 5 - Plot of hopping Channels 902-916 MHz

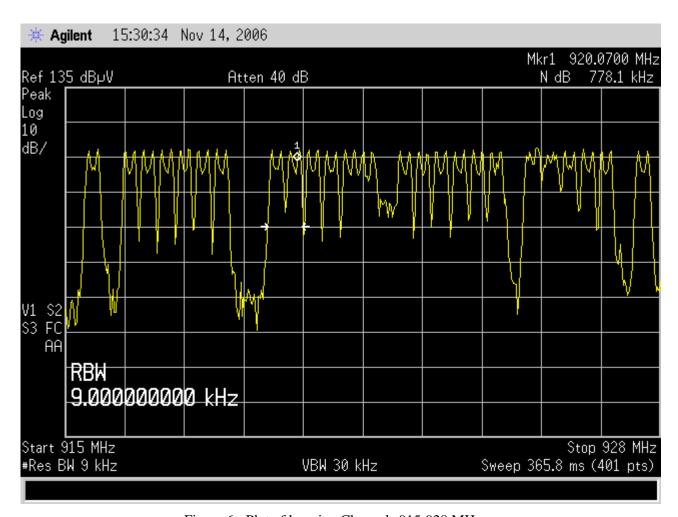


Figure 6 - Plot of hopping Channels 915-928 MHz

Time of Occupancy FCC Part 15.247(a)(1)(i)

Frequency Band (MHz)	20 dB Bandwidth	Number of Hopping Channels	Average Time of Occupancy
902.8-927.6	=>250 kHz	25	=<0.4 sec. In 10 sec.

The spectrum analyzer was set as follows:

RBW=9 kHz

VBW=RBW

Span=0Hz

LOG dB/div.= 10dB

Sweep = 10 Sec.

Trigger Video

The occupancy time was measured as above. There were 4 hops at .0975 seconds per hop for any 10 sec. Period. Time of occupancy equals number of hops multiplied by the duration of one hop.

Time of Occupancy = 0.390 seconds in any 10 second period.

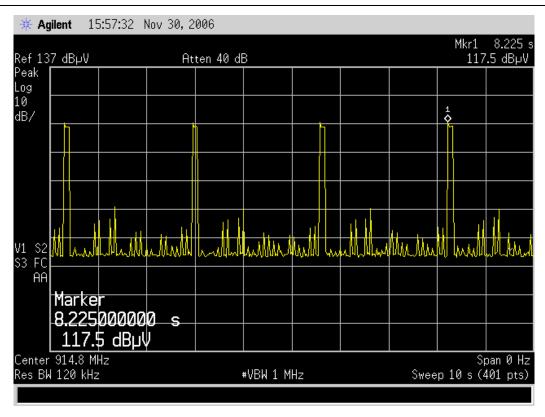


Figure 3 – 10 second sweep "Low Band" of 914.8 MHz

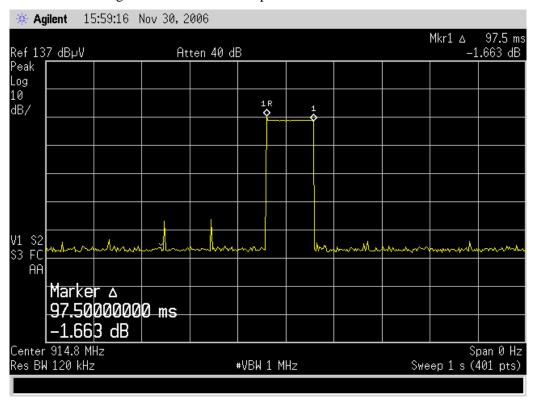


Figure 4 – Measurement of 1 hop in "Low Band" 914.8 MHz

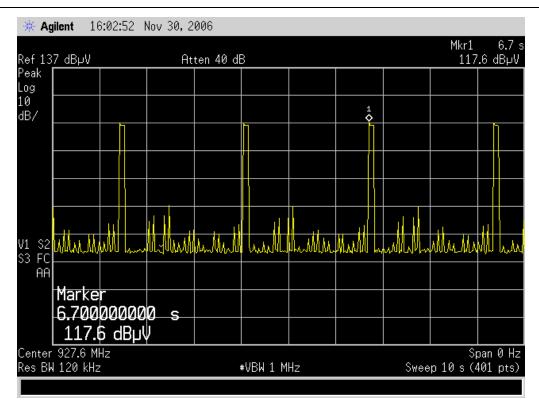


Figure 5 – 10 Second sweep of "High Band" 926 MHz

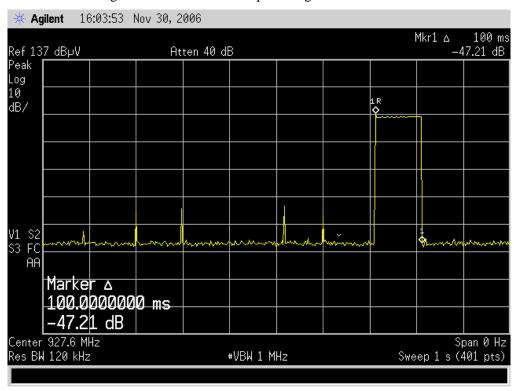


Figure 6 – Measurement of 1 hop in "High Band" 927.6 MHz

4.3 Occupied Bandwidth FCC Part 15.247(a)(1)(i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

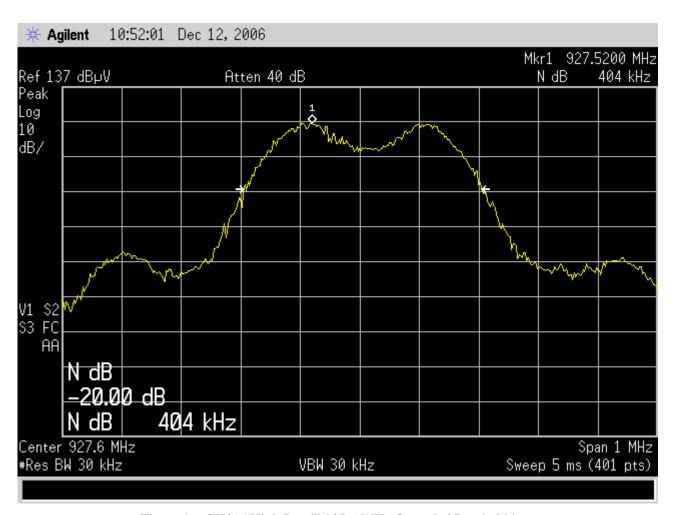


Figure 9 - CH31 "High Band" 927.6 MHz Occupied Bandwidth

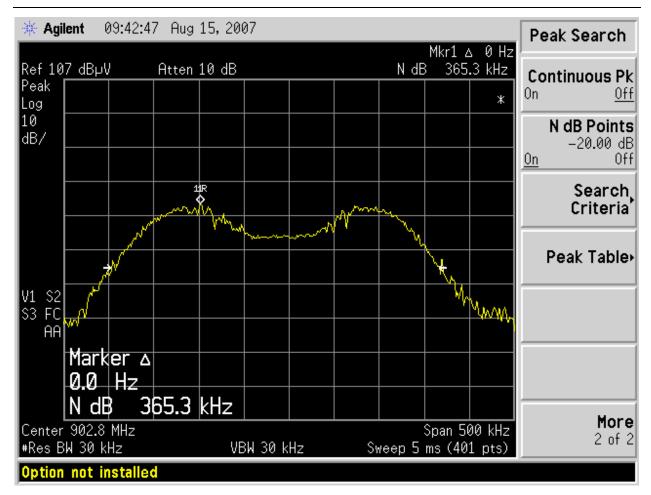


Figure 10 – CH 1 "Low Band" 902.8 MHz

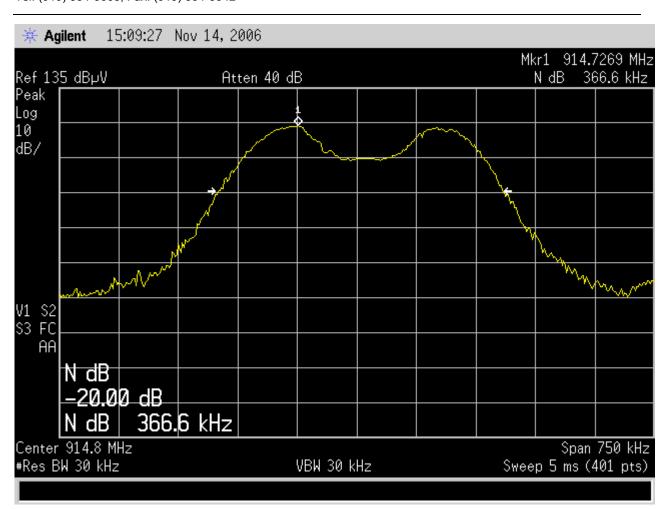


Figure 12 - CH 31 "Low Band" 914.8 MHz

4.4 Peak Output Power FCC Part 15.247(b)(2)

The maximum peak output power of the intentional radiator shall not exceed 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels. (Conducted Measurement)

The peak output power was measured at CH1, CH15, and at CH31. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. After the measurement was made the cable loss and the attenuator was added to the measurement. The spectrum analyzer's resolution bandwidth was greater than the 20dB bandwidth of the modulated carrier and the video bandwidth was equal to the resolution bandwidth.

Test Setup

Peak Power Output Low Band

CH1 - 902.8 MHz = 0.230 Watts

CH31 - 914.8 MHz = 0.236 Watts

High Band

CH31 - 927.6 MHz = 0.236 Watts

Antenna Gain

If peak power output was performed using the conducted method then the antenna gain will be stated.

The measurement was performed with out modulation. The transmitter under test was placed on a non-conductive table 80cm above the ground plane. The spectrum analyzer was tuned to the transmitter carrier frequency and the turntable was rotated 360 degrees about the vertical axis until the highest maximum signal was received. Then the receive antenna was raised and lowered 1 to 4 meters until the maximum signal was detected. Then the substitution dipole antenna and signal generator replaced the transmitter under test and both the receive and substitution dipole antenna were placed in the vertical polarization. The input signal to the substitution antenna was adjusted to the maximum signal received from the transmitter. The receive antenna was then raised and lowered to ensure the maximum signal was still received. The cable to the dipole was then removed and attached to a calibrated power meter to record the power level and added to the substitution dipole gain to obtain the EIRP level. Then the steps above were repeated for the horizontal polarization. The gain of the EUT antenna is the difference between the measured RF power at the RF port and the measured EIRP.

4.4.1.1 Results

Internal Antenna

Freq.	Peak (dBi)
(GHz)	
0.902 - 0.928	4.728

External Antennas

Freq.	Peak (dBi)
(GHz)	
0.902 - 0.928	3.1

TRA9023P 902-928 MHz

Freq.	Peak (dBi)
(GHz)	
0.902 - 0.928	3.1

MFB9380

Freq.	Peak (dBi)
(GHz)	
0.902 - 0.928	5.15

MFB9153

5 Emissions

5.1 Radiated Emissions

Testing was performed in accordance with 47 CFR 15, ANSI C63.4:2003. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

5.1.1 Test Methodology

5.1.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 300 kHz and provide a reading at each frequency for each 6° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

5.1.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

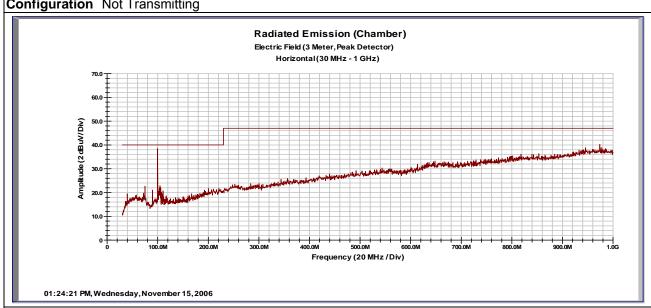
Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

5.1.1.3 Deviations

There were no deviations from this test methodology.

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

5.1.2 Test Results

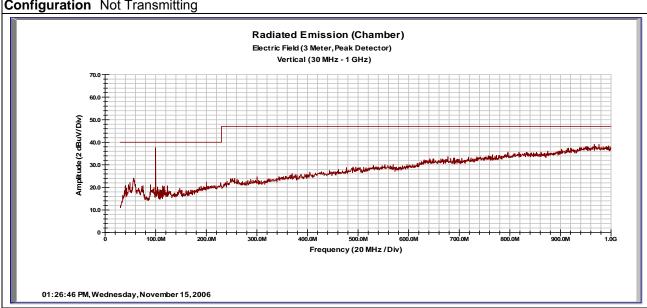

Section 5.1.2.1 lists the final measurement data under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

5.1.2.1 *Final Data*

The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

SOP 1 Radiated Emissions		Tracking # 30662119.001 Page 1 of 2	
EUT Name	LAN Option Board	Date	November 15, 2006
EUT Model	ILC/ILN	Temp / Hum in	71 deg F 41% rh
EUT Serial	255-0000373648	Temp / Hum out	
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC / Freq.	480VAC/60Hz
Deg/sweep	12 degrees	RBW / VBW	120 kHz/300 kHz
Dist/Ant Used	3 Meters CBL-6140A	Performed by	Randy Masline
Configuration	Not Transmitting	<u>-</u>	



Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
75.20	V	1	0	19.85	0.00	0.92	7.48	28.25	40.00	-11.75
89.72	V	1	0	18.92	0.00	1.02	6.52	26.46	40.00	-13.54
99.92	V	1	0	25.80	0.00	1.08	7.59	34.47	40.00	-5.53

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence Notes:

Report Number: 30662119.001

SOP 1 Radia	ted Emissions	Tracking # 30662119.001 Page 2 of				
EUT Name	LAN Option Board	Date	November 15, 2006			
EUT Model	ILC/ILN	Temp / Hum in	71 deg F 41% rh			
EUT Serial	255-0000373648	Temp / Hum out				
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC / Freq.	480VAC/60Hz			
Deg/sweep	12 degrees	RBW / VBW	120 kHz/300 kHz			
Dist/Ant Used	3 Meters CBL-6140A	Performed by	Randy Masline			
Configuration	Not Transmitting		-			

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
48.32	V	1	0	17.10	0.00	0.74	9.03	26.87	40.00	-13.13
57.12	V	1	0	19.24	0.00	0.80	9.13	29.17	40.00	-10.83
99.96	V	1	0	25.10	0.00	1.08	7.59	33.77	40.00	-6.23

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence Notes:

Report Number: 30662119.001

5.2 Spurious Emissions FCC Part 15.247(c)

5.2.1 Test Methodology

5.2.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 300 kHz and provide a reading at each frequency for each 6° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

5.2.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

5.2.1.3 Deviations

There were no deviations from this test methodology.

5.2.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

5.2.2.1 Radiated Emissions Outside the Frequency Band

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on radiated measurements.

5.2.2.2 Restricted band measurements

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

SOP 1 Rad	diated E	Emissi	ons			Trad	cking#	30662119.0	01 Page 1 0	of 5
EUT Name	ΙΔΝ	Option	Board			D:	ate	Nov	ember 15, 200	16
EUT Model	ILC/I		Dodia				emp / Hu		deg F / 42% rh	
EUT Serial		000037	3648				•	m out N/A		
Standard				RSS-210 I	eeua 7		ne AC / I		VAC 60Hz	
Deg/sweep	100	47 Ol 1	VI alt 15	, 1100-2101	3346 1		BW / VB		KHz/100KHz	
Dist/Ant Use	2 mg	toro 20			61404)		erformed		ndy Masline	
Configuration				ZGI IZ (CBL	-0140A)	Г	enonnec	i by Rai	idy iviasiirie	
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	20dB below	
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Fundamental	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	
(1711 12)	(11/ V)	(111)	(acg)	(abav)	(GD)	(GD)	(ab/iii)	(abaviii)	(dbd v/iii)	
Channel 1										
902.80	Н	1	0	87.53	0.00	3.38	22.76	113.67	N/A	
1805.00	Н	1	0	28.50	0.00	4.88	31.60	64.98	48.69	1
		-	-							
902.80	V	1	0	92.90	0.00	3.38	22.26	118.54	N/A	
1805.00	V	1	0	27.30	0.00	4.88	30.60	62.78	55.76	
			_							
Channel 31										
914.80	Н	2	0	80.40	0.00	3.41	22.80	106.61	N/A	
1829.00	Н	1	0	38.00	0.00	4.92	31.50	74.42	32.19	
914.80	V	1	36	93.50	0.00	3.41	22.50	119.41	N/A	
1829.00	V	1	0	38.40	0.00	4.92	30.50	73.82	45.59	
Channel 31										
927.60	Н	1	0	88.71	0.00	4.46	23.05	116.22	N/A	
1855.20	Н	1	0	32.46	0.00	6.35	31.71	70.52	45.7	
927.60	V	1	0	87.38	0.00	4.46	22.80	114.64	N/A	
1855.20	V	1	0	33.29	0.00	6.35	31.50	71.14	43.5	
									actor ± Uncert	ainty
Combined Stand	dard Unce	rtainty <i>U</i> _c	$(y) = \pm 1.60$	dB Expande	d Uncertainty	$U = ku_c(y)$	/) k=2	for 95% confid	dence	
Notes:										
RBW/VBW =	: 100KH	z/100Kł	Ηz							
1										

SOP 1 Rad	diated E	Emissi	ions			Trac	cking#	30662119.0	001 Page 2 0	of 5
EUT Name	LAN	Option	Board			D	ate	Nov	vember 15, 200	06
EUT Model	ILC/I					To	emp / Hu	m in 71	deg F / 42% rh	
EUT Serial	255-	000037	'3648					m out N/A		
Standard	FCC	47 CF	R Part 15	, RSS-210	Issue 7		ne AC / I		VAC 60Hz	
Deg/sweep							BW / VB		KHz/100KHz	
Dist/Ant Use	ed 3 me	ters 20	00MHz – 1	2GHz (CBL	-6140A)	P	erformed	l by Rar	ndy Masline	
Configuration				,	,			•		
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	20dB below	
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Fundamental	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	
Channel 1										
902.80	Н	1	0	87.20	0.00	3.38	22.76	113.34	N/A	
1805.00	Н	1	0	37.50	0.00	4.88	31.60	73.98	39.36	
902.80	V	1	0	91.70	0.00	3.38	22.26	117.34	N/A	
1805.00	V	1	0	37.30	0.00	4.88	30.60	72.78	44.56	
Channel 31										
914.80	Н	2	0	87.20	0.00	3.41	22.80	113.41	N/A	
1829.00	Н	1	0	39.00	0.00	4.92	31.50	75.42	37.99	
914.80	V	1	0	93.10	0.00	3.41	22.50	119.01	N/A	
1829.00	V	1	0	38.40	0.00	4.92	30.50	73.82	45.19	
01 104										
Channel 31		4		22.52	0.00	4.40	00.0=	444.00		
927.60	Н	1	0	86.56	0.00	4.46	23.05	114.08	N/A	
1855.20	Н	1	0	34.62	0.00	6.35	31.71	72.68	41.4	
007.00	/	4		00.04	0.00	4.40	00.00	104.04	NI/A	
927.60	V	1	0	93.94	0.00	4.46	22.80	121.21 75.63	N/A	
1855.20	V	I	U	37.79	0.00	6.35	31.50	75.03	45.58	
Coo Marair -	 - E Eigle '	Value	Limit FF	iold Value =	EIM Value	Amn Cair	+ Coble !	000 ± ANT 1	 Factor ± Uncerta	ninty.
Combined Stand										airity
Notes:	dard Unce	rtainty u_0	$c(y) = \pm 1.00$	ив Ехрапое	o Uncertaint	$y O = \kappa u_c(y)$	/) K = 2	TOT 95% CONTI	dence	
RBW/VBW =	: 100KH	z/100KI	Hz							

SOP 1 Rad	diated E	Emissi	ons			Trad	cking#	30662119.0	01 Page 3 0	of 5
EUT Name	LAN	Option	Board			D	ate	Jun	e 18, 2007	
EUT Model	ILC/I						emp / Hu		deg F / 46% rh	
EUT Serial		000037	3648				•	m out N/A		·
Standard				, RSS-210	ssue 7		ne AC / I		VAC 60Hz	
Deg/sweep				,			BW / VB		KHz/100KHz	
Dist/Ant Use	3 me	ters 20	00MHz – 1	2GHz (CBL	-6140A)	P	erformed		ndy Masline	
Configuration				•	,				,	
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	20dB below	
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Fundamental	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	
Channel 1		4.0-		=0.00	0.00		00.70	00.55	N//4	
902.80	H	1.65	0	73.30	0.00	3.33	22.76	99.39	N/A	
1805.00	Н	1.65	0	29.30	0.00	4.90	21.60	65.80	33.59	
902.80	V	1.85	0	71.90	0.00	3.33	22.26	97.49	N/A	
1805.00	V	1.85	0	29.56	0.00	4.90	30.60	65.06	32.4	
1805.00	V	1.00	U	29.50	0.00	4.90	30.00	05.00	32.4	
Channel 31										
914.80	Н	1.65	0	74.00	0.00	3.37	22.80	100.17	N/A	
1829.00	Н	1.65	0	31.00	0.00	4.99	31.50	67.49	32.68	
914.80	V	1.85	0	71.50	0.00	3.37	22.50	97.37	N/A	
1829.00	V	1.85	0	30.10	0.00	4.99	30.50	65.59	31.78	
Channel 31										
927.60	Н	1.65	0	74.30	0.00	3.38	23.05	100.73	N/A	
1855.20	Н	1.65	0	20.30	0.00	5.02	31.71	57.03	43.7	
007.00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.05	0	70.00	0.00	0.00	00.00	00.00	NI/A	
927.60 1855.20	V	1.85 1.85	0	72.80 20.20	0.00	3.38 5.02	22.80 31.50	98.99 56.72	N/A 42.27	
1655.20	V	1.65	U	20.20	0.00	5.02	31.50	30.72	42.21	
Spec Margin =	l : F-Field '	Value - I	imit F-F	ield Value =	FIM Value :	- Amp Gain	+ Cahle I	OSS + ANT F	<u>l</u> Factor ± Uncerta	l aintv
Combined Stand										anity
Notes: RBW/VBW =				ZZ ZAPONIOC	o oncertaint	y C = Au _c ()	,	101 00 % 001ms	action	

SOP 1 Rad	diated E	Emissi	ons			Trad	cking#	30662119.0	01 Page 4 o	of 5
EUT Name	ΙΔΝ	Option	Board			D:	ate	.lun	e 18, 2007	
EUT Model	ILC/I		Doura				emp / Hu		deg F / 46% rh	
EUT Serial		000037	3648				•	m out $\frac{7.1}{N/A}$		
Standard				, RSS-210 I	ssue 7		ne AC / I		VAC 60Hz	
Deg/sweep				,			BW / VB		KHz/100KHz	
Dist/Ant Use	ad 3 me	ters 20	00MHz –	2GHz (CBL	-6140A)		erformed		ndy Masline	
Configuration				•					,	
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	20dB below	
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Fundamental	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	
Channel 1										
902.80	Н	1.0	0	60.90	0.00	3.33	22.76	86.99	N/A	
1805.60	Н	1.0	0	21.10	0.00	4.90	31.60	57.60	29.39	
000.00		4.0		00.00	0.00	0.00	00.00	00.00	NI/A	
902.80	V	1.0	0	63.80	0.00	3.33	22.26	89.39	N/A	
1805.60	V	1.0	0	21.00	0.00	4.90	30.60	56.50	32.89	
Channel 31										
914.80	Н	1.0	0	67.80	0.00	3.37	22.80	93.97	N/A	
1829.00	Н	1.0	0	21.10	0.00	4.99	31.50	57.59	36.38	
914.80	V	1.0	0	64.80	0.00	3.37	22.50	90.67	N/A	
1829.00	V	1.0	0	21.00	0.00	4.99	30.50	56.49	34.18	
Channel 31										
927.60	Н	1	0	66.50	0.00	3.38	23.05	92.93	N/A	
1855.20	Н	1	0	21.00	0.00	5.02	31.71	57.73	35.17	
007.00		4	0	00.00	0.00	0.00	00.00	00.00	NI/A	
927.60	V	1	0	63.20	0.00	3.38	22.80	89.39	N/A	
1855.20	V	1	0	21.10	0.00	5.02	31.50	57.62	31.77	
Spec Margin -	 - E_Eiold	Value 1	imit E E	ield Value -	FIM Value	Amn Gain	+ Cable I	Occ + ANT I	 Factor ± Uncerta	aintv
Combined Stand										анцу
Notes:	adia Once	itanity U	<u> </u>	LAPAIIUC	a Oncertaint	$r = \kappa u_c()$, N-Z	101 00 /0 COIIII	401100	
RBW/VBW =	: 100KHz	z/100Kł	Ηz							

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN 33_EME/I 01/29/2001

Page 31 of 71

SOP 1 Rad	diated E	Emissi	ons			Trad	cking#	30662119.0	01 Page 5 o	of 5
EUT Name	ΙΔΝ	Option	Roard			D:	ate	lun	e 18, 2007	
EUT Model	ILC/I	•	Doard				emp / Hu		deg F / 46% rh	
EUT Serial		000037	3648				•	m out N/A		
Standard				, RSS-210 I	Issue 7		ne AC / I		VAC 60Hz	
Deg/sweep	100	77 011	ti ait io	, 1100-2101	3346 7		BW / VB		KHz/100KHz	
Dist/Ant Use	3 me	tere 20	DOMH2 —	2GHz (CRI	-6140A)		erformed		ndy Masline	
Configuration				•	-0140/		errorinec	iby ital	idy iviasilile	
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	20dB below	
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Fundamental	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	
()		(,	(4.03)	(0.20.1)	(=-)	(=-)	(0.2/11)	(0.20.77)	(424.7711)	
Channel 1										
902.80	Н	1.0	0	70.10	0.00	3.33	22.76	96.19	N/A	
1805.00	Н	1.0	0	21.10	0.00	4.90	31.60	57.60	38.59	
		_		_						
902.80	V	1.0	0	67.53	0.00	3.33	22.26	93.12	N/A	
1805.00	V	1.0	0	21.00	0.00	4.90	30.60	56.50	36.62	
		_								
Channel 31										
914.80	Н	1.0	0	66.40	0.00	3.37	22.80	92.57	N/A	
1829.00	Н	1.0	0	21.00	0.00	4.99	31.50	57.49	35.08	
914.80	V	1.0	0	66.80	0.00	3.37	22.50	92.67	N/A	
1829.00	V	1.0	0	21.00	0.00	4.99	30.50	56.49	36.18	
Channel 31										
927.60	Н	1	0	63.79	0.00	4.46	23.05	91.3	N/A	
1855.20	Н	1	0	21.00	0.00	6.35	31.71	59.06	32.24	
927.60	V	1	0	59.47	0.00	4.46	22.80	86.73	N/A	
1855.20	V	1	0	21.00	0.00	6.35	31.50	58.85	27.88	
									actor ± Uncerta	ainty
Combined Stand	dard Unce	rtainty <i>U</i> _c	$\frac{1}{2}(y) = \pm 1.60$	dB Expande	d Uncertaint	$U = ku_c(y)$	/)	for 95% confid	dence	
Notes:										
RBW/VBW =	: 100KH	z/100Kł	Ηz							
I										

5.2.2.3 Restricted band measurements

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

SOP 1 Rad	GOP 1 Radiated Emissions Tracking # 30662119.001 Page 1 of 15											
		.					_					
EUT Name		Option	Board					ate			ember 15, 2	
EUT Model	ILC/I		100.10					emp / Hu			deg F / 42%	rn
EUT Serial		000037		D00 040				emp / Hu				
Standard	FCC	47 CFI	R Part 15	, RSS-210 l	issue /			ine AC / F	•		VAC 60Hz	
Deg/sweep								BW / VB			Hz/1MHz	
Dist/Ant Use								erformed		Rar	idy Masline	
Configuration	on Char	nnel 31	"914.8 M	Hz" Spuriοι	ıs Emissio	ns with	in	ternal ante	enna			
Emission ANT ANT Table FIM Amp Cable ANT E-Field Spec Spec Freq Polar Pos Pos Value Gain Loss Factor Value Limit Margin (MHz) (H/V) (m) (deg) (dBuV) (dB) (dB) (dB/m) (dBuV/m) (dBuV/m) (dB)											Margin	
Peak	(11/1/1/	(!!!)	(acg)	(abav)	(GD)	(GD)		(dD/111)	(ава і	7111)	(aBa v/iii)	(ab)
2744.00	Н	1	0	39.45	35.34	6.0)6	29.53	39	9.69	74.00	-34.31
3659.00	Н	1	0	40.46	34.90	7.1				1.59	74.00	-29.41
7318.00	Н	1	0	34.79	35.01	11.9		36.45		3.14	74.00	-25.86
Average												
2744.00	Н	1	0	27.35	35.34	6.0)6	29.53		27.6	54.00	-26.4
3659.00	Н	1	0	36.04	34.90	7.1	5	31.88	40).17	54.00	-13.83
7318.00	Н	1	0	24.26	35.01	11.9	91	36.45	37	7.61	54.00	-16.39
Spec Margin =	E-Field	Value - I	Limit, E-F	ield Value =	FIM Value	- Amp G	air	ո + Cable L	.oss + <i>F</i>	\NT F	actor ± Unc	ertainty
Combined Stand									for 95%	confic	dence	
Notes: RBW/	VBW =	1MHz/1	MHz For	frequencie	s between	1GHz a	an	d 10 GHz				

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

SOP 1 Rad	OP 1 Radiated Emissions Tracking # 30662119.001 Page 2 of 15										
EUT Name	LAN	Option	Board				Date	_	Nον	ember 15,	2006
EUT Model	ILC/I	LN				•	Temp / Hu	m in	71 (deg F / 42%	rh
EUT Serial	255-	000037	3648				Temp / Hu	m out	N/A	1	
Standard	FCC	47 CFI	R Part 15	, RSS-210 I	ssue 7		Line AC / I			VAC 60Hz	
Deg/sweep							RBW / VBW 1MHz/3MHz				
Dist/Ant Use	d 3 me	ters 10	hz -10Gl	Hz (3115-99	903)		Performed	l by	Rar	ndy Masline	
Configuration	n Char	nnel 31	"914.8 M	Hz" Spuriοι	us Emissio	ns with i	nternal ant	enna			
Emission ANT ANT Table FIM Amp Cable ANT E-Field Spec Spec											
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value		Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/	m)	(dBuV/m)	(dB)
Peak											
2744.00	V	1	0	42.04	35.34	6.06		42.		74.00	-31.92
3659.00	V	1	0	35.07	34.90	7.15		39.		74.00	-34.93
7318.00	V	1	0	33.65	35.01	11.91	36.39	46.	.94	74.00	-27.06
Average											
2744.00	V	1	0	34.04	35.34	6.06		34.		54.00	-19.92
3659.00	V	1	0	25.28	34.90	7.15		29.		54.00	-24.72
7318.00	V	1	0	22.15	35.01	11.91	36.39	35.	.44	54.00	-18.56
Spec Margin =											ertainty
Combined Stand											
Notes: RBW/		1MHz/1	MHz For	trequencies	s between	1GHz ar	nd 10 GHz	, Peak a	and	Average	
measuremen	ts.										

SOP 1 Rad	diated E	Emissi	ons		Tra	acking# 3	306621	19.0	001 Page 3	of 15	
EUT Name	LAN	Option	Board			D	Date		Nov	ember 15, 2	2006
EUT Model	ILC/I					Т	emp / Hu	m in	71 (deg F / 42%	rh
EUT Serial	255-	000037	3648				emp / Hu		N/A		
Standard	FCC	47 CF	R Part 15,	RSS-210 I	ssue 7	L	ine AC / I	Freq.	480	VAC 60Hz	
Deg/sweep	<u>-</u>					R	RBW / VBW 1MHz/3MHz				
Dist/Ant Use	ed 3 me	eters 10	hz -10GF	łz		P	Performed	l by	Rar	ndy Masline	
Configuration	on Char	nnel 1 "	902.8 MH	z" Spurious	Emission	s with inte	ernal ante	nna		-	
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Fie	eld	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu		Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV	//m)	(dBuV/m)	(dB)
Peak											
2708.00	Н	1	0	38.99	35.34	6.03			9.10	74.00	-34.90
3611.00	Н	1	0	36.63	34.99	7.11).51	74.00	-33.49
4514.00	Н	1	0	32.53	35.11	8.03	32.53	37	7.98	74.00	-36.02
Average											
2708.00	Н	1	0	28.67	35.34	6.03	29.42	28	3.78	54.00	-25.22
3611.00	Н	1	0	26.90	34.99	7.11	31.77	30).78	54.00	-23.22
4514.00	Н	1	0	20.17	35.11	8.03	32.53	25	5.62	54.00	-28.38
Spec Margin =						•					ertainty
Combined Stand Notes: RBW/											
measuremer		ı IVII⊐∠/	IVII IZ FUI	ii equelloles	DEIMEEN	IGHZ dH	iu iu GHZ	, reak	anu	Avelage	

SOP 1 Rad	diated E	Emissi	ons			Tr	acking# 3	306621	19.0	01 Page 4	of 15	
EUT Name	LAN	Option	Board			I	Date		15 I	November 2	006	
EUT Model	ILC/I					-	Temp / Hu	m in	70 I	Deg F / 67%	rh	
EUT Serial	255-	000037	'3648			-	Temp / Hu	m out				
Standard	FCC	47 CF	R Part 15,	, RSS-210 I	ssue 7		Line AC / I	Freq.	120	VAC 60Hz		
Deg/sweep							RBW / VBW 1MHz/1MHz					
Dist/Ant Use	ed 3 me	eters 10	Shz -10GH	Ιz			Performed	l by	Rar	ndy Masline		
Configuration	n Char	nnel 1 "	902.8 MH	z" Spurious	Emission	s with in	ternal ante	nna		•		
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Fi	eld	Spec	Spec	
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu	ıe	Limit	Margin	
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBu√	//m)	(dBuV/m)	(dB)	
Peak												
2708.00	V	1	0	38.86	35.34	6.03			3.75	74.00	-35.25	
3611.00	V	1	0	26.26	34.99	7.11			9.99	74.00	-44.01	
4514.00	V	1	0	31.93	35.11	8.03	32.63	37	7.48	74.00	-36.52	
Average												
2708.00	V	1	0	28.76	35.34	6.03			3.65	54.00	-25.35	
3611.00	V	1	0	14.12	34.99	7.11		17	7.85	54.00	-36.15	
4514.00	V	1	0	22.41	35.11	8.03	32.63	27	7.96	54.00	-26.04	
						•					ertainty	
Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty Combined Standard Uncertainty $u_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c(y)$ $k = 2$ for 95% confidence Notes: RBW/VBW = 1MHz/1MHz For frequencies between 1GHz and 10 GHz, Peak and Average measurements.												

SOP 1 Rad	diated E	Emissi	ons		Tr	acking# 3	306621	19.0	01 Page 5	of 15	
EUT Name	LAN	Option	Board				Date		16 N	November 2	:006
EUT Model	ILC/I	•					Temp / Hu	m in	70 0	deg F/ 70%	rh
EUT Serial	255-	000037	3648				Temp / Hu	m out			
Standard	FCC	47 CFI	R Part 15	, RSS-210 I	ssue 7		Line AC / I	Freq.	480	VAC 60Hz	
Deg/sweep				-			RBW / VB\	w [.]	1MI	Hz/1MHz	
Dist/Ant Use	d 3 me	ters 10	hz -10Gł			_	Performed	l by	Ran	ndy Masline	
Configuration	n Char	nnel 31	"927.6 M	Hz" Spuriοι	ıs Emissio	ns with i	nternal ant	enna			-
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Fi	old	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu		Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBu\		(dBuV/m)	(dB)
Peak	(11/ 0)	(111)	(ucg)	(abav)	(GD)	(GD)	(dD/III)	(ава (,,,,,,	(abaviii)	(GD)
2782.80	Н	1	0	40.13	35.30	6.1	1 29.65	4(0.59	74.00	-33.41
3710.40	Н	1	0	32.12	34.86	7.22	2 32.00	36	6.49	74.00	-37.51
4638.00	I	1	0	40.13	35.24	8.20	32.78	45	5.87	74.00	-28.13
5565.60	Н	1	0	34.88	34.86	11.9		46	3.35	74.00	-27.65
Average											
2782.80	Н	1	0	31.12	35.30	6.1	1 29.65	3′	1.58	54.00	-22.42
3710.40	H	1	0	21.47	34.86	7.22			5.84	54.00	-28.16
4638.00	Н	1	0	35.70	35.24	8.20	_		1.44	54.00	-16.39
5565.60	Н	1	0	26.89	34.86	11.9			3.36	54.00	-15.64
Spec Margin =	E-Field '	Value - I	_imit, E-F	ield Value =	FIM Value	- Amp Ga	in + Cable L	oss + A	ANT F	actor ± Unc	ertainty
Combined Stand	dard Unce	rtainty <i>U</i> _c	$(y) = \pm 1.60$	dB Expande	d Uncertaint	$U = ku_0$	c(y) $k=2$	for 95%	confic	dence	
Notes: RBW/	VBW =	1MHz/1	MHz For	frequencie	s between	1GHz a	nd 10 GHz				
I											

SOP 1 Rad	liated E	Emissi	ons		Tra	acking# 3	3066211	9.001 Page 6	of 15	
EUT Name EUT Model EUT Serial	ILC/I	Option LN 000037					Date Femp / Hu Femp / Hu	m in $\overline{7}$	16 November 2 70 deg F/ 70% N/A	
Standard				, RSS-210 I	ssue 7		ine AC / I	_	180VAC 60Hz	
Deg/sweep				•			RBW / VB\		1MHz/3MHz	
Dist/Ant Use							Performed		Randy Masline	!
Configuration	n Char	nnel 31	"927.6 M	Hz" Spurio	us Emissi	ons with i	nternal an	tenna		
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/r	e Limit	Spec Margin (dB)
Peak										
2782.80	V	1	0	42.05	35.30	6.11		42.32		-31.68
3710.40	V	1	0	40.31	34.86	7.22		44.56		-29.44
4638.00	V	1	0	44.58	35.24	8.20		50.39		-23.61
5565.60	V	1	0	37.53	34.86	11.91	34.51	49.09	74.00	-24.91
Average										
2782.80	V	1	0	35.21	35.30	6.11	29.46	35.48	3 54.00	-18.52
3710.40	V	1	0	35.37	34.86	7.22		39.62		-14.38
4638.00	V	1	0	42.38	35.24	8.20		48.19		-5.81
5565.60	V	1	0	32.44	34.86	11.91		44.00		-10.00
									NT Factor ± Uno	ertainty
Combined Stand										
Notes: RBW/		1MHz/1	MHz For	frequencies	s between	1GHz ar	nd 10 GHz	, Peak a	nd Average	
measuremen	ts.									

SOP 1 Rad	liated E	Emissi	ons		Tr	racking#	306621	19.0	01 Page 7	of 15	
EUT Name		Option	Board				Date	:		e 18, 2007	l-
EUT Model	ILC/I		20040				Temp / Hu			deg F / 46%	rn
EUT Serial Standard		000037		DSC 240 I	looue 7		Temp / Hu				
Deg/sweep	FCC	47 CF	K Pail 15	, RSS-210 I	issue <i>i</i>	Line AC / Freq. 120VAC 60Hz RBW / VBW 1MHz/1MHz					
Dist/Ant Use	2 mc	toro 10	`h- 10Cl	J-,			Performed			ndy Masline	
Configuration					ıo Emissis						
Configuration	m Char	inei 3 i	9 14.0 IVI	nz Spunot	is Ellissio	nis with	I RAD9023	NP AII	tenna	<u>a </u>	
Emission	ANT	ANT	Table	FIM	Amp	Cable		E-Fi		Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu		Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBu\	//m)	(dBuV/m)	(dB)
Peak				22.22	0= 00						10.0=
2744.00	V	1	0	29.00	35.29	7.40		30.9		74.0	-43.05
3659.00	V	1	0	42.60	35.26	8.60		47.8		74.0	-26.14
7318.00	V	1	0	26.00	35.61	12.7	4 36.40	39.5	53	74.0	-34.47
A											
Average	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0	47.00	25.00	7.4	0 70	40.5		54.0	24.45
2744.00	V	1	0	17.60	35.29	7.40		19.5		54.0	-34.45
3659.00	V	1	0	32.20	35.26	8.60		37.4		54.0	-16.54
7318.00		I	U	13.30	35.61	12.7	4 36.40	26.8	53	54.0	-27.17
Spec Margin = Combined Stand	dard Uncer	rtainty <i>U</i> _c	$\frac{1}{2}(y) = \pm 1.60$	dB Expande	ed Uncertaint	yU=ku	c(y) $k=2$	for 95%			ertainty
Notes: RBW/	VRW =	1MHz/1	MHz For	rrequencies	s between	1GHz a	na 10 GHz				

ted E	missi	ons			Tr	acking # 3	3066211	9.001 Page 8	of 15
LAN	Option	Board				Date	J	lune 18, 2007	
ILC/IL	_N					Temp / Hu	$m in \overline{7}$	74 deg F / 46%	rh
255-0	00037	3648				Temp / Hu	m out N	N/A	
FCC	47 CFF	R Part 15	, RSS-210 I	ssue 7		Line AC / I			
						RBW / VB\	N 1	MHz/1MHz	
3 met	ters 1G	Shz -10GH	Ηz		•	Performed	l by F	Randy Masline	!
Chan	nel 1 "	902.8 MH	Iz" Spurious	Emission	s with TI	RAB9023N	P Anten	na	
NT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	d Spec	Spec
olar	Pos	Pos	Value	Gain	Loss	Factor			Margin
- 1/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/r	n) (dBuV/m)	(dB)
									-44.49
									-25.85
V	1	0	26.00	35.63	9.2	32.17	31.79	74.0	-42.21
V	1								-36.39
_									-16.00
V	1	0	14.20	35.63	9.25	32.17	19.99	54.0	-34.01
					•				ertainty
	MHz/1	MHz For	frequencies	s between	1GHz a	nd 10 GHz	, Peak a	nd Average	
	LAN (ILC/IL 255-0 FCC - 3 met Chan NT olar H/V) V V V V V V V I Uncert	LAN Option ILC/ILN 255-000037 FCC 47 CFI 3 meters 10 Channel 1 " NT ANT olar Pos H/V) (m) V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V	255-0000373648 FCC 47 CFR Part 15 3 meters 1Ghz -10GH Channel 1 "902.8 MH NT ANT Table olar Pos Pos H/V) (m) (deg) V 1 0 V 1 0 V 1 0 V 1 0 V 1 0 Field Value - Limit, E-FI Uncertainty $u_c(y) = \pm 1.6a$	LAN Option Board ILC/ILN 255-0000373648 FCC 47 CFR Part 15, RSS-210 I 3 meters 1Ghz -10GHz Channel 1 "902.8 MHz" Spurious NT ANT Table FIM olar Pos Pos Value H/V) (m) (deg) (dBuV) V 1 0 28.50 V 1 0 43.60 V 1 0 26.00 V 1 0 33.45 V 1 0 14.20 Field Value - Limit, E-Field Value = I Uncertainty $u_c(y) = \pm 1.6$ dB Expande	LAN Option Board ILC/ILN 255-0000373648 FCC 47 CFR Part 15, RSS-210 Issue 7 3 meters 1Ghz -10GHz Channel 1 "902.8 MHz" Spurious Emission NT ANT Table FIM Ampolar Pos Pos Value Gain H/V) (m) (deg) (dBuV) (dB) V 1 0 28.50 35.55 V 1 0 43.60 35.31 V 1 0 26.00 35.63 V 1 0 33.45 35.31 V 1 0 33.45 35.31 V 1 0 14.20 35.63 Field Value - Limit, E-Field Value = FIM Value Uncertainty $u_c(y) = \pm 1.6$ dB Expanded Uncertainty	LAN Option Board ILC/ILN 255-0000373648 FCC 47 CFR Part 15, RSS-210 Issue 7 3 meters 1Ghz -10GHz Channel 1 "902.8 MHz" Spurious Emissions with TI NT ANT Table FIM Amp Cable olar Pos Pos Value Gain Loss I/V) (m) (deg) (dBuV) (dB) (dB) V 1 0 28.50 35.55 7.49 V 1 0 43.60 35.31 8.47 V 1 0 26.00 35.63 9.29 V 1 0 33.45 35.31 8.47 V 1 0 14.20 35.63 9.29 Field Value - Limit, E-Field Value = FIM Value - Amp Gall Uncertainty $U_c(y) = \pm 1.6$ dB Expanded Uncertainty $U = ku_c$	LAN Option Board Date ILC/ILN Temp / Hu 255-0000373648 Temp / Hu FCC 47 CFR Part 15, RSS-210 Issue 7 Line AC / IRBW / VB/R 3 meters 1Ghz -10GHz Performed Channel 1 "902.8 MHz" Spurious Emissions with TRAB9023N NT ANT Table FIM Amp Cable ANT Olar Pos Pos Value Gain Loss Factor (dB/m) I/V) (m) (deg) (dBuV) (dB) (dB) (dB) (dB/m) V 1 0 28.50 35.55 7.45 29.11 V 1 0 43.60 35.31 8.47 31.39 V 1 0 33.45 35.31 8.47 31.39 V 1 0 14.20 35.63 9.25 32.17 Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Later (Line Cy) L Uncertainty $U = ku_c(y) = \pm 1.6dB$ Expanded Uncertainty $U = ku_c(y)$	LAN Option Board Temp / Hum in Temp / Hum out Tem	LAN Option Board LC/ILN Temp / Hum in 74 deg F / 46%

SOP 1 Rac	diated E	Emissi	ons		Tr	acking# 3	30662119.0	01 Page 9	of 15	
EUT Name	LAN	Option	Board				Date	Jun	e 18, 2007	
EUT Model	ILC/I	•					Temp / Hu		deg F / 46%	rh
EUT Serial	255-	000037	3648				-	m out N/A		
Standard	FCC	47 CFI	R Part 15	, RSS-210	Issue 7		Line AC / I		VAC 60Hz	
Deg/sweep				-			RBW / VB\	w . 1M	Hz/1MHz	
Dist/Ant Use	3 me	eters 10	hz -10Gl	-lz			Performed	l by Rai	ndy Masline	
Configuration					us Emissic					
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
Peak										
2782.80	V	1	0	28.20	35.35	7.48	3 29.37	29.7	74.0	-44.3
3710.40	V	1	0	29.70	35.17	8.70	31.66	34.89	74.0	-39.11
4638.00	V	1	0	26.00	35.33	10.37	7 32.44	33.48	74.0	-40.52
5565.60	V	1	0	28.00	34.99	10.78	34.05	37.84	74.0	-36.16
Average										
2782.80	V	1	0	16.90	35.35	7.48	3 29.37	18.4	54.0	-35.6
3710.40	V	1	0	18.20	35.17	8.70	31.66	23.39	54.0	-30.61
4638.00	V	1	0	14.20	35.33	10.37	7 32.44	21.68	54.0	-32.32
5565.60	V	1	0	15.60	34.99	10.78	34.05	25.44	54.0	-28.56
Spec Margin =	E-Field	Value - I	Limit, E-F	ield Value =	FIM Value	- Amp Ga	in + Cable L	oss + ANT I	actor ± Und	ertainty
Combined Stand									dence	
Notes: RBW/	VBW =	1MHz/1	MHz For	frequencie	s between	1GHz a	nd 10 GHz			

SOP 1 Rad	diated E	Emissi	ons		Tra	acking # 3	306621	19.0	01 Page 10) of 15	
EUT Name	LAN	Option	Board			ļ	Date		Jun	e 18, 2007	
EUT Model	ILC/I	LN				•	Temp / Hu	m in	74 (deg F / 46%	rh
EUT Serial		000037				-	Temp / Hu	m out			
Standard	FCC	47 CFI	R Part 15	, RSS-210	Issue 7		Line AC / I	Freq.	120	VAC 60Hz	
Deg/sweep							RBW / VB\	N	1MI	Hz/1MHz	
Dist/Ant Use	ed 3 me	ters 10	Shz -10Gl	Ηz			Performed	l by	Rar	ndy Masline	
Configuration	on Char	nnel 31	"914.8 M	Hz" Spuriοι	us Emissio	ns with N	MFB9380 <i>A</i>	Antenna	а		
Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Fie Valu (dBuV	ıe	Spec Limit (dBuV/m)	Spec Margin (dB)
Peak	(11/ /)	(111)	(ueg)	(dbdv)	(GD)	(GD)	(ub/iii)	(abav	7111)	(abav/iii)	(ub)
2744.00	V	1	0	34.71	35.29	7.46	3 29.78	36.6	36	74.00	-37.34
3659.00	V	1	0	27.45	35.26	8.60		32.7		74.00	-41.29
7318.00	V	1	0	26.82	35.61	12.74	-	40.3		74.00	-13.65
Average											
2744.00	V	1	0	28.01	35.29	7.46	3 29.78	29.9	96	54.00	-24.04
3659.00	V	1	0	15.34	35.26	8.60	31.92	20.6	60	54.00	-33.40
7318.00	V	1	0	14.09	35.61	12.74	36.40	27.6	32	54.00	-26.38
Spec Margin =											ertainty
Combined Stand								for 95%	confid	dence	
Notes: RBW/	VBW =	1MHz/1	IMHz For	frequencie	s between	1GHz aı	nd 10 GHz				

SOP 1 Rad	diated E	Emissi	ions			Tra	acking#	306621	19.0	001 Page 11	l of 15
EUT Name	LAN	Option	Board			0	Date		Jun	e 18, 2007	
EUT Model	ILC/I	LN				т	emp / Hu	m in	74 (deg F / 46%	rh
EUT Serial	255-	000037	' 3648				emp / Hu		N/A		
Standard	FCC	47 CF	R Part 15	, RSS-210 I	ssue 7		ine AC / I	Freq.	120	VAC 60Hz	
Deg/sweep							RBW / VB			Hz/1MHz	
Dist/Ant Use	ed 3 me	eters 10	Shz -10GH	Hz		P	Performed	l by	Rar	ndy Masline	
Configuration					Emission	s with MF	-B9380 Ar	ntenna			
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Fie	eld	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu	e	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV	/m)	(dBuV/m)	(dB)
Peak											
2708.00	V	1	0	29.00	35.55	7.45	29.11	30.0	1	74.0	-43.99
3611.00	V	1	0	30.00	35.31	8.47	31.39	34.5	5	74.0	-39.45
4514.00	V	1	0	26.00	35.63	9.25	32.17	31.7	9	74.0	-42.21
Average											
2708.00	V	1	0	16.80	35.55	7.45	29.11	17.8	1	54.0	-36.19
3611.00	V	1	0	18.00	35.31	8.47	31.39	22.5	5	54.0	-31.45
4514.00	V	1	0	14.30	35.63	9.25	32.17	20.0	9	54.0	-33.91
Spec Margin =	E-Field	Value -	Limit, E-F	ield Value =	FIM Value	- Amp Gai	n + Cable l	oss + A	NT F	actor ± Unc	ertainty
Combined Stand											
Notes: RBW/		1MHz/	MHz For	frequencies	s between	1GHz an	id 10 GHz	, Peak	and	Average	
measuremen	nts.										

SOP 1 Rad	DP 1 Radiated Emissions Tracking # 30662119.001 Page 12 of 15									
EUT Name	LAN	Option	Board				Date	Ju	ine 18, 2007	
EUT Model	ILC/I	LN					Temp / Hu	m in 74	l deg F / 46%	rh
EUT Serial	255-	000037	3648				Temp / Hu	m out N	'A	
Standard	FCC	47 CFI	R Part 15	, RSS-210 I	lssue 7		Line AC / I	Freq. 12	20VAC 60Hz	
Deg/sweep							RBW / VB	N 11	//Hz/1MHz	
Dist/Ant Use	d 3 me	ters 10	hz -10Gł	-lz			Performed	l by R	andy Masline	;
Configuration	n Char	nnel 31	"927.6 M	Hz" Spuriοι	us Emissio	ns with I	MFB9380 <i>A</i>	Antenna		
				•						
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m) (dBuV/m)	(dB)
Peak										
2782.80	V	1	0	28.00	35.35	7.48	3 29.37	29.5	74.0	-44.5
3710.40	V	1	0	28.00	35.17	8.70	31.66	33.19	74.0	-40.81
4638.00	٧	1	0	26.00	35.33	10.37	7 32.44	33.48	74.0	-40.52
5565.60	V	1	0	26.00	34.99	10.78	34.05	35.84	74.0	-38.16
Average										
2782.80	V	1	0	16.50	35.35	7.48	3 29.37	18	54.0	-36.00
3710.40	٧	1	0	15.50	35.17	8.70	31.66	20.69	54.0	-33.31
4638.00	٧	1	0	14.20	35.33	10.37	7 32.44	21.68	54.0	-32.32
5565.60	V	1	0	14.20	34.99	10.78	34.05	24.04	54.0	-29.96
Spec Margin =	E-Field \	Value - I	Limit, E-F	ield Value =	FIM Value	- Amp Ga	in + Cable L	oss + ANT	Factor ± Unc	ertainty
Combined Stand	lard Uncei	rtainty <i>U</i> ₀	$\frac{(y)}{(y)} = \pm 1.60$	dB Expande	ed Uncertaint	yU=ku	c(y) $k=2$	for 95% cor	fidence	
Notes: RBW/	VBW =	1MHz/1	MHz For	frequencies	s between	1GHz a	nd 10 GHz			
1										

SOP 1 Rac	diated E	Emissi	ons			Tı	racking#	306621	19.0	01 Page 13	3 of 15
EUT Name	LAN	Option	Board				Date		Jun	e 18, 2007	
EUT Model	ILC/I	LN					Temp / Hu	m in	74 (deg F / 46%	rh
EUT Serial	255-	000037	'3648				Temp / Hu	m out	N/A		
Standard	FCC	47 CFI	R Part 15	, RSS-210 I	ssue 7		Line AC /	Freq.	120	VAC 60Hz	
Deg/sweep							RBW / VB	w ·	1MI	Hz/1MHz	
Dist/Ant Use	3 me	ters 10	Shz -10Gł	-lz			Performed	d bv	Rar	ndy Masline	
Configuration					ıs Emissio						
- Gornigan and	Oo		• • • • • • • • • • • • • • • • • • • •	ороос							
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Fie	eld	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu		Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV		(dBuV/m)	(dB)
Peak	, ,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		, ,			l`			· /
2744.00	Н	1	0	40.12	35.29	7.4	6 29.24	41.5	53	74.0	-32.47
3659.00	Н	1	0	29.30	35.26	8.6	0 31.59	34.2	23	74.0	-39.77
7318.00	Н	1	0	25.40	35.61	12.7	4 36.16	38.6	39	74.0	-35.31
Average											
2744.00	Н	1	0	29.44	35.29	7.4	6 29.24	30.8	35	54.0	-23.15
3659.00	Н	1	0	17.67	35.26	8.6	0 31.59	22.0	6	54.0	-31.4
7318.00	Н	1	0	13.56	35.61	12.7	4 36.16	26.8	35	54.0	-27.15
Spec Margin =	E-Field	Value - I	Limit, E-F	ield Value =	FIM Value	- Amp Ga	ain + Cable I	oss + A	NT F	actor ± Unc	ertainty
Combined Stand									confid	dence	
Notes: RBW/	VBW =	1MHz/1	MHz For	frequencies	s between	1GHz a	nd 10 GHz				

SOP 1 Rac	diated E	Emissi	ons			Tra	icking# 3	306621	19.0	001 Page 14	of 15
EUT Name	LAN	Option	Board			D	ate		Jun	e 18, 2007	
EUT Model	ILC/I					Т	emp / Hu	m in		deg F / 46%	rh
EUT Serial	255-	000037	3648			т	emp / Hu	m out	N/A		
Standard	FCC	47 CF	R Part 15,	, RSS-210 I	ssue 7	L	ine AC / I	Freq.	120	VAC 60Hz	
Deg/sweep						R	BW / VB	w ·	1MI	Hz/1MHz	
Dist/Ant Use	ed 3 me	ters 10	hz -10GH	Ιz		P	erformed	l by	Rar	ndy Masline	
Configuration	n Char	nnel 1 "	902.8 MH	z" Spurious	Emission	s with MF	B9153 Ar	ntenna		•	
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Fi	eld	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Valu	ıe	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBu√	//m)	(dBuV/m)	(dB)
Peak											
2708.00	V	1	0	29.50	35.55	7.45		30.5		74.0	-43.49
3611.00	V	1	0	31.20	35.31	8.47		35.7		74.0	-38.25
4514.00	V	1	0	26.00	35.63	9.25	32.17	31.7	79	74.0	-42.21
Average											
2708.00	V	1	0	16.90	35.55	7.45		17.9		54.0	-36.09
3611.00	V	1	0	19.50	35.31	8.47		24.0		54.0	-29.95
4514.00	V	1	0	14.50	35.63	9.25	32.17	20.2	29	54.0	-33.71
Spec Margin =						•					ertainty
Combined Stand											
Notes: RBW/ measuremen		1MHz/1	MHz For	frequencies	s between	1GHz an	d 10 GHz	, Peak	and	Average	

SOP 1 Radiated Emissions Tracking								30662119.0	001 Page 1	5 of 15
EUT Name	LAN	Option	Board				ate	Jur	ne 18, 2007	
EUT Model	ILC/I	_					emp / Hu		deg F / 46%	rh
EUT Serial	255-	000037	3648				•	m out N/A		
Standard	FCC	47 CFI	R Part 15	, RSS-210 l	ssue 7	L	ine AC / I	Freq. 120	VAC 60Hz	
Deg/sweep						R	RBW / VB	W 1M	Hz/1MHz	
Dist/Ant Use	ed 3 me	eters 10	hz -10Gl	Ηz		P	erformed	l by Ra	ndy Masline	
Configuration	n Char	nnel 31	"927.6 M	Hz" Spuriοι	us Emissio	ns with M	IFB9153 <i>F</i>	Antenna		
_				-						
Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
Peak										
2782.80	Н	1	0	28.20	35.35	7.48	_	30.22	74.0	-43.78
3710.40	Н	1	0	27.60	35.17	8.70		33.16	74.0	-40.84
4638.00	Н	1	0	26.80	35.33	10.37		34.54	74.0	-39.46
5565.60	Н	1	0	26.20	34.99	10.78	34.35	36.35	74.0	-37.65
Average				10.00						
2782.80	Н	1	0	16.80	35.35	7.48		18.82	54.0	-35.18
3710.40	Н	1	0	15.70	35.17	8.70		21.26	54.0	-32.74
4638.00	H	1	0	14.40	35.33	10.37		22.14	54.0	-31.86
5565.60	Н	1	0	14.40	34.99	10.78	34.35	24.55	54.0	-29.45
0	F F:				EINAN (A O .:	0		<u> </u>	
Spec Margin =										ertainty
Combined Stand								for 95% confi	aence	
Notes: RBW/	A DAA =	HVI⊟Z/1	IVIMZ FOR	rrequericies	s between	ighz an	u IU GHZ			

5.3 Frequency Hopping Spread Spectrum Systems FCC Part 15.247(g)

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

When the ALPHA Meter is presented with a continuous data stream, each 97.3 msec packet transmitted by the meter will be sent on the next channel in the 25-channel pseudo random list. When presented with a continuous data stream, the ALPHA meter adheres to the 0.4 second dwell time for each 10 second window requirement. The ALPHA Meter always distributes its transmissions across all 25 channels, and does not re-use a channel again until a transmission has occurred on each of the other 24 channels.

5.4 Incorporation of Intelligence within a Frequency Hopping Spread Spectrum System FCC Part 15.247(h)

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The ALPHA meter does not attempt to recognize other users or interferers within the spectrum band and then attempt to select which channels to use. The ALPHA Meter always distributes its transmissions across the same 25 channels. A channel is not re-used until a transmission has occurred on each of the other 24 channels.

5.5 Frequency Stability FCC Part 15.215(c)

The requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

Spectrum Analyzer Parameters:

RBW=30KHz

VBW=RBW

Span=1MHz

LOG dB/div.= 10dB

Sweep = 9.167 mS

Trigger Video

5.5.1 Containment of the Emission during Variations in Temperature

The EUT was placed in an environmental temperature test chamber, supplied with the normal AC voltage, and with an antenna attached to the output port. If the antenna is an adjustable length antenna, it will be fully extended. The monitoring device (ie. Spectrum analyzer) was then attached to a receive antenna placed 15 cm away from the EUT via coaxial cable.

The temperature inside the chamber is then raised to the highest temperature specified and allowed sufficient time for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the environmental chamber, the carrier signal was then measured 40 min after temperature stabilization. Then the above process is repeated for the lowest temperature specified and 10 degree Centigrade increments between the extremes thereafter.

Results

Channel 0 "Low Band" (Modulated) 902.8 MHz

Temperature	Frequency in MHz below peak	measured 20dB	Permitted Band Edge in MHz	Results
-30° C	902.476	903.124	902 - 928	Pass
-20° C	902.489	903.111	902 - 928	Pass
-10° C	902.495	903.105	902 - 928	Pass
0° C	902.489	903.111	902 - 928	Pass
10° C	902.476	903.124	902 - 928	Pass
20° C	902.594	903.086	902 - 928	Pass
30° C	902.525	903.075	902 - 928	Pass
40° C	902.536	903.064	902 - 928	Pass
50° C	902.536	903.064	902 - 928	Pass

Channel 31 "High Band" (Modulated) 927.6 MHz

Temperature	Frequency in MHz measured 20dB below peak		Permitted Band Edge in MHz	Results
-30° C	927.325	927.870	902 - 928	Pass
-20° C	927.325	927.870	902 - 928	Pass
-10° C	927.325	927.870	902 - 928	Pass
0° C	927.325	927.870	902 - 928	Pass
10° C	927.325	927.870	902 - 928	Pass
20° C	927.325	927.870	902 - 928	Pass
30° C	927.330	927.885	902 - 928	Pass
40° C	927.330	927.885	902 - 928	Pass
50° C	927.330	927.885	902 - 928	Pass

5.5.2 Containment of the Emission during Variations in Voltage

The setup was identical section 4.7.1 except the temperature inside of the chamber was set to 17 deg. C.

Channel 0 "Low Band" 902.8 MHz (Modulated)

Voltage	Frequency in MHz below peak	measured 20dB	Permitted Band Edge in MHz	Results
120 VAC	902.468	903.132	902 - 928	Pass
102 VAC	902.465	903.136	902 - 928	Pass
138 VAC	902.483	903.116	902 - 928	Pass

Channel 31 "High Band" 927.6 MHz (Modulated)

Temperature	Frequency in MHz below peak	measured 20dB	Permitted Band Edge in MHz	Results
120 VAC 102 VAC	927.331 927.332	927.885 927.886	902 - 928 902 - 928	Pass Pass
138 VAC	927.335	927.896	902 - 928	Pass

Spectrum Analyzer Parameters:

RBW=30KHz

VBW=RBW

Span=1MHz

LOG dB/div.= 10dB

Sweep = 5 mS

Trigger Video

5.5.3 Photos

Figure 7 - Radiated Emissions Test Setup (Chamber – Front, X orientation)

Figure 8 - Radiated Emissions Test Setup (Chamber – Back, X orientation)

Figure 9 – Temperature Chamber Setup

Figure 10 – Setup for Substitution Method

Figure 11 – Setup for Conducted Power Measurements

5.5.4 **Sample Calculation**

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

 $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $dB\mu V/m$

 $\mu V/m = 10$

5.6 Conducted Emissions

Testing was performed in accordance with 47 CFR Part 15.207, ANSI C63.4:2003, RSS-210 Issue 7. These test methods are listed under the laboratory's NVLAP Scope of Accreditation.

This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

5.6.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. For each frequency sub-range, each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of $50\mu H/50\Omega$ LISNs.

Testing is either performed in the anechoic chamber or on PLC Site 2. The setup photographs clearly identify which site was used. The vertical ground plane used in the anechoic chamber is a 2m x 2m wooden frame that is covered with ¼ inch hardware cloth and is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

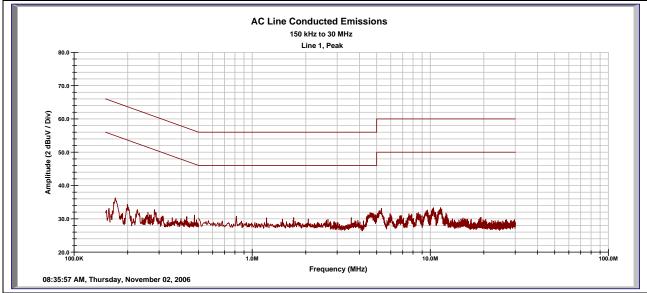
5.6.1.1 Deviations

There were no deviations from this test methodology.

5.6.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Plots of the EUT's AC Line Conducted emissions are contained in the following sections. The plots show peak and/or average emissions and the corresponding peak and/or average limits. If the peak emissions are below the average limit, then the EUT is considered to pass and no average measurements are made. If the peak emissions are below the quasi-peak limit and the average emissions are below the average limit, then the EUT is considered to pass and no further measurements are made. Otherwise, individual frequencies are measured and compared to the corresponding limit for the detector used (quasi-peak or average).


5.6.2.1 Final Data

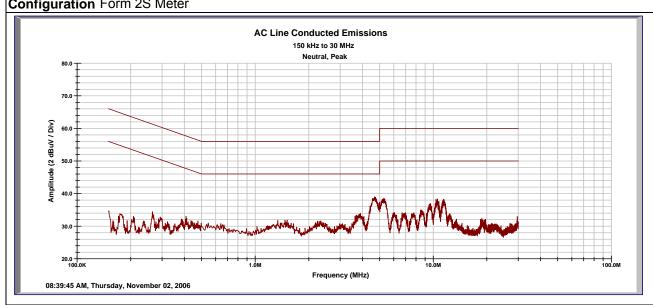
The data recorded in this section contains the final results under the worst-case conditions and with any modifications or special accessories implemented as the manufacturer intends.

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

33_EME/I 01/29/2001

SOP 2 Conducted Emissions		Tracking # 30662119.001 Page 1 of 12			
EUT Name	LAN Option Board	Date	02 November 2006		
EUT Model	ILC/ILN	Temperature	74 Deg F		
EUT Serial	06 210 289	Humidity	39% rh		
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	480VAC/60Hz		
LISNs Used	ABB #2	Performed by	Randy Masline		
Configuration	Form 2S Meter		<u>-</u>		

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.17	1	14.61	6.29	0.01	10.04	64.96	54.96	-40.30	-38.62
5.30	1	15.63	9.00	0.07	10.17	60.00	50.00	-34.13	-30.76


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

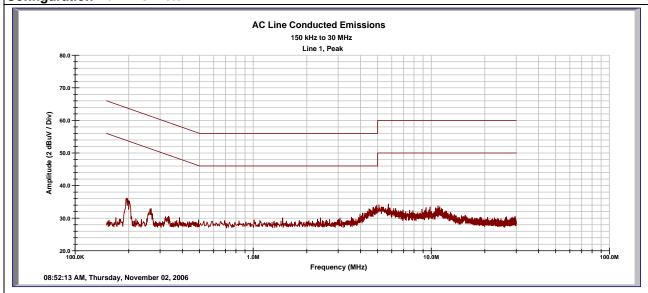
Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

Report Number: 30662119.001

SOP 2 Cond	lucted Emissions	Tracking # 30662	Tracking # 30662119.001 Page 2 of 12			
EUT Name	LAN Option Board	Date	02 November 2006			
EUT Model	ILC/ILN	Temperature	74 Deg F			
EUT Serial	06 210 289	Humidity	39% rh			
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	480VAC/60Hz			
LISNs Used	ABB #2	Performed by	Randy Masline			
Configuration	Form 2S Meter					

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
4.68	N	25.07	18.83	0.07	10.06	56.00	46.00	-20.80	-17.04
5.24	N	23.87	17.25	0.07	10.09	60.00	50.00	-25.97	-22.59
10.55	Ν	23.24	16.87	0.11	10.31	60.00	50.00	-26.34	-22.71
11.50	N	22.54	16.07	0.12	10.33	60.00	50.00	-27.01	-23.48


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

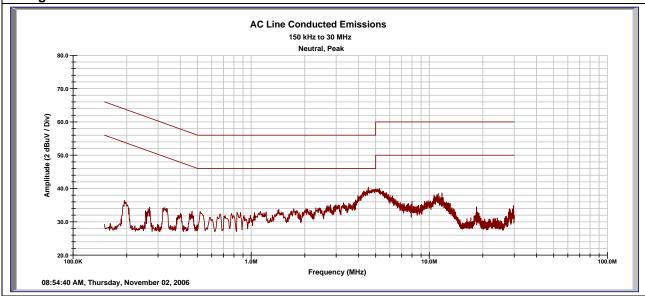
Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

Report Number: 30662119.001

SOP 2 Cond	ducted Emissions	Tracking # 30662119.001 Page 3 of 12			
EUT Name	LAN Option Board	Date	02 November 2006		
EUT Model	ILC/ILN	Temperature	74 Deg F		
EUT Serial	06 210 289	Humidity	39% rh		
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	120VAC/60Hz		
LISNs Used	ABB #2	Performed by	Randy Masline		
Configuration	Form 2S Meter				

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.20	1	22.77	11.31	0.00	10.05	63.65	53.65	-30.83	-32.29
0.27	1	16.82	7.00	0.01	10.04	61.21	51.21	-34.34	-34.16


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

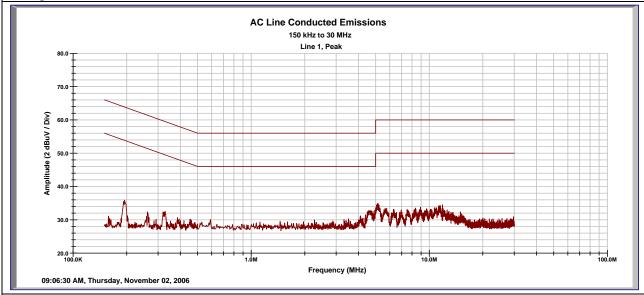
Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

Report Number: 30662119.001

SOP 2 Conducted Emissions		Tracking # 30662119.001 Page 4 of 12						
EUT Name	LAN Option Board	Date	02 November 2006					
EUT Model	ILC/ILN	Temperature 74 Deg F						
EUT Serial	06 210 289	Humidity	39% rh					
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	120VAC/60Hz					
LISNs Used	ABB #2	Performed by	Randy Masline					
Configuration	Configuration Form 2S Meter							

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.20	N	22.72	16.16	0.00	9.93	63.65	53.65	-31.00	-27.56
0.33	N	19.71	13.73	0.01	9.92	59.40	49.40	-29.76	-25.74
4.54	N	24.99	12.92	0.06	10.07	56.00	46.00	-20.88	-22.95
5.11	N	24.63	12.91	0.07	10.09	60.00	50.00	-25.21	-26.93


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

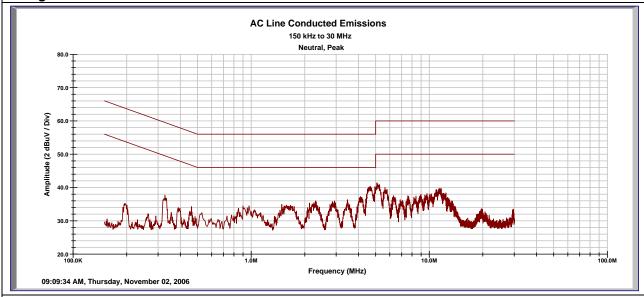
Notes:

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

SOP 2 Conducted Emissions		Tracking # 30662119.001 Page 5 of 12							
EUT Name	LAN Option Board	Date	02 November 2006						
EUT Model	ILC/ILN	Temperature	74 Deg F						
EUT Serial	06 210 289	Humidity	39% rh						
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	240VAC/60Hz						
LISNs Used	ABB #2	Performed by	Randy Masline						
Configuration	Configuration Form 2S Meter								

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.19	1	20.43	10.48	0.00	10.04	64.04	54.04	-33.56	-33.51
5.14	1	18.13	8.18	0.07	10.16	60.00	50.00	-31.64	-31.59

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty


Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

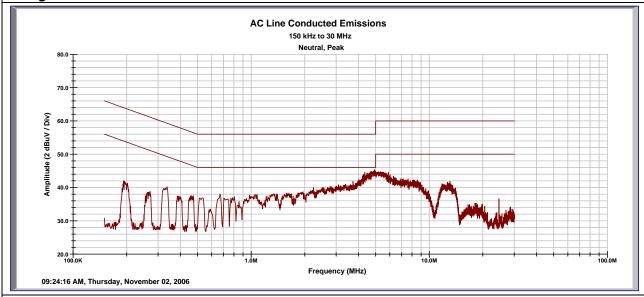
Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

33_EME/I 01/29/2001

SOP 2 Cond	lucted Emissions	Tracking # 30662119.001 Page 6 of 12					
EUT Name	LAN Option Board	Date	02 November 2006				
EUT Model	ILC/ILN	Temperature	74 Deg F				
EUT Serial	06 210 289	Humidity	39% rh				
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	240VAC/60Hz				
LISNs Used	ABB #2	Performed by	Randy Masline				
Configuration Form 2S Meter							

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.33	Ν	23.33	17.82	0.01	9.92	59.53	49.53	-26.26	-21.77
4.70	N	26.25	16.81	0.07	10.06	56.00	46.00	-19.62	-19.06
5.07	Ν	25.21	14.95	0.07	10.09	60.00	50.00	-24.63	-24.89
2.30	N	19.72	9.52	0.04	9.98	56.00	46.00	-26.26	-26.46

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty


Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

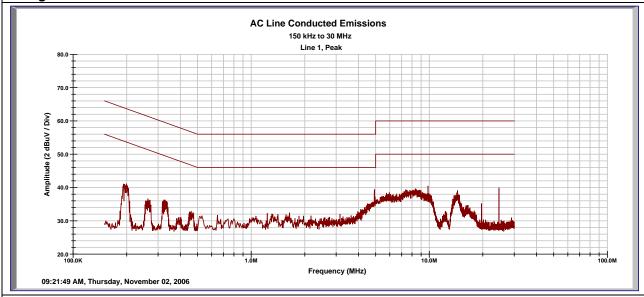
Notes:

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

33_EME/I 01/29/2001

SOP 2 Cond	lucted Emissions	Tracking # 30662	Tracking # 30662119.001 Page 7 of 12				
EUT Name	LAN Option Board	Date	02 November 2006				
EUT Model	ILC/ILN	Temperature	74 Deg F				
EUT Serial	06 210 289	Humidity	39% rh				
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	120VAC/60Hz				
LISNs Used	ABB #1	Performed by	Randy Masline				
Configuration Form 9S Meter/Collector							

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
4.34	N	28.58	17.20	0.07	10.05	56.00	46.00	-17.30	-18.68
4.98	N	30.38	20.24	0.06	10.08	56.00	46.00	-15.48	-15.62
5.47	N	29.88	19.75	0.07	10.11	60.00	50.00	-19.94	-20.07
0.33	N	27.70	20.04	0.01	9.92	59.33	49.33	-21.69	-19.35


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

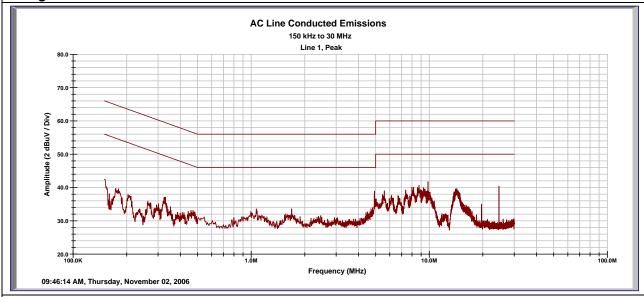
Notes:

Report Number: 30662119.001

SOP 2 Cond	lucted Emissions	Tracking # 30662	Tracking # 30662119.001 Page 8 of 12					
EUT Name	LAN Option Board	Date	02 November 2006					
EUT Model	ILC/ILN	Temperature	74 Deg F					
EUT Serial	06 210 289	Humidity	39% rh					
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	120VAC/60Hz					
LISNs Used	ABB #2	Performed by	Randy Masline					
Configuration	Configuration Form 9S Meter/Collector							

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
4.92	1	25.70	22.81	0.06	10.15	56.00	46.00	-20.09	-12.98
9.83	1	27.19	24.32	0.11	10.36	60.00	50.00	-22.34	-15.21

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty


Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

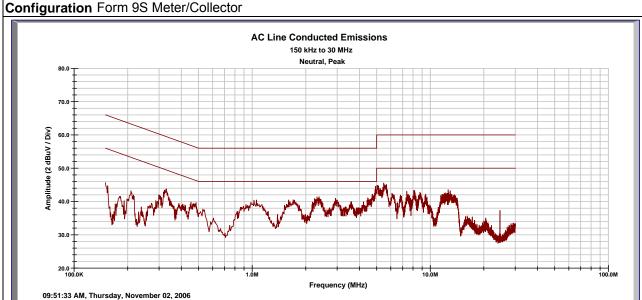
Notes:

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

33_EME/I 01/29/2001

SOP 2 Cond	lucted Emissions	Tracking # 30662	Tracking # 30662119.001 Page 9 of 12					
EUT Name	LAN Option Board	Date	02 November 2006					
EUT Model	ILC/ILN	Temperature	74 Deg F					
EUT Serial	06 210 289	Humidity	39% rh					
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	277VAC/60Hz					
LISNs Used	ABB #1	Performed by	Randy Masline					
Configuration	Configuration Form 9S Meter/Collector							

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
4.91	1	25.89	23.60	0.06	10.15	56.00	46.00	-19.90	-12.19
9.83	1	27.44	24.65	0.11	10.36	60.00	50.00	-22.09	-14.88


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

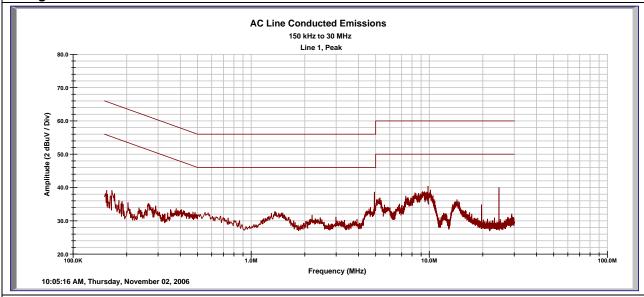
Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

Report Number: 30662119.001

SOP 2 Cond	lucted Emissions	Tracking # 30662	Tracking # 30662119.001 Page 10 of 12		
EUT Name	LAN Option Board	Date	02 November 2006		
EUT Model	ILC/ILN	Temperature	74 Deg F		
EUT Serial	06 210 289	Humidity	39% rh		
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	277VAC/60Hz		
LISNs Used	ABB #1	Performed by	Randy Masline		

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.33	N	30.36	26.48	0.01	9.92	59.48	49.48	-19.18	-13.06
2.31	N	26.36	19.01	0.04	9.98	56.00	46.00	-19.62	-16.97
5.06	N	29.87	21.73	0.07	10.09	60.00	50.00	-19.97	-18.11
5.48	N	29.10	22.08	0.08	10.11	60.00	50.00	-20.72	-17.74


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

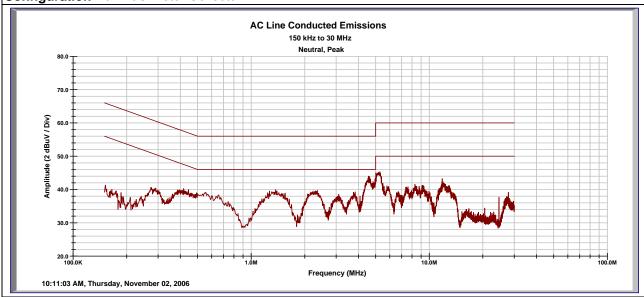
Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

Report Number: 30662119.001

SOP 2 Cond	lucted Emissions	Tracking # 30662	Tracking # 30662119.001 Page 11 of 12					
EUT Name	LAN Option Board	Date	02 November 2006					
EUT Model	ILC/ILN	Temperature	74 Deg F					
EUT Serial	06 210 289	Humidity	39% rh					
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	480VAC/60Hz					
LISNs Used	ABB #1	Performed by	Randy Masline					
Configuration	Configuration Form 9S Meter/Collector							

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
4.91	1	26.40	24.60	0.06	10.15	56.00	46.00	-19.39	-11.19
9.83	1	27.00	23.47	0.11	10.36	60.00	50.00	-22.53	-16.06


Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

SOP 2 Cond	lucted Emissions	Tracking # 30662119.001 Page 12 of 12				
EUT Name	LAN Option Board	Date	02 November 2006			
EUT Model	JT Model ILC/ILN		74 Deg F			
EUT Serial	06 210 289	Humidity	39% rh			
Standard	FCC 47 CFR Part 15, RSS-210 Issue 7	Line AC /Freq	480VAC/60Hz			
LISNs Used	ABB #1	Performed by	Randy Masline			
Configuration Form 9S Meter/Collector						

Emission	Line	FIM	FIM	Cable	LISN +	Quasi	Ave	Quasi Spec	Ave Spec
Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.42	Ν	28.91	21.00	0.01	9.93	57.51	47.51	-18.66	-16.57
1.36	N	25.31	19.94	0.03	9.96	56.00	46.00	-20.70	-16.07
4.56	Ν	29.35	23.24	0.06	10.06	56.00	46.00	-16.52	-12.63
5.27	N	31.25	24.91	0.07	10.10	60.00	50.00	-18.58	-14.92

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes:

Report Number: 30662119.001

5.6.3 Photos

Figure 12 - Conducted Emissions Test Setup (Front)

5.6.4 Sample Calculation

The signal strength is calculated by adding the LISN Correction Factor and Cable Loss to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM + CBL + LCF$

Where: $FIM = Field Intensity Meter (dB\mu V)$

CBL = Cable Loss (dB)LCF = LISN Loss (dB)

 $dB\mu V/m$

6 Test Equipment Use List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy
SOP 1 - Radiated Emiss	sions (5 Meter Chamb	per)			
Amplifier, preamp	Hewlett Packard	8449B	3008A00268	05-Aug-06	05-Aug-07
Ant. Log Periodic	AH Systems	SAS-516	133	13-Mar-06	13-Mar-07
Antenna Horn	EMCO	3115	9903.5770	28 -Apr -06	28 -Apr-07
Ant. Dipole Set BL 1-4	ЕМСО	3121C	9302-914	9-Sep-05	9-Sep-06
Cable, Coax	Andrew	FSJ1-50A	031	18-Jan-06	18-Jan-07
Cable, Coax	Andrew	FSJ1-50A	041	18-Jan-06	18-Jan-07
Cable, Coax	Andrew	FSJ1-50A	042	18-Jan-06	18-Jan-07
Cable, Coax	Andrew	FSJ1-50A	045	18-Jan-06	18-Jan-07
Chamber, Semi-Anechoic	Braden Shielding	5 meter	A67631	27-Jan-06	27-Jan-07
Data Table, EMCWin	TUV EMC	EMCWin.dll	002	N/A	N/A
Spectrum Analyzer	Rohde & Schwarz	ESI		22-Dec-06	22-Dec-07

SOP 2 - Conducted Emis	ssions (AC/DC and Sig	gnal I/O)			
Cable, Coax	Belden	RG-213	004	18-Jan-06	18-Jan-07
LISN (5) 50mH/50Ω	Solar Electronics	8028-50-TS-24	990441	5-Aug-06	5-Aug-07
LISN (6) 50mH/50Ω	Solar Electronics	8028-50-TS-24	990442	5-Aug-06	5-Aug-07
LISN Selection Box	TUV Rheinland	CFL-9206	1650	26-Sep-05	26-Sep-06
Spectrum Analyzer	Agilent Tec.	E7405A	US39440157	27-Feb-06	27-Feb-07
Cable, Coax	Belden	RG-213	004	18-Jan-06	18-Jan-07
General Laboratory Equi	ipment				
Filter, High Pass	Bonn	BHF1500	025155	22-Jul-03	22-Jul-04
Meter, Multi	Fluke	79-3	69200606	5-Aug-06	5-Aug-07
Meter, Temp/Humid/Barom	Fisher	02-400	01	24-Oct-05	24-Oct-06
Power Supply, AC	California Instruments	1251P	L06429	CNR II	CNR II

^{*} Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

7 Secondary Test Equipment Use List

The following test equipment was used during additional testing

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy			
	SOP 1 - Radiated Emissions (5 Meter Chamber)							
Spectrum Analyzer	Agilent Tec.	E7405A	US39440157	19-Apr-07	19-Apr-08			
Cable, Coax	Andrew	FSJ1-50A	036	14-Mar-07	14-Mar-08			
Cable, Coax	Andrew	ndrew FSJ1-50A		24-Jan-2007	24-Jan-2008			
Cable, Coax	Andrew	FSJ1-50A	045	24-Jan-07	24-Jan-08			
Ant. BiconiLog	Chase	CBL6140A	1108	16-May-2006	16-May-2008			
DBL Ridge Horn ANT	EMCO	3115	2236	25-Jan-07	25-Jan-09			

Report Number: 30662119.001 EUT: LAN Option Board Model: ILC/ILN

33_EME/I 01/29/2001