

FCC / ISED Test Report

For: Elster Solutions, LLC

> Model: NXCMR300

Product Description: 900MHz ISM radio, LTE Cat-M1 MODEM, gas & water metering metrology

> FCC ID: QZC-NXCMR300 IC: 4577A-NXCMR300

Applied Rules and Standards: 47 CFR Part 15.247 (DSS) RSS-247 Issue 2 (FHSs) & RSS-Gen Issue 5

REPORT #: EMC_HONEY_229_23001_FCC_15_247_Rev2

DATE: 2023-11-09

A2LA Accredited

IC recognized # 3462B

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: contact@cetecom.com • <u>http://www.cetecom.com</u> CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

© Copyright by CETECOM

TABLE OF CONTENTS

1		ASSESSMENT	3
2		ADMINISTRATIVE DATA	4
	2.1 2.2 2.3	IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT IDENTIFICATION OF THE CLIENT IDENTIFICATION OF THE MANUFACTURER	4 4 4
3	F	EQUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5	EUT SPECIFICATIONS EUT SAMPLE DETAILS ACCESSORY EQUIPMENT (AE) DETAILS TEST SAMPLE CONFIGURATION JUSTIFICATION FOR WORST CASE MODE OF OPERATION	5 6 6 6 6
4	5	SUBJECT OF INVESTIGATION	7
5	ľ	MEASUREMENT RESULTS SUMMARY	7
6	ľ	MEASUREMENTS	8
	6.1 6.2 6.3 6.4	MEASUREMENT UNCERTAINTY ENVIRONMENTAL CONDITIONS DURING TESTING: DATES OF TESTING: DECISION RULE:	8 8 8
7	ľ	MEASUREMENT PROCEDURES	9
	7.1 7.2 7.3	RADIATED MEASUREMENT RADIATED MEASUREMENT FOR EUT WITH DIAMETER LESS THAN 60 CM SAMPLE CALCULATIONS FOR FIELD STRENGTH MEASUREMENTS	9 9 11
8	٦	TEST RESULT DATA	
	8.1 8.2 8.3 8.4 8.5 8.6 8.7	MAXIMUM PEAK CONDUCTED OUTPUT POWER BAND EDGE COMPLIANCE	
9	٦	TEST SETUP PHOTOS	
10	ר (TEST EQUIPMENT AND ANCILLARIES USED FOR TESTING	44
11	F	REVISION HISTORY	

FCC ID: QZC-NXCMR300 IC: 4577A-NXCMR300

1 Assessment

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-247.

No deviations were ascertained.

Company	Description	Model #	
Elster Solutions, LLC	900MHz ISM radio, LTE Cat-M1 MODEM, gas & water metering metrology	NXCMR300	

Responsible for Testing Laboratory:

	Arndt Stoecker					
2023-11-09 Compliance (Director of Regulatory Services)						
Date	Section	Name	Signature			
			0.9			

Responsible for the Report:

Art Thammanavarat				
2023-11-09	Compliance	(Senior EMC Engineer)		
Date	Section	Name	Signature	

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
EMC Lab Manager:	Arndt Stoecker
Responsible Project Leader:	Cathy Palacios

2.2 Identification of the Client

Client's Name:	Elster Solutions, LLC
Street Address:	208 South Rogers Lane
City/Zip Code	Raleigh, NC 27610
Country	USA

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Same as Client
City/Zip Code	
Country	

3 Equipment Under Test (EUT)

3.1 EUT Specifications ⁽¹⁾

Model No:	NXCMR300
HW Version :	1.0
SW Version :	1.0
FCC-ID :	QZC-NXCMR300
IC-ID:	4577A-NXCMR300
PMN:	NXCMR300
Product Description:	Provides metrology for gas and water meters, communicates metering data over LTE Cat-M1. 900MHz ISM radio used for initial setup/configuration, or walk-by metering in areas of poor cellular coverage.
Frequency Range / number of channels:	902 – 928 MHz, 25 channels frequency hopping Data rate: 35.5 kbps or 142.2 kbps
Radios included in device	ISM: • SiLabs EFR32FG28 SoC • FSK modulation • 25 channels frequency hopping
Other Radios included in the device:	Sequans GM02S
Antenna Information as declared:	Max Gain 1.5 dBi
Max. declared output Powers:	6.05 dBm
Power Supply/ Rated Operating Voltage Range:	3.2 VDC – 3.8 VDC
Operating Temperature Range	-40° to 85° C
Sample Revision	■Production Unit; □Pre-Production
EUT Dimensions	17.78 x 11.43 x 7.62 cm
Weight	544.31 grams
EUT Diameter	⊠< 60 cm □ Other

Note 1: information provided by the customer.

3.2 EUT Sample details ⁽¹⁾

EUT #	Model Number	HW Version	SW Version	Notes/Comments
1	NXCMR300	1.0	1.0	

Note 1: information provided by the customer.

3.3 Accessory Equipment (AE) details

AE #	Туре	Model	Manufacturer	Serial Number	
1	NoteBook PC	RTL8821CE	ASUS	M9N0CX06484836F	

3.4 Test Sample Configuration

EUT Set-up #	Combination of AE used for test set up	Comments
1	EUT#1	

3.5 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on low, mid and high channels, and maximum possible duty cycle.

For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT.

For conducted measurements, the EUT was tested with transmitter sets on frequency hopping mode with 35.5 kbps data rate and FSK modulation.

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-247 Issue 2 of ISED Canada.

This test report is to support a request for new equipment authorization under the:

- FCC ID: QZC-NXCMR300
- IC ID: 4577A-NXCMR300

Testing procedures are based on ANSI C63.10:2013 including section 7.8 for FHSS systems.

5 Measurement Results Summary

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.247(b)(2) RSS-247 5.4(a)	Maximum Peak Conducted Output Power	Nominal	FSK				Complies
§15.247(d) RSS-247 5.5 RSS-Gen 8.10	Band Edge Compliance	Nominal	FSK				Complies
§15.247(a)(1) RSS-247 5.1(c)	Spectrum Bandwidth	Nominal	FSK				Complies
§15.247(a)(1) RSS-247 5.1(c)	Carrier Frequency Separation	Nominal	FSK	•			Complies
§15.247(a)(1) RSS-247 5.1(c)	Number of Hopping Channels	Nominal	FSK	-			Complies
§15.247(a)(1) RSS-247 5.1(c)	Time of occupancy	Nominal	FSK				Complies
§15.247(d) §15.209 (a) RSS-Gen 6.13	TX Spurious emissions-Radiated	Nominal	FSK				Complies
§15.207(a) RSS-Gen 8.8	AC Conducted Emissions	Nominal	FSK				Note 2

Note 1: NA= Not Applicable; NP= Not Performed. **Note 2**: EUT on battery power

FCC ID: QZC-NXCMR300 IC: 4577A-NXCMR300

6 <u>Measurements</u>

6.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=2.

Radiated measurement

Measurement System	EMC 1	EMC 2
Conducted emissions (mains port)	1.12 dB	0.46 dB
Radiated emissions (< 30	MHz) 3.66 dB	3.88 dB
(30 MHz – 1	GHz) 3.17 dB	3.34 dB
(1 GHz – 3	GHz) 5.01 dB	4.45 dB
(>3	GHz) 4.0 dB	4.79 dB

RF conducted measurement ±0.5 dB

According to TR 102 273 a multiplicative propagation of error is assumed for RF measurement systems. For this reason the RMS method is applied to dB values and not to linear values as appropriate for additive propagation of error. Also used: http://physics.nist.gov/cuu/Uncertainty/typeb.html. The above calculated uncertainties apply to direct application of the Substitution method. The Substitution method is always used when the EUT comes closer than 3dB to the limit.

6.2 Environmental Conditions During Testing:

The following environmental conditions were maintained during the course of testing:

- Ambient Temperature: 20-25°C
- Relative humidity: 40-60%

6.3 Dates of Testing:

2023-03-17 - 2023-05-02

6.4 Decision Rule:

Cetecom advanced follows ILAC G8:2019 chapter 4.2.1 (Simple Acceptance Rule).

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, See chapter 9, but is not taken into account – neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

7 Measurement Procedures

7.1 Radiated Measurement

Testing is performed according to the guidelines provided in ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

7.2 Radiated Measurement for EUT with diameter less than 60 cm

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop
 is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn
 antennas are used to cover frequencies up to 40 GHz.

7.3 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- Measured reading in dBµV
- Cable Loss between the receiving antenna and SA in dB and
- Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS (dB μ V/m) = Measured Value on SA (dB μ V) + Cable Loss (dB) + Antenna Factor (dB/m)

Example:

Frequency	Measured SA	Cable Loss	Antenna Factor Correction	Field Strength Result
(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)
1000	80.5	3.5	14	

8 Test Result Data

8.1 Maximum Peak Conducted Output Power

8.1.1 Measurement according to ANSI C63.10 Section 7.8.5

Spectrum Analyzer settings:

- Span = approximately 5 times the 20 dB bandwidth
- RBW > the 20 dB bandwidth of the emission being measured
- VBW ≥ RBW
- Sweep = Auto Couple
- Detector function = Peak
- Trace = Max hold
- Use the marker-peak function to set the marker to the peak of the emission.

8.1.2 Limits:

Maximum Peak Output Power:

FCC §15.247: (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

• (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels.

IC RSS-247 5.4:

(a) For FHSs operating in the band 902-928 MHz, the maximum peak conducted output power shall not
exceed 1.0 W, and the e.i.r.p. shall not exceed 4 W if the hopset uses 50 or more hopping channels; the
maximum peak conducted output power shall not exceed 0.25 W and the e.i.r.p. shall not exceed 1 W if the
hopset uses less than 50 hopping channels.

8.1.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8° C	1	Hopping	3.6 VDC	1.5 dBi

8.1.4 Measurement result:

Plot #	Frequency (MHz)	EUT operating mode	Maximum Peak Conducted Output Power (dBm)	EIRP (dBm)	Limit (dBm)	Result
1	902.4	FSK	6.05	7.55	24(Pk) / 30(EIRP)	Pass
2	915.2	FSK	5.85	7.35	24(Pk) / 30(EIRP)	Pass
3	927.5	FSK	5.67	7.17	24(Pk) / 30(EIRP)	Pass

8.1.5 Measurement Plots:

Test Report #:	EMC_HONEY_229_23001_FCC_15_2	247_Rev2
Date of Report	2023-11-09	Page 14 of 45

FCC ID: QZC-NXCMR300 IC: 4577A-NXCMR300

8.2 Band Edge Compliance

8.2.1 Measurement according to ANSI C63.10 Section 6.10

Spectrum Analyzer settings for non-restricted band edge:

- Span: wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
- RBW \geq 1% of the span
- VBW ≥ RBW
- Sweep Time: Auto couple
- Detector = Peak
- Trace = Max hold
- Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge.
- Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- Now, using the same instrument settings, enable the hopping function of the EUT.
- Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Spectrum Analyzer settings for restricted band:

• Peak measurements are made using a peak detector and RBW=1 MHz

8.2.2 Limits: Restricted Band FCC 15.209 and RSS-Gen 8.10

- PEAK LIMIT= 74 dBµV/m @3 m =-21.23 dBm
- AVG. LIMIT= 54 dBµV/m @3 m =-41.23 dBm
- Start frequency & stop frequency according to frequency range specified in the restricted band table in FCC section 15.205

Restricted bands of operation:

• Except as shown in CFR 47 Part 15.205 paragraph (d), only spurious emissions are permitted in any of the frequency bands listed below

Test Report #:	EMC_HONEY_229_23001_FCC	2_15_247_Rev2	FCC ID: QZC-NXCMR300
Date of Report	2023-11-09	Page 16 of 45	IC: 4577A-NXCMR300

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13 36-13 41			

8.2.3 Limits: Non-restricted Band §15.247 and RSS-247 5.5

FCC15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

8.2.4 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8° C	1	Hopping	3.6 VDC	1.5 dBi

Test Report #:	EMC_HONEY_229_23001_FCC_15_	247_Rev2	FCC ID: QZC-NXCMR300
Date of Report	2023-11-09	Page 17 of 45	IC: 4577A-NXCMR300

8.2.5 Measurement result:

Plot #	EUT operating mode	Band Edge	Band Edge Delta (dBc)	Limit (dBc)	Result
1	FSK	Lower, non-restricted	30.82	> 20	Pass

Plot #	EUT operating mode	Band Edge	Measured value (dBµV/m)	Limit (dBuV/m)	Result
2	FSK	Upper restricted Peak	35.03	74.00	Pass
2	FSK	Upper restricted AVG	31.01	54.00	Pass

8.2.6 Measurement Plots:

Test Report #:	EMC_HONEY_229_23001_F	CC_15_247_Rev2	FCC ID: QZC-NXCMR300
Date of Report	2023-11-09	Page 18 of 45	IC: 4577A-NXCMR300

						Plot # 2	2							
requenc v	MaxPeak (dBuV/m	QuasiPea k	Limit (dBµV/m	Margi n	Meas	Bandwidt h	Heigh t	Po I	Azimut h	Corr. (dB/m	Sig Pat	Pream p	Trd Corr.	Ra Re
966.507	35.03		74.00	38.97	500.0	120.000	154.0	н	127.0	-2.2	-	0.0	30.0	3
966.507		31.01	54.00	22.99	500.0	120.000	154.0	Н	127.0	-2.2	-	0.0	30.0	3
966.681	34.88		74.00	39.12	500.0	120.000	120.0	Н	133.0	-2.1	-	0.0	30.0	3
966.681		30.77	54.00	23.23	500.0	120.000	120.0	Н	133.0	-2.1	-	0.0	30.0	3
Level in dBuV/m			950		960		970		980		FCC 1	15.24790 5.247900	IOMHZ Pk.	
	0.0					Freque	ncy in N	/Hz					10	
						Frequel	icy in N	ΠZ						

8.3 20dB Bandwidth

8.3.1 Measurement according to ANSI C63.10 Section 6.9.2

Spectrum Analyzer settings:

- Span: approximately 2 to 5 times the 20 dB bandwidth, centered on the hopping channel
- RBW = 1% to 5% of the 20 dB bandwidth
- VBW = 3 x RBW
- Sweep Time = Auto couple
- Detector = Peak
- Trace = Max hold

8.3.2 Limits: FCC §15.247(a)(1), RSS-247 5.1(c)

FCC §15.247(a)(1):

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

RSS-247 5.1(c):

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

8.3.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8° C	1	Hopping	3.6 VDC	1.5 dBi

8.3.4 Measurement result:

Plot #	EUT operating mode	20 dB Bandwidth (MHz)
1	FSK	0.292

FCC ID: QZC-NXCMR300 IC: 4577A-NXCMR300

8.3.5 Measurement Plots:

8.4 Carrier Frequency Separation

8.4.1 Measurement according to ANSI C63.10 Section 7.8.2

Spectrum Analyzer settings:

- Span = Wide enough to capture the peaks of the two adjacent channels
- RBW \geq 1% of the span
- VBW \geq RBW or 3 x
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max hold
- Use marker-delta function to determine the separation between the peaks of the two adjacent channels.

8.4.2 Limits: FCC §15.247(a)(1) & RSS-247 5.1(b)

FCC §15.247(a)(1):

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

RSS-247 5.1(c):

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall not be 500 kHz.

8.4.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8° C	1	Hopping	3.6 VDC	1.5 dBi

8.4.3.1 <u>Measurement result:</u>

Plot #	Carrier Frequency Separation (MHz)	Limit (MHz)	Result
1	0.401	∆f ≥ MAX { 25 kHz, BW20dB }=0.296	Pass

8.4.4 Measurement Plots:

8.5 Number of hopping channels

8.5.1 Measurement according to ANSI C63.10 Section 7.8.3

Spectrum Analyzer settings:

- Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- VBW ≥ RBW
- Sweep = Auto couple
- Detector function = Peak
- Trace = Max hold
- Allow the trace to stabilize

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

8.5.2 Limits: FCC §15.247(a)(1)(i) & RSS-247 5.1(c)

For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

8.5.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8° C	1	Hopping	3.6 VDC	1.5 dBi

8.5.4 Measurement result:

Plot #	Number of Hopping Frequencies	Limit	Result
1-3	25	25 ≤ Nch < 50	Pass

8.5.5 Measurement Plots:

Test Report #:	EMC_HONEY_229_23001_FCC_15_	247_Rev2
Date of Report	2023-11-09	Page 26 of 45

8.6 Time of Occupancy (Dwell Time)

8.6.1 Measurement according to ANSI C63.10 Section 7.8.4

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a. Span: Zero span, centered on a hopping channel.
- b. RBW shall be \leq channel spacing and where possible RBW should be set >> 1/*T*, where *T* is the expected dwell time per channel.
- c. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. Trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d. Detector function: Peak.
- e. Trace: Max hold.
- f. Allow the trace to stabilize.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description of the EUT.

Spectrum analyzer settings for the duration of pulse:

- a. Span: Zero
- b. RBW: 100 kHz
- c. VBW: 300 kHz
- d. Sweep: Auto (5 ms).
- e. Detector function: Peak.
- f. Trace: Max hold.

Spectrum analyzer settings for the observation period:

- a. Span: Zero
- b. RBW: 100 kHz
- c. VBW: 300 kHz
- d. Sweep: 20.5 s
- e. Detector function: Peak.
- f. Trace: Max hold.

Observation Period = 0.4×10^{-10} x Number of hopping channels = $0.4 \times 25 = 10 \times 10^{-10}$

8.6.2 Limits: FCC §15.247(a)(1)(i) & RSS-247 5.1(c)

FCC §15.247(a)(1)(i):

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

RSS-247 5.1(c):

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall not be greater than 0.4 seconds within a 10-second period. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

8.6.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8° C	1	Hopping	3.6 VDC	1.5 dBi

8.6.4 Measurement result:

Plot #	Modulation	Number of hops 10s	Pulse Width (s)	Total Dwell Time in 10s (s)	Limit (s)
1-2	FSK	2	0.10048	0.20096	< 0.4 in 10

8.6.5 Measurement Plots:

8.7 Transmitter Spurious Emissions and Restricted Bands

8.7.1 Measurement according to ANSI C63.10

Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector = Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW = 120 KHz (<1 GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1MHz
- Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate for the lowest, middle and highest channel in each frequency band of operation and for the highest gain antenna for each antenna type, and using the appropriate parameters and test requirements.
- The highest (or worst-case) data rate shall be recorded for each measurement.
- For testing frequencies below 30 MHz at distance other than the specified in the standard, the limit conversion is calculated by using the FCC materials for the ANSI 63 committee issued on January, 27 1991.

8.7.2 Limits: FCC 15.247(d)/15.209(a) /RSS-Gen 6.13

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13 36-13 41			

- Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).
- PEAK LIMIT= 74dB µV/m
- AVG. LIMIT= 54dB μ V/m
- Except as shown in CFR 47 Part 15.205 paragraph (d), only spurious emissions are permitted in any of the frequency bands listed below

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

8.7.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input	Antenna Gain
23.8° C	1	Hopping	3.6 VDC	1.5 dBi

8.7.4 Measurement result:

Plot #	Channel #	Scan Frequency	Limit	Result
1-3	Low	30 MHz – 18 GHz	See section 7.7.2	Pass
4-8	Mid	9 kHz – 40 GHz	See section 7.7.2	Pass
9-11	High	30 MHz – 18 GHz	See section 7.7.2	Pass

8.7.5 Measurement Plots:

		Tx Fr	equend	cy: 90)2.3 MHz	2	Tx Frequency: 902.3 MHz PN9								
l Re	sult		•												
quency MHz)	Qu (d	ıasiPeak BµV/m)	Limi (dBµV	it //m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Sig F (dl	Path B)	Pream (dB)	p Trol (d
150.3	8	25.09	43	3.50	18.41	500.	0 120.0	142.0	V	274.0	-9.5	-	34.7	0	0
162.7	1	30.62	43	5.50	12.88	500.	0 120.0	100.0	V	320.0	-9.3	-	34.6	0	0
uation o	the "F	inal_Resu	lt" table	from	column 1	9)									
Frequer (MHz)	су	Raw F (dBµ	Rec V)												
	150.38		34.6												
	162.77		39.9												
	120т														
	110														
	Ţ											90)2.467	7 MHz /	y
	100											104	.593 c	BµV/m	
	90-												СЦ	/	
	80+														
	70														
3	<i>'</i> +														
3µV/	60+ +											FCC	: 15.2	09 Q P a	t.3m
in dE	50							_							
evel	40-													and a relation	. and
Ľ	+ 30+	Villes Inc.						N		an a		phonester'' Anna an Airte	-		
	201			Italia n	المراجعة والمراجع			internet and the second se		aline in all and a state					
	20			- State State											
	10+														
	0														
	-10														
	t														
	30	M	5	06	60	80 100M		200		300	400 5	00	. –	800	1G
							Freque	ncy in H	z						

Tx Frequency: 902.3 MHz							PN9						
al Re	sult		<u></u>										
equency (MHz)	MaxP (dBµ\	eak CAv //m) (dB	/erage uV/m)	Limit (dBµV/n	Margin n) (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Sig Path (dB)	Prea (d
-					·· ·· ··								
nuation of	the "Final	_Result" ta	ible fror	m column	18)	_	_	_	_	_	_	_	_
Frequen (MHz)	су	Trd Corr. (dB/m)	R/	aw Rec dBµV)									
			-										
	100												
	90												
	80-												
	70										<u>FGC 15.20</u>	<u>)9 PK at 3m</u>	
m//m													
in dB ₁	60												
evel										F C	<u>)C-15.209</u>	AVG at 3m	
	50												
	40									an part i the sec	ution of the second		
	30-	n here and a second											
	20												
	1G							2G				3	G
						Frequ	ency in Hz						

Test Report #:	EMC_HONEY_229_23001_FCC_1	5_247_Rev2	FCC ID: QZC-NXCMR300
Date of Report	2023-11-09	Page 36 of 45	IC: 4577A-NXCMR300

Test Report #:	EMC_HONEY_229_23001_FCC_15_	247_Rev2	FCC ID: QZC-NXCMR300
Date of Report	2023-11-09	Page 40 of 45	IC: 4577A-NXCMR300

9 Test setup photos

Setup photos are included in supporting file name: "EMC_HONEY_229_23001_FCC_Setup_Photos"

10 Test Equipment And Ancillaries Used For Testing

Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
BILOG ANTENNA	A.H. SYSTEMS	BiLA2G	569	3 YEARS	11/16/2021
HORN ANTENNA	EMCO	3115	00035111	3 YEARS	9/30/2021
HORN ANTENNA	ETS LINDGREN	3117-PA	00169547	3 YEARS	9/1/2020
HORN ANTENNA	ETS LINDGREN	3116C-PA	00169535	3 YEARS	9/23/2020
ESW.EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW44	101715	3 YEARS	9/14/2021
Spectrum Analyzer	Rohde & Schwarz	FSU. Spectrum Analyzer	100189	3 Years	5/27/2022

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

11 <u>Revision History</u>

Date	Report Name	Changes to report	Prepared by
2023-08-30	EMC_HONEY_229_23001_FCC_15_247	Initial Version	Art Thammanavarat
2023-10-23	EMC_HONEY_229_23001_FCC_15_247_Rev1	Updated Company Name	Art Thammanavarat
2023-11-09	EMC_HONEY_229_23001_FCC_15_247_Rev2	Report Revised1.Section 8.5: Updated test method and added new plots to be more visibility.2.Section 8.6: Updated test method and added new plots.3.Section 8.7.5: Updated Plot for 9kHz- 30MHz.	Art Thammanavarat

<<< The End >>>

