

Königswinkel 10 32825 Blomberg Germany

Phone +49 5235 9500-0 Fax +49 5235 9500-10

TEST REPORT

Test Report Reference: R72337 B second version

Equipment under Test: Porsche Bluetooth Bedienhörer

FCC ID: QZ9-PAG-BTBH

IC: 5927A-BTBH

Article / Model Number: 997.646.212

Serial Number: None

Applicant: Bury GmbH & Co. KG

Manufacturer: Bury GmbH & Co. KG

Test Laboratory
(CAB)
accredited by
DATech in der TGA GmbH
in compliance with DIN EN ISO/IEC 17025
under the
Reg. No. DAT-P-105/99-21,
FCC Test site registration number 90877
and
Industry Canada Test site registration IC3469 and
FCC Test site registration number 90877

Contents:	Page
1 IDENTIFICATION	3
1.1 APPLICANT	3
1.2 MANUFACTURER	
1.3 DATES	
1.4 TEST LABORATORY	4
1.5 RESERVATION	
1.6 NORMATIVE REFERENCES	4
1.7 TEST RESULTS	
2 TECHNICAL DATA OF EQUIPMENT	5
2.1 PERIPHERY DEVICES	
3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES	
4 LIST OF MEASUREMENTS	
5 TEST RESULTS	
5.1 20 dB BANDWIDTH	
5.1.1 METHOD OF MEASUREMENT (20 dB BANDWIDTH)	
5.12 CARRIER FREQUENCY SEPARATION	11
5.2.1 METHOD OF MEASUREMENT (CARRIER FREQUENCY SEPARATION)	
5.2.2 TEST RESULTS (CARRIER FREQUENCY SEPARATION)	
5.3 NUMBER OF HOPPING FREQUENCIES	
5.3.1 METHOD OF MEASUREMENT (NUMBER OF HOPPING FREQUENCIES)	
5.3.2 TEST RESULTS (NUMBER OF HOPPING FREQUENCIES)	
5.4 DWELL TIME	16
5.4.1 METHOD OF MEASUREMENT (DWELL TIME)	
5.4.2 TEST RESULTS (DWELL TIME)	
5.5 MAXIMUM PEAK OUTPUT POWER	19
5.5.1 METHOD OF MEASUREMENT (MAXIMUM PEAK OUTPUT POWER)	
5.5.2 TEST RESULTS (MAXIMUM PEAK OUTPUT POWER)	
5.6 BAND-EDGE COMPLIANCE	
5.6.1 METHOD OF MEASUREMENT (BAND-EDGE COMPLIANCE (RADIATED))	
5.6.2 TEST RESULT (BAND-EDGE COMPLIANCE (RADIATED))	
5.7 RADIATED EMISSIONS	
5.7.1 METHOD OF MEASUREMENT (RADIATED EMISSIONS)	
5.7.2.1 PRELIMINARY MEASUREMENT (9 kHz to 25 GHz)	
5.7.2.2 FINAL RADIATED EMISSION TEST (30 MHz to 1 GHz)	43
5.7.2.3 FINAL MEASUREMENT (1 GHz to 25 GHz)	
6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	48
7 TEST REPORT HISTORY	52
8 LIST OF ANNEXES	52

1 IDENTIFICATION

1.1 APPLICANT

Name:	Bury GmbH & Co. KG
Address:	Robert-Koch-Straße 1-7
	32584 Löhne
Country:	Germany
Name for contact purposes:	Mr. Frank UNTERKÖTTER
Tel:	(0 57 32) 97 06-246
Fax:	(0 57 32) 97 06-99
e-mail address:	unterkoetter@thb.de

1.2 MANUFACTURER

Name:	Bury GmbH & Co. KG
Address:	Robert-Koch-Straße 1-7
	32584 Löhne
Country:	Germany
Name for contact purposes:	Mr. Frank UNTERKÖTTER
Tel:	(0 57 32) 97 06-246
Fax:	(0 57 32) 97 06-99
e-mail address:	unterkoetter@thb.de

1.3 DATES

Date of receipt of test sample:	07 December 2007	
Start of test:	10 December 2007	
End of test:	14 January 2008	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 3 of 52

1.4 TEST LABORATORY

The tests were carried out at: PHOENIX TESTLAB GmbH

Königswinkel 10

D-32825 Blomberg Phone: +49 (0) 52 35 / 95 00-0 Germany Fax: +49 (0) 52 35 / 95 00-10

accredited by DATech in der TGA GmbH in compliance with DIN EN ISO/IEC 17025 under Reg. No. DAT-P-105/99, Industry Canada Test site registration IC3469 and FCC Test site registration number 90877.

Test engineer:

Thomas KÜHN

Name

26 May 2008

Date

Test report checked: Bernd STEINER

Name

Signature

26 May 2008

Date

PHOENIX TESTLAB GmbH Königswinkel 10 32825 Blomberg Tel. 0 52 35 / 95 00-0 Fax 0 52 35 / 95 00-10

Stamp

1.5 RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT REFERENCE.

1.6 NORMATIVE REFERENCES

- [1] **ANSI C63.4-2003** American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC CFR 47 Part 15 (September 2007) Radio Frequency Devices
- [3] FCC Public Notice DA 00-705 (March 2000)
- [4] **RSS-210 Issue 7 (June 2007)** Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
- [5] **RSS-Gen Issue 2 (June 2007)** General Requirements and Information for the Certification of Radiocommunication Equipment

1.7 TEST RESULTS

The requirements of this test document are fulfilled by the equipment under test. The complete test results are presented in the following.

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 4 of 52

2 TECHNICAL DATA OF EQUIPMENT

						1
Type of equipment: *	Bluetooth ha	Bluetooth handset for vehicular environment				
Type designation: *	Porsche Blu	etooth Bedie	nhörer			
Article / Model Number: *	997.646.212	2				
Hardware / software version: *	06 / 4.13					
FCC ID: *	QZ9-PAG-B	ТВН				
IC: *	5927A-BTBI	Н				
Fulfills Bluetooth specification: *	v1.2					
Antenna type: *	Integral (Copperplate BT-Antenna ArtNo.: 54-0286-1_LF)					
Antenna gain: *	2.0 dBi					
Antenna connector: *	None (Integrated Bluetooth-antenna)					
Power supply (bluetooth-unit): *	U _{nom} = 3.0 V DC					
Type of modulation: *	FHSS (GFSK)					
Operating frequency range:*	2402 MHz to 2480 MHz					
Number of channels: *	79					
Temperature range: *	-40 °C to +85 °C					
Lowest internal frequency: *	540 kHz					

^{*:} declared by the applicant

Bluetooth operates in the unlicensed ISM band at 2.4 GHz. In North America (USA and Canada) a band with a width of 83.5 MHz is available. In this band 79 RF channels spaced 1 MHz apart are defined. The channel is represented by a pseudo random hopping sequence through the 79 channels. The normally occupancy time of one frequency will be $625 \mu s$. The ordinary hopping rate will be $1600 \mu s$. All frequencies will be used equally.

The following external I/O cables were used:

Identification	Connector		Connector		Lenght
	EUT Ancillary				
SPI interface (only installed at test samples)	Customised connector	-	Not used during test		
UART interface (H4) (only installed at test samples)	Soldered to the PCB	9 pole D-Sub connector	15 cm		

^{*:} Length during the test if no other specified.

2.1 PERIPHERY DEVICES

The following equipment was used as control unit and ancillary equipment:

A personal computer with a terminal-software was used, connected temporary to the EUT, for setting the
equipment into the necessary operation mode. During the measurements the personal computer was
disconnected.

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 5 of 52

3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES

The EUT is intended to be used in a vehicular environment as Bluetooth handset for privacy mode. The handset could be charged inside a fixed installed charging station. All radiated tests were carried out with a sample with integral antenna; conductive tests were carried out with a sample, which was equipped with a temporary antenna connector and a power supply connector for the RF-unit (this connector was only used during tests under extreme conditions).

During the all tests the Porsche Bluetooth Bedienhörer was powered by the internal fully charged battery. The tested sample was equipped with an additionally UART interface for choosing the relevant operation mode as given in the table below. The test mode was adjusted with the help of a test-software and a laptop computer, which was connected to the UART interface of the EUT. After adjusting the test mode, the connection between the EUT and the laptop computer was terminated.

If not otherwise stated, for modulating the transmitter, a pseudo random bit sequence with a length of 44 byte and with a pattern type DM1 was used. As declared by the applicant, the EUT is intended to operate with the DM1 and DM3 hopping mode, so the dwell time measurements were only carried out in these hopping modes.

During the tests, the EUT was not labelled with a FCC-label.

The following operation modes were used during the tests:

Operation mode	Description of the operation mode
1	Continuous transmitting on 2402 MHz
2	Continuous transmitting on 2441 MHz
3	Continuous transmitting on 2480 MHz
4	Transmitter hopping on all channels
5	Continuous receiving on 2441 MHz

Physical boundary of the EUT

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 6 of 52

4 LIST OF MEASUREMENTS

Application	Frequency range	FCC 47 CFR	RSS 210, Issue 7 [4]	Status	Refer page
	[MHz]	Part 15 section	or		
		[2]	RSS-Gen, Issue 2 [5]		
20 dB bandwitdh	General	15.247 (a) (1)	A8.1 (b) [4]	Passed	8 et seq.
Carrier frequency	General	15.247 (a) (1)	A8.1 (b) [4]	Passed	11 et seq.
separation					
Number of hopping	2400.0 - 2483.5	15.247 (a) (1) (iii)	A8.1 (d) [4]	Passed	14 et seq.
channels		, , , , , ,	, ,		•
Dwell time	2400.0 - 2483.5	15.247 (a) (1) (iii)	A8.1 (d) [4]	Passed	16 et seq.
Maximum peak	2400.0 - 2483.5	15.247 (b) (1)	A8.4 (2) [4]	Passed	19 et seq.
output power					
Band edge	2400.0 - 2483.5	15.247 (d)	A8.5 [4]	Passed	22 et seq.
compliance					-
Radiated emissions	0.009 - 25,000	15.205 (a)	A8.5 [4]	Passed	27 et seq.
(transmitter)		15.209 (a)	2.6 [4]		
Conducted	0.15 - 30	15.207 (a)	7.2.2 [5]	Not	-
emissions on supply				applicable *	
line					
Radiated emissions	0.009 - 25,000	15.109 (a)	6 [5]	Passed	Annex D
(receiver)			2.6 [4]		

^{*:} Not applicable, because the EUT is intended to be used in a vehicular environment.

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 7 of 52

5 TEST RESULTS

5.1 20 dB BANDWIDTH

5.1.1 METHOD OF MEASUREMENT (20 dB BANDWIDTH)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled, the transmitter shall work with its maximum data rate.

The following spectrum analyser settings shall be used:

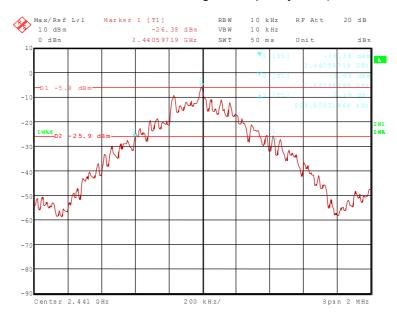
- Span: App. 2 to 3 times the 20 dB bandwidth, centred on the actual hopping channel.
- Resolution bandwidth: ≥ 1 % of the 20 dB bandwidth.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency lines shall be set on the intersection points between the second display line and the measured curve.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

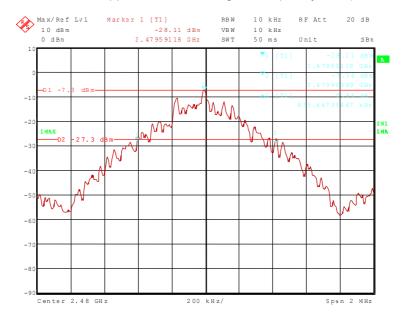
Test set-up:

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 8 of 52


5.1.2 TEST RESULTS (20 dB BANDWIDTH)

Ambient temperature	20 °C		Relative humidity	33 %
---------------------	-------	--	-------------------	------

72337_60.wmf: (20 dB bandwidth at the lower end of the assigned frequency band):


72337_61.wmf: (20 dB bandwidth at the middle of the assigned frequency band):

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 9 of 52

72337_62.wmf: (20 dB bandwidth at the upper end of the assigned frequency band):

Channel number	Channel frequency [MHz]	20 dB bandwidth [kHz]
0	2402	833.667
39	2441	829.659
78 2480		833.667
Measureme	+0.66 dB / -0.72 dB	

'EST EQUIPMENT USED FOR THE TEST:	
31, 46, 54	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 10 of 52

5.2 CARRIER FREQUENCY SEPARATION

5.2.1 METHOD OF MEASUREMENT (CARRIER FREQUENCY SEPARATION)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

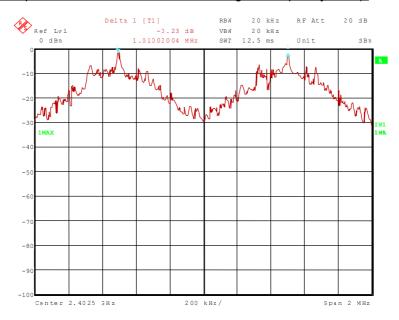
- Span: Wide enough to capture the peaks of two adjacent channels.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

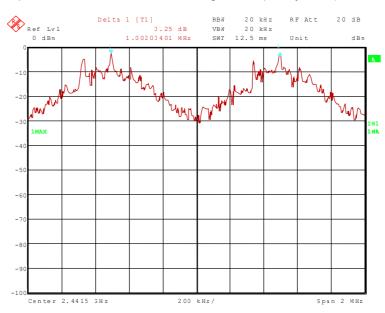
After trace stabilisation the marker and the delta marker function will be used to determine the separation between the peaks of two adjacent channel signals.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test set-up:

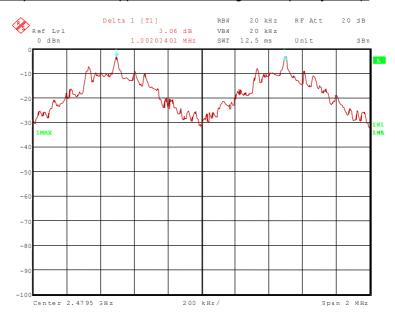
EUT	Spectrum analyser


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 11 of 52


5.2.2 TEST RESULTS (CARRIER FREQUENCY SEPARATION)

Ambient temperature	20 °C		Relative humidity	33 %	
---------------------	-------	--	-------------------	------	--

72337_59.wmf: (channel separation at the lower end of the assigned frequency band):


72337_58.wmf: (channel separation at the middle of the assigned frequency band):

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 12 of 52

72377_57.wmf: (channel separation at the upper end of the assigned frequency band):

Channel number	Channel frequency [MHz]	Channel separation [kHz]	Minimum limit [kHz]
0	2402	1010	833.667 (20 dB bandwidth)
39	2441	1002	829.659 (20 dB bandwidth)
78	2480	1002	833.667 (20 dB bandwidth)
Measurement uncertainty			<10 ⁻⁷

Test: Passed

EST EQUIPMENT USED FOR THE TEST	:
---------------------------------	---

31, 46, 54

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 13 of 52

5.3 NUMBER OF HOPPING FREQUENCIES

5.3.1 METHOD OF MEASUREMENT (NUMBER OF HOPPING FREQUENCIES)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

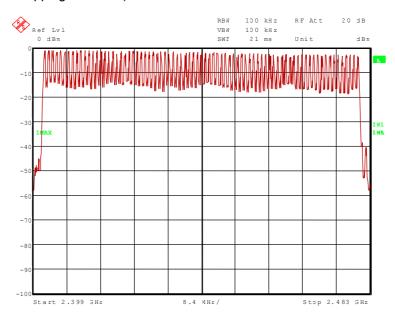
The following spectrum analyser settings shall be used:

- Span: Equal to the assigned frequency band.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

After trace stabilisation the number of hopping channels could be counted. It might be possible to divide the span into some sub ranges in order to clearly show all hopping frequencies.

Test set-up:

EUT	Spectrum analyser


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 14 of 52

5.3.2 TEST RESULTS (NUMBER OF HOPPING FREQUENCIES)

Ambient temperature	20 °C		Relative humidity	33 %
---------------------	-------	--	-------------------	------

72337_56.wmf (number of hopping channels):

Number of hopping channels	Limit
79	At least 15

Test: Passed

'EST EQUIPMENT USED FOR THE TEST:	
31, 46, 54	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 15 of 52

5.4 DWELL TIME

5.4.1 METHOD OF MEASUREMENT (DWELL TIME)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Zero, centred on a hopping channel.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: As necessary to capture the entire dwell time per hopping channel.
- Detector function: peak.
- Trace mode: Max hold.

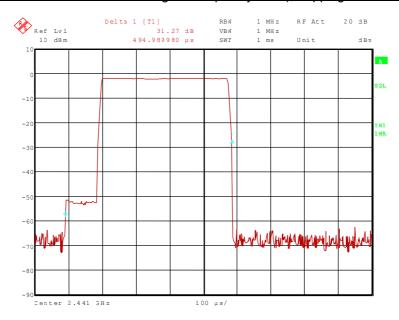
The marker and delta marker function of the spectrum analyser will be used to determine the dwell time.

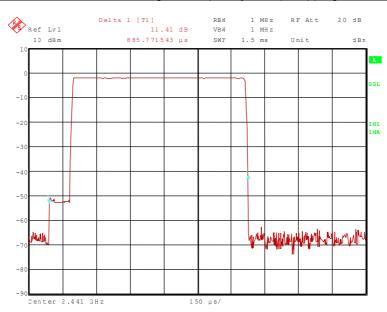
The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

If the EUT is possible to operate with different mode of operation (data rates, modulation formats etc.) the test will be repeated with every different operation mode of the EUT.

Test set-up:

EUT	Spectrum analyser


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 16 of 52


5.4.2 TEST RESULTS (DWELL TIME)

Ambient temperature	20 °C	Relative humidity	33 %
---------------------	-------	-------------------	------

72337_64.wmf: Dwell time at the middle of the assigned frequency band), hopping mode DM1:

72337 65.wmf: Dwell time at the middle of the assigned frequency band), hopping mode DM3:

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 17 of 52

The dwell time is calculated with the following formula:

Dwell time = $t_{\text{pulse}} \times n_{\text{hops}} / \text{ number of hopping channels } \times 31.6 \text{ (equal to 0.4 s x number of hopping channels)}$

Where:

 t_{pulse} is the measured pulse time (pls. refer the plots of the spectrum analyser above) [s], n_{hops} is the number of hops per second in the actual operating mode of the transmitter [1/s].

The hopping rate of the system is 1600 hops per second and the system uses 79 channels. For this reason one time slot has a length of $625 \, \mu s$.

With the used hopping mode (DM1) a packet need 1 timeslot for transmitting and the next timeslot for receiving. So the system makes in worst case 800 hops per second in transmit mode ($n_{hops} = 800 \text{ 1/s}$).

With the used hopping mode (DM3) a packet need 3 timeslots for transmitting and the next timeslot for receiving. So the system makes in worst case 400 hops per second in transmit mode (n_{hoos} = 400 1/s).

	Hopping mode DM1			
Channel number	Channel frequency [MHz]	t _{pulse} [μs]	Dwell time [ms]	Limit [ms]
39	2441	494.990	158.397	400
Hopping mode D			M3	
Channel number	Channel frequency [MHz]	t _{oulse} [µs]	Dwell time [ms]	Limit [ms]
39	2441	855.772	136.924	400
Measurement uncertainty		<1	0 ⁻⁷	

Test: Passed

'EST EQUIPMENT USED FOR THE TEST:	
31, 46, 54	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 18 of 52

5.5 MAXIMUM PEAK OUTPUT POWER

5.5.1 METHOD OF MEASUREMENT (MAXIMUM PEAK OUTPUT POWER)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

The following spectrum analyser settings shall be used:

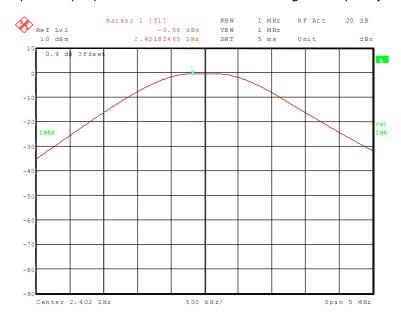
- Span: Approx. 5 times the 20 dB bandwidth, centred on a hopping channel.
- Resolution bandwidth: > the 20 dB bandwidth of the emission being measured.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

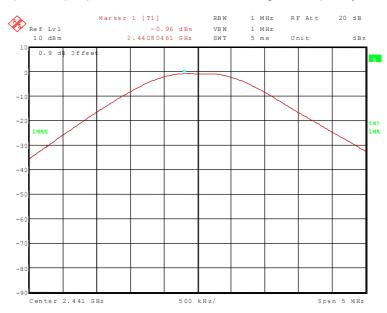
After trace stabilisation the marker shall be set on the signal peak. The indicated level is the peak output power, which has to be corrected with the value of the cable loss and an external attenuation (if necessary).

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

Test set-up:

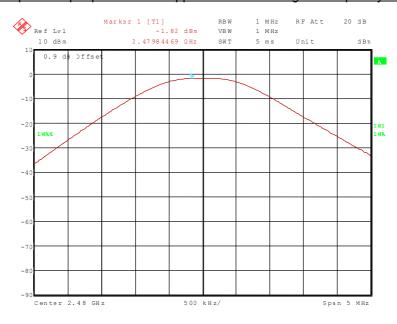
EUT	Spectrum analyser


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 19 of 52


5.5.2 TEST RESULTS (MAXIMUM PEAK OUTPUT POWER)

Ambient temperature	20 °C		Relative humidity	33 %	
---------------------	-------	--	-------------------	------	--

72337_66.wmf (maximum peak output power at the lower end of the assigned frequency band):


72337_67.wmf (maximum peak output power at the middle of the assigned frequency band):

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 20 of 52

72337_68.wmf (maximum peak output power at the upper end of the assigned frequency band):

Channel number	Channel frequency [MHz]	Maximum peak output power [dBm]	Antenna gain [dBi]	Peak power limit [dBm]
0	2402	-0.6	2.0	30.0
39	2441	-1.0	2.0	30.0
78	2480	-1.8	2.0	30.0
	+0.66 dB / -0.72 dB			

Test: Passed

'EST EQUIPMENT USED FOR THE TEST:	
31, 46, 54	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 21 of 52

5.6 BAND-EDGE COMPLIANCE

5.6.1 METHOD OF MEASUREMENT (BAND-EDGE COMPLIANCE (RADIATED))

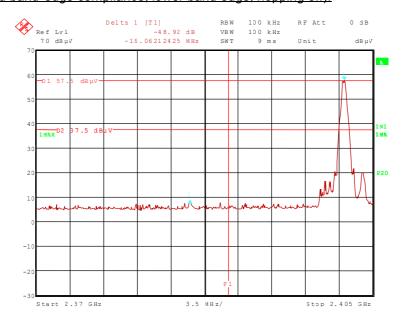
The same test set-up as used for the final radiated emission measurement shall be used (refer also subclause 5.8.1 of this test report). The measurements shall be carried out with using a resolution bandwidth of 100 kHz.

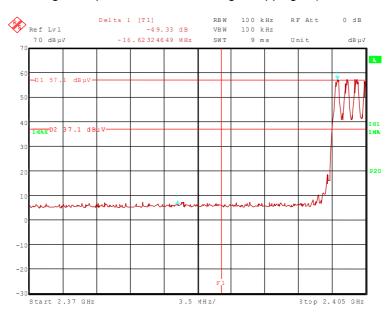
The following spectrum analyser settings shall be used:

- Span: Wide enough to capture the peak level of the emission on the channel closest to the band-edge, as well as any modulation products, which fall outside the assigned frequency band.
- Resolution bandwidth: 100 kHz.
- Video bandwidth: ≥ the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency line shall be set on the edge of the assigned frequency band. Set the second marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is higher than that at the band-edge. This frequency shall be measured with the EMI receiver as described in subclause 5.8.1 of this test report, but 100 kHz resolution bandwidth shall be used.

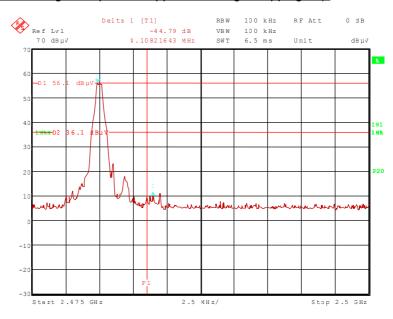
The measurement will be performed at the upper end of the assigned frequency band and with hopping on and off.

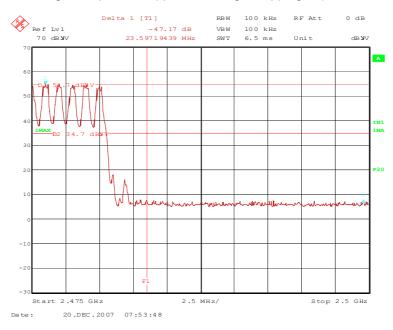

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 22 of 52


5.6.2 TEST RESULT (BAND-EDGE COMPLIANCE (RADIATED))

Ambient temperature 20 °C Relative humidity 38	20 °C Relative humidity	38 %
--	-------------------------	------

72337_69.wmf (radiated band-edge compliance, lower band edge, hopping off):


72337_70.wmf (radiated band-edge compliance, lower band edge, hopping on):


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 23 of 52

72337_54.wmf (radiated band-edge compliance, upper band edge, hopping off):

72337_55.wmf (radiated band-edge compliance, upper band edge, hopping on):

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 24 of 52

The plots on the page before are showing the radiated band-edge compliance for the upper band-edge, with and without hopping. The display line 1 (D1) in these plots represents the highest level within the assigned frequency band. The display line 2 (D2) represents the 20 dB offset to this highest level and shows the compliance with FCC 47 CFR Part 15.247 (d). The frequency line 1 (F1) shows the edge of the assigned frequency.

	Band-edge compliance (lower band edge, hopping disenabled)									
			Result n	neasured wi	ith the peal	k detector:				
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.402	89.4	-	-	56.9	28.8	0.0	3.7	150	Hor.	-
2.386	40.7	74.0	33.3	8.0	29.0	0.0	3.7	150	Hor.	Yes
		F	Result me	easured with	the avera	ge detecto	r:			
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
GHz	value dBµV/m	dBµV/m	dB	dΒμV	factor 1/m	dB	loss dB	cm		Band
2.402	79.5	-	-	47.0	28.8	0.0	3.7	150	Hor.	-
2.386	30.8	54.0	23.2	-1.9	29.0	0.0	3.7	150	Hor.	Yes
	Measurement uncertainty							+2.2 dB /	-3.6 dE	3

	Band-edge compliance (lower band edge, hopping enabled)									
			Result n	neasured w	ith the peal	k detector:				
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.402	89.4	-	-	56.9	28.8	0.0	3.7	150	Hor.	-
2.386	40.3	74.0	33.7	7.6	29.0	0.0	3.7	150	Hor.	Yes
	Result measured with the average detector:									
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.402	79.5	-	_	47.0	28.8	0.0	3.7	150	Hor.	-
2.386	30.4	54.0	23.6	-2.3	29.0	0.0	3.7	150	Hor.	Yes
	Measurement uncertainty							+2.2 dB /	/ -3.6 dE	3

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 25 of 52

	Band-edge compliance (upper band edge, hopping disenabled)									
			Result n	neasured w	ith the peal	k detector:				
Frequency	Corr.	Limit	Margin	Readings	Antenna factor	Preamp	Cable	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.480	90.9	-	-	58.1	29.0	0.0	3.8	150	Hor.	-
2.484	46.1	74.0	27.9	13.3	29.0	0.0	3.8	150	Hor.	Yes
		F	Result me	easured with	the average	ge detecto	r:			
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.480	81.0	-	-	48.2	29.0	0.0	3.8	150	Hor.	-
2.484	36.2	54.0	17.8	3.4	29.0	0.0	3.8	150	Hor.	Yes
	Measurement uncertainty						,	+2.2 dB	/ -3.6 dE	3

	Band-edge compliance (upper band edge, hopping enabled)									
			Result n	neasured w	ith the peal	k detector:				
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.480	90.9	-	-	58.1	29.0	0.0	3.8	150	Hor.	-
2.4996	43.7	74.0	30.3	10.9	29.0	0.0	3.8	150	Hor.	Yes
	Result measured with the average detector:									
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
2.480	81.0	-	-	48.2	29.0	0.0	3.8	150	Hor.	-
2.4996	33.8	54.0	20.2	1.0	29.0	0.0	3.8	150	Hor.	Yes
	Measurement uncertainty							+2.2 dB	/ -3.6 dE	3

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 37, 39, 43, 46, 49 - 51, 54

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 26 of 52

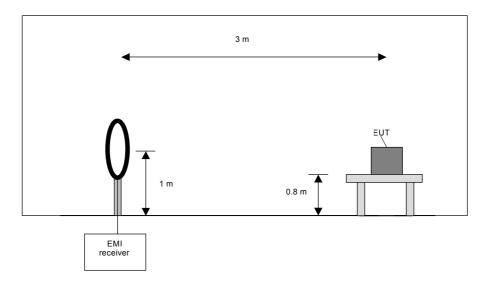
5.7 RADIATED EMISSIONS

5.7.1 METHOD OF MEASUREMENT (RADIATED EMISSIONS)

The radiated emission measurement is subdivided into five stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 9 kHz to 1 GHz.
- A final measurement carried out on an outdoor test side without reflecting ground plane and a fixed antenna height in the frequency range 9 kHz to 30 MHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna height in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range 1 GHz to 25 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 25 GHz.

All measurements will be carried out with the EUT working on the middle and upper and lower edge of the assigned frequency band. For this reason the hopping function of the EUT has to be disenabled.


Preliminary measurement (9 kHz to 30 MHz):

In the first stage a preliminary measurement will be performed in a shielded room with a measuring distance of 3 meters. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

The frequency range 9 kHz to 30 MHz will be monitored with a spectrum analyser while the system and its cables will be manipulated to find out the configuration with the maximum emission levels if applicable. The EMI Receiver will be set to MAX Hold mode. The EUT and the measuring antenna will be rotated around their vertical axis to found the maximum emissions.

The resolution bandwidth of the spectrum analyser will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	10 kHz

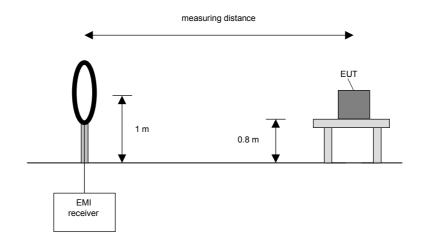
Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 27 of 52

Preliminary measurement procedure:

Prescans were performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2) Manipulate the system cables within the range to produce the maximum level of emission.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Make a hardcopy of the spectrum.
- 5) Measure the frequencies of highest detected emission with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6) Repeat steps 1) to 5) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7) Rotate the measuring antenna and repeat steps 1) to 5).


Final measurement (9 kHz to 30 MHz):

In the second stage a final measurement will be performed on an open area test site with no conducting ground plane in a measuring distances of 3 m, 10 m and 30 m. In the case where larger measuring distances are required the results will be extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2]. The final measurement will be performed with a EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an average detector will be used according Section 15.209 (d) [2].

On the during the preliminary measurement detected frequencies the final measurement will be performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum value is found.

The resolution bandwidth of the EMI Receiver will be set to the following values:

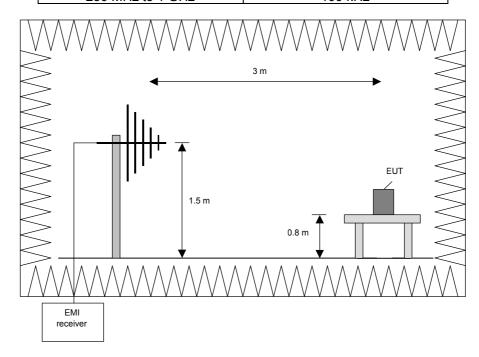
Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 28 of 52

Final measurement procedure:

The following procedure will be used:

- 1) Monitor the frequency range with the measuring antenna at vertical orientation parallel to the EUT at an azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals and note the azimuth and orientation.
- 3) Rotate the measuring antenna to find the maximum and note the value.
- 4) Rotate the measuring antenna and repeat steps 1) to 3) until the maximum value is found.
- 5) Repeat steps 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).


Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.

The resolution bandwidth of the EMI Receiver will be set to the following values:

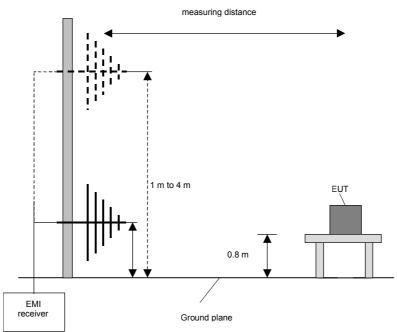
Frequency range	Resolution bandwidth
30 MHz to 230 MHz	100 kHz
230 MHz to 1 GHz	100 kHz

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 29 of 52

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.


Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of

0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Resolution bandwidth
120 kHz

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 30 of 52

Procedure final measurement:

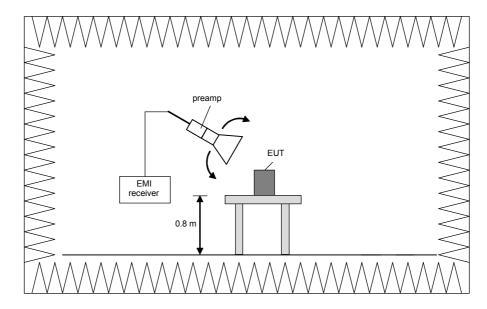
The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable \pm 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).

Preliminary and final measurement (1 GHz to 25 GHz)

This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003 [1].

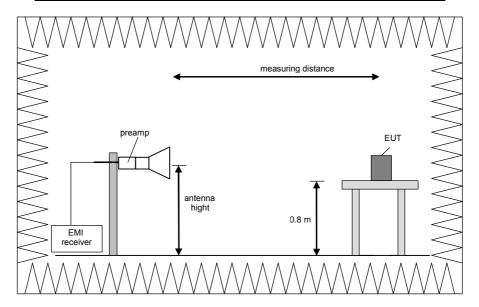
Preliminary measurement (1 GHz to 25 GHz)


The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and than the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	100 kHz
4 GHz to 12 GHz	100 kHz
12 GHz to 18 GHz	100 kHz
18 GHz to 25 GHz	100 kHz

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 31 of 52



Final measurement (1 GHz to 25 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz
12 GHz to 18 GHz	1 MHz
18 GHz to 25 GHz	1 MHz

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 32 of 52

Procedure of measurement:

The measurements were performed in the frequency range 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz and 18 GHz to 25 GHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3 m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Step 1) to 6) are defined as preliminary measurement.

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 33 of 52

5.7.2 TEST RESULTS (RADIATED EMISSIONS)

5.7.2.1 PRELIMINARY MEASUREMENT (9 kHz to 25 GHz)

Ambient temperature	20 °C	Relative humidity	38 %
---------------------	-------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

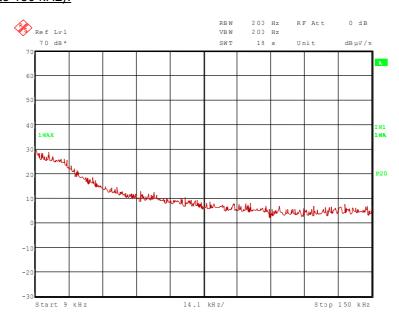
between EUT and antenna was 3 m.

Cable guide: No cables were connected to the EUT during this measurement. For further information

of test set-up refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 3.8 V DC via the internal battery

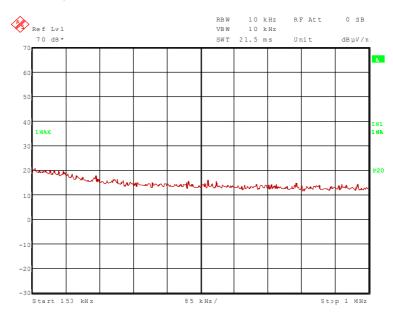

(fully charged).

Remark: As pre-tests have shown, the emissions in the frequency range 9 kHz to 1 GHz are not

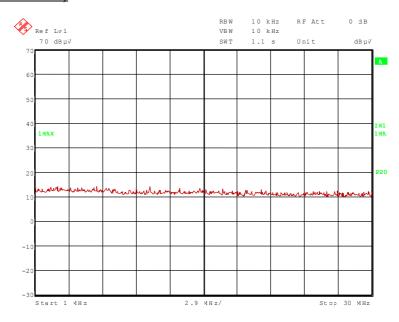
depending on the transmitter operation mode or frequency. Therefore the emissions in this frequency range were measured only with the transmitter operates in operation

mode 2.

72337 42.wmf: (9 kHz to 150 kHz):

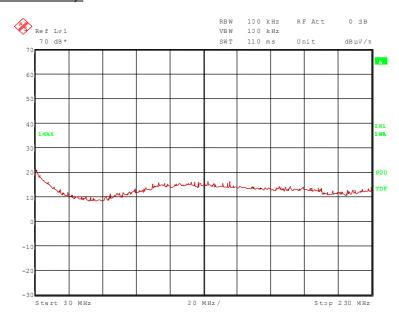

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 37, 39, 43, 46, 49 - 51, 54

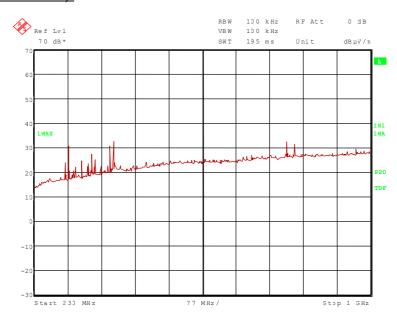

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 34 of 52

72337_43.wmf: (150 kHz to 1 MHz):

72337_44.wmf: (1 MHz to 30 MHz)



No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test, so no measurements were carried out on the outdoor test site.


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 35 of 52

72337_41.wmf (30 MHz to 230 MHz):

72337_40.wmf (230 MHz to 1 GHz):

The following frequencies were found during the preliminary radiated emission test:

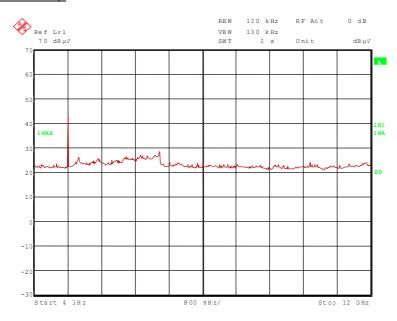
309.638 MHz, 412.850 MHz and 806.040 MHz.

The following frequency was found inside the restricted bands:

403.020 MHz.

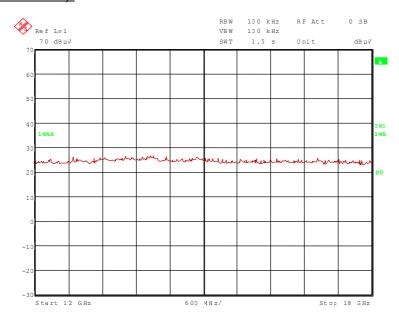

These frequencies have to be measured on the open area test site. The results were presented in the following

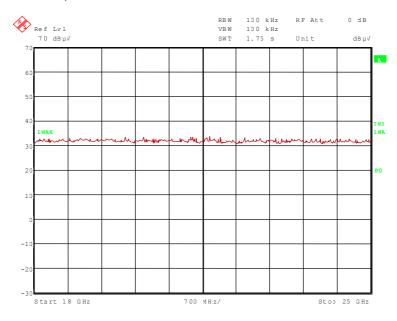
Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 36 of 52



Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

72337_32.wmf (1 GHz to 4 GHz):


72337 35.wmf (4 GHz to 12 GHz):


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 37 of 52

72337_48.wmf (12 GHz to 18 GHz):

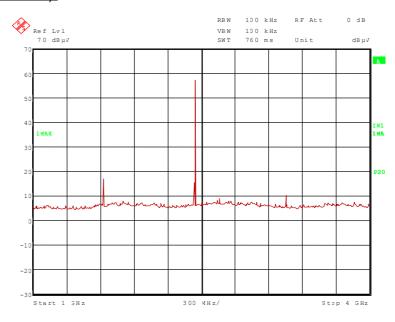
72337_53.wmf (18 GHz to 25 GHz):

The following frequencies were found inside the restricted bands during the preliminary radiated emission test:

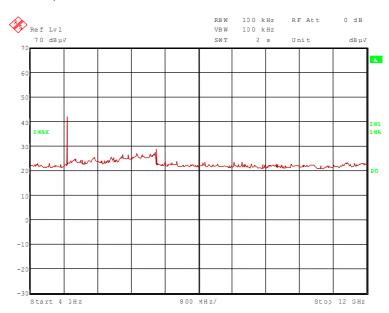
- 1.602 GHz and 4.804 GHz.

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 2.402 GHz.


These frequencies have to be measured in a final measurement. The results were presented in the following.

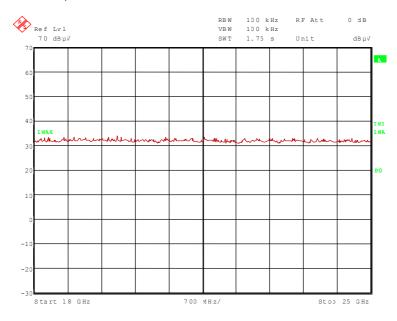
Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 38 of 52



<u>Transmitter operates at the middle of the assigned frequency band (operation mode 2)</u>

72337_33.wmf (1 GHz to 4 GHz):

72337 36.wmf (4 GHz to 12 GHz):


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 39 of 52

72337_49.wmf (12 GHz to 18 GHz):

72337_52.wmf (18 GHz to 25 GHz):

The following frequency was found inside the restricted bands during the preliminary radiated emission test:

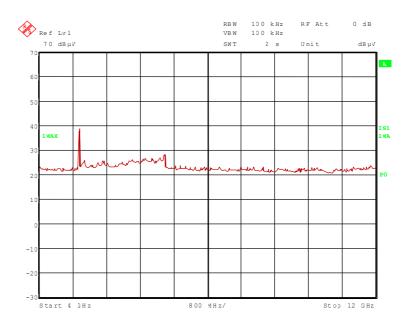
- 4.882 GHz.

The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 1.628 GHz, 2.441 GHz and 3.254 GHz.

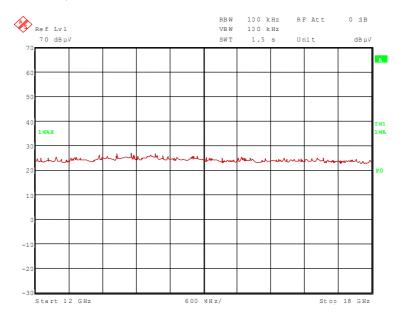
These frequencies have to be measured in a final measurement. The results were presented in the following.

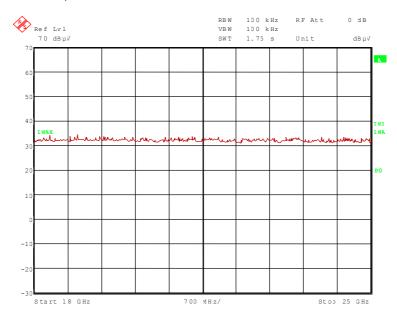
Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 40 of 52



Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

72337_34.wmf (1 GHz to 4 GHz):


72337 37.wmf (4 GHz to 12 GHz):


Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 41 of 52

72337_50.wmf (12 GHz to 18 GHz):

72337_51.wmf (18 GHz to 25 GHz):

The following frequency was found inside the restricted bands during the preliminary radiated emission test:

- 4.960 GHz.

The following frequencies were found outside the restricted bands during the preliminary radiated emission test:

- 1.654 GHz and 2.480 GHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 42 of 52

5.7.2.2 FINAL RADIATED EMISSION TEST (30 MHz to 1 GHz)

Ambient temperature:	19 °C	Relative humidity:	30 %
----------------------	-------	--------------------	------

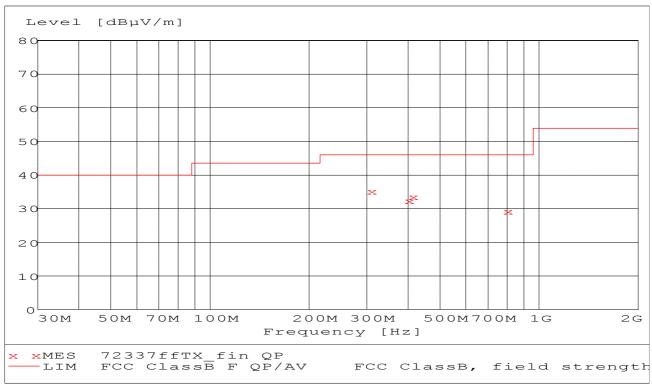
Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

between EUT and antenna was 3 m.

Cable guide: No cables were connected to the EUT during this measurement. For further information

of test set-up refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.


Supply voltage: During all measurements the EUT was supplied with 3.8 V DC via the internal battery

(fully charged).

Test results: The test results were calculated with the following formula:

Result $[dB\mu V/m]$ = reading $[dB\mu V]$ + cable loss [dB] + antenna factor [dB/m]

The measured points and the limit line in the following diagram refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with x are the measured results of the standard final measurement on the open area test site.

Data record name: 72337ffTX

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 43 of 52

The results of the standard subsequent measurement on the open area test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

The measurement time with the quasi-peak measuring detector is 1 second.

Result measured with the quasipeak detector:

(These values are marked in the above diagram by x)

Spurious emiss	sions outside r	estricted ba	nds						
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth	Pol.
MHz	dBμV/m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	
309.638	35.4	46.0	10.6	21.4	12.9	1.1	100.0	44.0	Hor.
412.850	33.7	46.0	12.3	16.6	15.9	1.2	202.0	44.0	Hor.
806.040	29.3	46.0	16.7	6.1	21.4	1.8	175.0	315.0	Vert.
Spurious emiss	sions in restric	ted bands							
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth	Pol.
MHz	dBµV/m	dBµV/m	dB	dΒμV	dB/m	dB	cm	deg	
403.020	32.5	46.0	13.5	15.6	15.7	1.2	100.0	237.0	Hor.
N	/leasurement	uncertainty			-	+2.2 dB / -	3.6 dB		

The test results were calculated with the following formula:

Result [dB μ V/m] = reading [dB μ V] + cable loss [dB] + antenna factor [dB/m]

Test: Passed

'EST EQUIPMENT USED FOR THE TEST:	
14 – 20	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 44 of 52

5.7.2.3 FINAL MEASUREMENT (1 GHz to 25 GHz)

Ambient temperature 20 °C Relative humidity 38 %

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance

between EUT and antenna was 3 m.

Cable guide: No cables were connected to the EUT during this measurement. For further information

of test set-up refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was supplied with 3.8 V DC via the internal battery

(fully charged).

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
1.602	50.1	74.0	23.9	21.1	26.0	0.0	3.0	150	Vert.	Yes
2.402	89.4	-	-	56.9	28.8	0.0	3.7	150	Hor.	-
4.804	60.3	74.0	13.7	47.0	33.7	25.7	5.3	150	Hor.	Yes
Measurement uncertainty							+2.2	dB / -3.6	dB	

Result measured with the average detector:

Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value				factor		loss			Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
1.602	44.4	54.0	9.6	15.4	26.0	0.0	3.0	150	Vert.	Yes
2.402	79.5	-	-	47.0	28.8	0.0	3.7	150	Hor.	-
4.804	48.2	54.0	5.8	34.9	33.7	25.7	5.3	150	Hor.	Yes
	Measurement uncertainty						+2.2	dB / -3.6	dB	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 45 of 52

Transmitter operates at the middle of the assigned frequency band (operation mode 2)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	Cm		
1.628	50.6	74.0	23.4	21.4	26.1	0.0	3.1	150	Vert.	No
2.441	89.9	-	-	57.3	28.9	0.0	3.7	150	Hor.	-
3.254	53.2	74.0	20.8	17.5	31.4	0.0	4.3	150	Hor.	No
4.882	57.3	74.0	16.7	43.9	33.8	25.7	5.3	150	Hor.	Yes
	Measurement uncertainty							dB / -3.6	dB	

Result measured with the average detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		Bana
1.628	45.7	60.0	14.3	16.5	26.1	0.0	3.1	150	Vert.	No
2.441	80.0	-	-	47.4	28.9	0.0	3.7	150	Hor.	-
3.254	39.9	60.0	20.1	4.2	31.4	0.0	4.3	150	Hor.	No
4.882	45.6	54.0	8.4	32.2	33.8	25.7	5.3	150	Hor.	Yes
	Measurement uncertainty							dB / -3.6	dB	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 46 of 52

Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
1.654	50.6	74.0	23.4	21.3	26.2	0.0	3.1	150	Vert.	No
2.480	90.9	-	-	58.1	29.0	0.0	3.8	150	Hor.	-
4.960	56.2	74.0	17.8	42.5	34.0	25.6	5.3	150	Hor.	Yes
	Measurement uncertainty							dB / -3.6	dB	

Result measured with the average detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dΒμV	1/m	dB	dB	cm		
1.654	45.4	61.0	15.6	16.1	26.2	0.0	3.1	150	Vert.	No
2.480	81.0	-	-	48.2	29.0	0.0	3.8	150	Hor.	-
4.960	44.3	54.0	9.7	30.6	34.0	25.6	5.3	150	Hor.	Yes
		+2.2	dB / -3.6	dB						

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 37, 39, 43, 46, 49 - 51, 54

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 47 of 52

TEST REPORT REFERE	NCE: R72337_B second version	
	6 TEST EQUIPMENT AND ANCILLARIES USED FOR TEST	-8

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 48 of 52

Emiss	Emission measurement at AC mains and DC in / out ports at M4											
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No							
1	Shielded chamber M4	-	Siemens	B83117S1-X158	480088							
2	Measuring receiver	ESAI	Rohde & Schwarz	831953/001 833181/018	480025 480026							
3	LISN	NSLK8128	Schwarzbeck	8128155	480058							
4	DC-filter	B84266-A21- E13	Siemens	940164525	480099							
5	AC-filter	B84299-D87- E3	Siemens	930262292	480097							
6	EMI-Software	ES-K1	Rohde & Schwarz	-	480111							

Radia	Radiated emission measurement at M5										
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No						
7	Fully anechoic chamber M5	-	Siemens	B83177-S1-X156	480073						
8	Measuring receiver	ESVS30	Rohde & Schwarz	829673/012	480024						
9	Controller	HD100	Deisel	100/324	480067						
10	Antenna support	MA240	Deisel	228/314	480069						
11	Turntable	DS412	Deisel	412/317	480070						
12	Antenna	CBL6112C	Chase	2689	480327						
13	EMI Software	ES-K1	Rohde & Schwarz	-	480111						

Radiated emission measurement at M6						
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No	
14	Open area test site	-	Phoenix Test-Lab	-	480085	
15	Measuring receiver	ESCS30	Rohde & Schwarz	828985/014	480270	
16	Controller	HD100	Deisel	100/670	480139	
17	Turntable	DS420HE	Deisel	420/620/80	480087	
18	Antenna support	AS615P	Deisel	615/310	480086	
19	Antenna	CBL6111 A	Chase	1643	480147	
20	EMI Software	ES-K1	Rohde & Schwarz	-	480111	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 49 of 52

Radiated emission measurement at M8						
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No	
21	Fully anechoic chamber M8	-	Siemens	B83117-E7019- T231	480190	
22	Measuring receiver	ESMI	Rohde & Schwarz	843977/001 843530/018	480179 480180	
23	Measuring receiver	ESCS 30	Rohde & Schwarz	828985/014	480270	
24	Controller	HD100	Deisel	100/427	480181	
25	Turntable	DS420	Deisel	420/435/97	480186	
26	Antenna support	AS615P	Deisel	615/310	480187	
27	Antenna	CBL6112 A	Chase	2034	480185	
28	EMI Software	ES-K1	Rohde & Schwarz	-	480111	

Radiated emission measurement at M20						
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No	
29	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439- T232	480303	
30	Measuring receiver	ESMI	Rohde & Schwarz	843977/001 843530/018	480179 480180	
31	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355	
32	Controller	HD100	Deisel	100/670	480326	
33	Turntable	DS420HE	Deisel	420/620/80	480315	
34	Antenna support	AS615P	Deisel	615/310	480187	
35	Antenna	CBL6112 B	Chase	2688	480328	
36	Antenna	3115 A	EMCO	9609-4918	480183	
37	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	483	480294	
38	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	482	480295	
39	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	411	480297	
40	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	410	480296	
41	Standard Gain Horn 26.4 GHz – 40.1 GHz	22240-20	Flann Microwave	469	480299	

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 50 of 52

No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No
42	Standard Gain Horn 26.4 GHz – 40.1 GHz	22240-20	Flann Microwave	468	480298
43	RF-cable No. 30	RTK 081	Rosenberger	ı	410141
44	RF-cable No. 31	RTK 081	Rosenberger	ı	410142
45	RF-cable 1m	KPS-1533- 400-KPS	Insulated Wire	1	480300
46	RF-cable 1m	KPS-1533- 400-KPS	Insulated Wire	1	480301
47	RF-cable 2m	KPS-1533- 400-KPS	Insulated Wire	1	480302
48	RF-cable No. 5	RTK 081	Rosenberger		410097
49	Preamplifier	JS3- 00101200- 23-5A	Miteq	681851	480337
50	Preamplifier	JS3- 12001800- 16-5A	Miteq	571667	480343
51	Preamplifier	JS3- 18002600- 20-5A	Miteq	658697	480342
52	Preamplifier	JS3- 26004000- 25-5A	Miteq	563593	480344
53	EMI Software	ES-K1	Rohde & Schwarz	-	480111

Ancillary equipment used for testing						
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No	
54	Power supply	TOE 8852	Toellner	51712	480233	
55	Audio analyser	UPL	Rohde & Schwarz	845646/019	480226	
-	-	-	-	-	-	
-	-	-	-	-	-	

All used measurement equipment was calibrated (if necessary). The calibration intervals and the calibration history will be given out on request.

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 51 of 52

7 TEST REPORT HISTORY

Test Report No.:	Date:	Comment:
R72337_B	21 January 2008	Edition 1
R72337 second Version	26 May 2008	Changing of the FCC ID

8 LIST OF ANNEXES

ANNEX A	PHOTOGRAPHS OF THE TEST SET-UPS:	5 pages
	EUT, test set-up fully anechoic chamber EUT, test set-open area test site	72337_3.jpg 72337_11.jpg 72337_12.jpg 72337_11.jpg 72337_10.jpg
ANNEX B	INTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	6 pages
	EUT, internal view EUT, PCB, top view EUT, PCB, bottom view EUT, PCB, bottom view, display moved EUT, PCB, bottom view, display moved EUT, detail view to sample with temporary antenna connector and external power supply	72337_e.jpg 72337_d.jpg 72337_c.jpg 72337_b.jpg 72337_a.jpg 72337_i.jpg
ANNEX C	EXTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	3 pages
	EUT, 3D view 1 EUT, 3D view 2 EUT, rear view, battery and battery cover removed	72337_h.jpg 72337_g.jpg 72337_f.jpg
ANNEX D	ADDITIONAL RESULTS FOR INDUSTRY CANADA:	7 pages

Examiner: Thomas KÜHN Date of issue: 26 May 2008 Page 52 of 52