

CETECOM ICT Services consulting - testing - certification >>>

TEST REPORT

Deutsche Akkreditierungsstelle D-PL-12076-01-00

Test report no.: 1-0992/15-01-03-A

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.cetecom.com</u> e-mail: <u>ict@cetecom.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

 Bury GmbH & Co. KG

 Robert-Koch-Str. 1-7

 32584 Löhne / GERMANY

 Phone:
 +49 5732 9706-0

 Fax:
 +49 5732 9706-209

 Contact:
 Christoph Koston

 e-mail:
 koston@bury.com

 Phone:
 +49 5732 9706-284

Manufacturer

Bury GmbH & Co. KG Robert-Koch-Str. 1-7 32584 Löhne / GERMANY

Test standard/s

47 CFR Part 18

Industrial, Scientific and Medical Equipment

For further applied test standards please refer to section 3 of this test report.

	Test Item	
Kind of test item:	Wireless charger	
Model name:	WCA Small BMW	
FCC ID:	QZ9-WCA	W and
Frequency:	96 kHz	
Technology tested:	WPC	
Antenna:	Integrated loop coil antenna	
Power supply:	10.8 V to 13.8 V DC by car battery	
Temperature range:	-40°C to +80°C	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Stefan Bös Lab Manager Radio Communications & EMC

Test performed:

Tobias Wittenmeier Testing Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	.2
2	Gener	al information	.3
	2.1 2.2	Notes and disclaimer Application details	
3	Test s	tandard/s and references	.3
4	Test e	nvironment	.4
5	Test it	em	.4
	5.1 5.2	General description Additional information	
6	Test la	aboratories sub-contracted	.4
7	Descr	iption of the test setup	.5
	7.1 7.2 7.3	Shielded semi anechoic chamber Shielded fully anechoic chamber Conducted measurements	.8
8	Seque	ence of testing	0
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	0
9	Measu	rement uncertainty	0
10	Sun	nmary of measurement results	1
11	Add	litional comments	1
12	Меа	surement results	2
	12.1	Field strength of the fundamental	2
13	Obs	ervations	4
Anr	nex A	Document history	5
Anr	nex B	Further information	5
Anr	nex C	Accreditation Certificate	6

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-0992/15-01-03 and dated 2016-02-01

2.2 Application details

Date of receipt of order:	2016-01-15
Date of receipt of test item:	2016-01-25
Start of test:	2016-01-27
End of test:	2016-01-28
Person(s) present during the test:	-/-

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 18		Industrial, Scientific and Medical Equipment
Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	: Tn Tn Tr		 +22 °C during room temperature tests +80 °C during high temperature tests* -40 °C during low temperature tests*
Relative humidity content	:		55 %
Barometric pressure	:		not relevant for this kind of testing
Power supply : Vnc		V _{nom} V _{max} V _{min}	12.0 V DC by car battery 13.8 V* 10.8 V*

*All tests performed under normal conditions only.

5 Test item

5.1 General description

Kind of test item	:	Wireless charger
Type identification	:	WCA Small BMW
S/N serial number	:	315049117899
HW hardware status	:	5072P5
SW software status	:	4.36
Frequency band	:	96 kHz
Type of radio transmission Use of frequency spectrum	:	Clean carrier
Type of modulation	:	Load modulation
Number of channels	:	1
Antenna	:	Integrated loop coil antenna
Power supply	:	10.8 V to 13.8 V DC by car battery
Temperature range	:	-40°C to +80°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-0992/15-01-01_AnnexA 1-0992/15-01-01_AnnexB 1-0992/15-01-01_AnnexD

6 Test laboratories sub-contracted

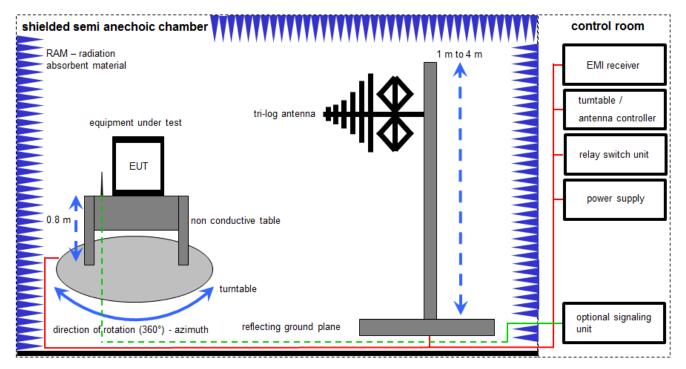
None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

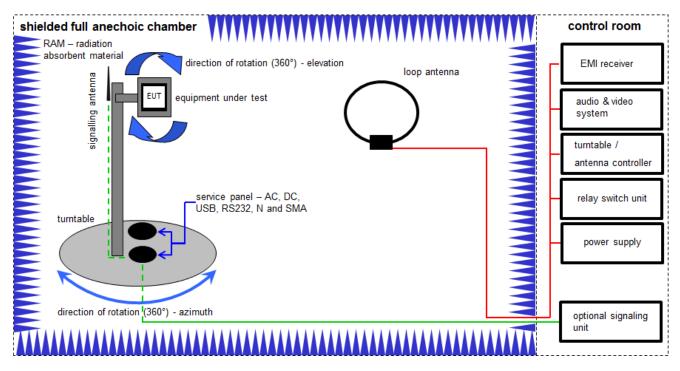
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation:</u> FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)



Equipment table:

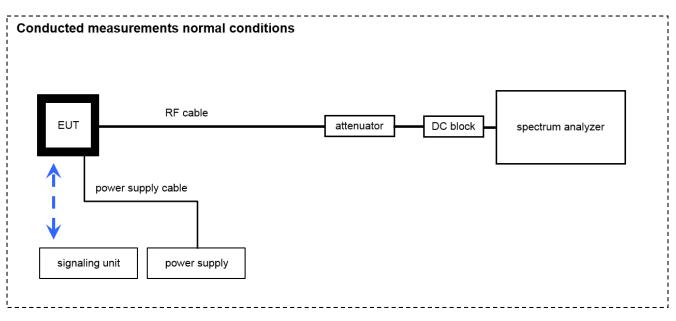
No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne		
3	А	software	SPS_PHE 1.4f	Spitzenberger & Spiess	B5981; 5D1081;B5979	300000210	ne		
4	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
5	A	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	11.02.2014	11.02.2016
6	А	Amplifier	JS42-00502650-28- 5A	MITEQ	1084532	300003379	ev		
7	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw		
8	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw		
9	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw		
10	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016

7.2 Shielded fully anechoic chamber

Measurement distance: loop antenna 3 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


 $\overline{FS} [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
3	Α	Switch / Control Unit	3488A	HP	*	300000199	ne		
4	А	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	А	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
6	A	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		
7	A	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	04.09.2015	04.09.2016

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	DC Power Supply 0 - 32V	1108-32	Heiden Elektronik	001802	300001383	Ve	29.01.2014	29.01.2017
2	А	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	26.08.2014	26.08.2016
3	А	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev		
4	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 606844	400001185	ev		

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					
Conducted limits	± 2.6 dB					

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict Date		Remark
RF-Testing	CFR Part 18	See table!	2016-03-10	-/-

Test specification clause	Test case	Temperature conditions	Power source conditions	с	NC	NA	NP	Remark
§ 18.305	Field strength (fundamental)	Nominal	Nominal	\boxtimes				-/-
§ 18.309 & § 15.209	Field strength (spurious)	Nominal	Nominal	\boxtimes				-/-
§ 18.307	Conducted limits	Nominal	Nominal			\boxtimes		-/-

Note: C = Complaint; NC = Not compliant; NA = Not applicable; NP = Not performed

11 Additional comments

Reference documents: None

Special test descriptions: EUT only works in conjunction with a chargeable device. For all tests, a dummy system delivered by the customer was used.

Configuration descriptions: None

12 Measurement results

12.1 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters			
Detector:	Quasi peak or peak (worst case – pre-scan)		
	F < 150 kHz: 200 Hz		
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz		
	30 MHz < F < 1 GHz: 120 kHz		
	F < 150 kHz: 1 kHz		
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz		
	30 MHz < F < 1 GHz: 300 kHz		
Trace mode:	Max hold		
Used equipment:	See chapter		
Measurement uncertainty:	See chapter 9		

Limit:

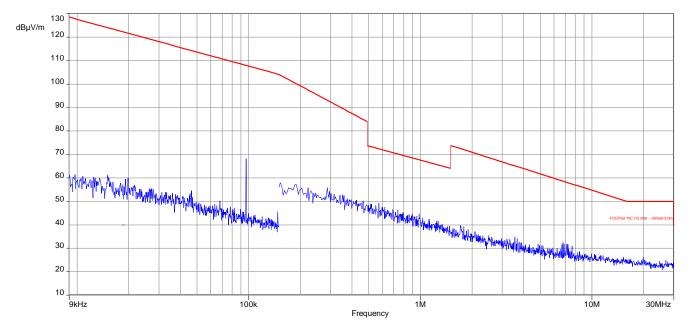
Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (μV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25 × SQRT(power/500)	300 ¹ 300
· · · · · · · · · · · · · · · · · · ·	Any non-ISM frequency	Below 500 500 or more	15 (23.5 dBµV/m) 15 × SQRT(power/500)	300 ¹ 300
Industrial heaters and RF stabilized arc welders	On or below 5,725 MHz Above 5,725 MHz	Any Any	10 (²)	1,600 (²)
Medical diathermy	Any ISM frequency Any non-ISM frequency	Any Any	25 15	300 300
Ultrasonic	Below 490 kHz	Below 500 500 or more	2,400/F(kHz) 2,400/F(kHz) × SQRT(power/500)	300 ³ 300
	490 to 1,600 kHz Above 1,600 kHz	Any Any	24,000/F(kHz) 15	30 30
Induction cooking ranges	Below 90 kHz On or above 90 kHz	Any Any	1,500 300	⁴ 30 ⁴ 30

Extrapolation factor:

Frequency: 96 kHz

 $d_{\text{Nearfield}} = 47.77 \ / \ f_{\text{MHz}}$

d_{Nearfield} = 497.6 m


According to ANSI C63.10			
	Formula	Correction value	
$d_{\text{Nearfield}} < d_{\text{Limit}}$	$FS_{limit} = FS_{max} - 40 \log\left(\frac{d_{\mathit{maxt}}}{d_{\mathit{mexsure}}}\right) - 20 \log(\frac{d_{\mathit{lmit}}}{d_{\mathit{mexsure}}})$	-84.4	
d _{Nearfield} > d _{Limit} 497.6 m > 300 m	40 dB / decade	-80.0	

Result carrier signal:

Field strength of the fundamental			
Frequency	96 kHz		
Distance	@ 3 m	@ 300 m	
Measured / calculated value (peak measurement)	71 dBµV/m	-9 dBµV/m	
Measured / calculated value (QP measurement)	70 dBµV/m	-10 dBµV/m	

Plots harmonic and spurious:

Plot 1: 9 kHz - 30 MHz, magnetic emissions

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release	
	Initial release	2016-02-01	
-A	IC Standard removed	2016-03-10	

Annex B Further information

Glossary

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN		Product marketing name
HMN		Host marketing name
HVIN		Hardware version identification number
FVIN		Firmware version identification number

Standort Braunschweig Bundesallee 100 38116 Braunschweig

Annex C **Accreditation Certificate**

Front side of certificate

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung

勿影 Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CETECOM ICT Services GmbH

Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Drahtgebundene Kommunikation einschileßlich xDSL VolP und DECT Akustik

Voir Unio DECI Fund Inschließlich WLAN Seine Construction (Inschließlich WLAN Seine Construction (Inschließlich WLAN Mobilfunk (KöM / DCS, Ower the Air (OTA) Performance) Mobilfunk (KöM / DCS, Ower the Air (OTA) Performance) Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive Produktsicherheit SAR und Hearing Aid Compatibility (HAC) Umweltsimulation Smart Card Terminals Bluetooth Wi-Fi-Services

Die Akkreditierungsurkunde gilt nur in Verbindung nit dem Bescheld vom 07.03.2014 mit der Akkreditierungsurummer D-PL-12076-01 und ist giltig 17.01.2018. Sie besteht aus diesem Deckblact, der Rückseite des Deckblacts und der folgenden Anlage mit hugesamt 77 Seiten.

Registrierunganummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

Back side of certificate

Deutsche Akkreditierungsstelle GmbH

Standort Berlin Spittelmarkt 10 10117 Berlin

Standort Frankfurt am Main Gartenstra3e 6 60594 Frankfurt am Main

Die auszugsweise Veröffentlichung der Aktreditierungsunlunde besamf der vorharigen schriftlichen Zusämmung der Deutsche Aktreditierungsstelle GmbH (BAMAS), Ausgenemmen davon ist die separate Weitzerzerstetung des Deckkarttes durch die umsettig genemte Kanformitälbiewertungsstelle in umerä änderte Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche entreect, die über den durch die DAkkS bestötigten Akkreditierungsbernich hinausgehen.

Die Akkreditierung erfolgte gemäßt des Gesetzensteuregistermeine nindlegehen. Die Akkreditierung erfolgte gemäßt des Gesetzes über die Akkreditierungstelle (AkkstelleG) vom 31 Juli 2009 (Biells, IS-2023) sowie der Wrondhung (Sir (Nr. 165/2006 des Loropatischen Parlaments-und des Retes vom 9. Juli 2008 über die Wrondhung (Sir (Nr. 165/2006 no. 5. Juli 2008; S. 30). Die CAAKS ist Unterschnetzen der Wultikleinen Akkarmenn zur gegenzte Tigen Anseks nang der Europeon nich gerannetzen (Akareditation (CAA), des International Akcreditation Forum (IAN) und der international Labersteine Rezestation Gaussation (LAAC). Die Unterschnet elleser Abkommen erkonnen ihre Akkreditierungen gegenseitig an.

Der oktue in Stund der Mitgliedschaft kann folgenden Webseiten ertnommen werden: FA: www.enropsan.accreditation.org II-AC: www.elia.org AC: www.elia.org

