

TEST REPORT

Test report no.: 1-3415/11-01-03-A

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01 Area of Testing: Radio/Satellite Communications

Applicant

Bury GmbH & Co. KG Robert-Koch-Str. 1-7

32584 Löhne / GERMANY
Phone: +49 5732 9706-0
Fax: +49 5732 9706-209
Contact: Christoph Koston
e-mail: koston@bury.com
Phone: +49 5732 9706-284

Manufacturer

Bury GmbH & Co. KG Robert-Koch-Str. 1-7

32584 Löhne / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I

Part 15 - Radio frequency devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications - Radio Standards Specification

Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands):

Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Bluetooth Car Gate
Model name: Car Gate (CG1)

FCC ID: QZ9-CG1 IC: 5927A-CG1

Frequency: ISM band 2400 MHz to 2483.5 MHz

(lowest channel 00 – 2402 MHz; highest channel 78 – 2480 MHz)

Technology tested: Bluetooth®, +EDR

Antenna: Integrated antenna

Power Supply: 13.5 V by external DC

Temperature Range: 0°C to +50 °C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:

cn=Marco Bertolino, o=CETECOM ICT
Services GmbH, ou=BTL-100826,
email=marco.bertolino@cetecom.com,
c=DE
2013.02.21 15:41:55 +01'00'

Marco Bertolino Testing Manager

Test performed:

Christoph Schneider Expert

2013-02-21 Page 1 of 74

Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1	Notes and disclaimer	
	2.2	Application details	
3		standard/s	
4	Test e	environment	4
5	Test i	tem	4
6	Test I	aboratories sub-contracted	4
7	Sumn	nary of measurement results	5
8	RF m	easurements	6
	8.1	Description of test setup	6
	8	.1.1 Radiated measurements	6
	8	.1.2 Conducted measurements	
	8.2	Additional comments	
	8.3	RSP100 test report cover sheet / performance test data	8
9	Meas	urement results	9
	9.1	Antenna gain	
	9.2	Power spectral density	
	9.3	Carrier frequency separation	
	9.4	Number of hopping channels	
	9.5	Time of occupancy (dwell time)	
	9.6	Spectrum bandwidth of a FHSS system – 20 dB bandwidth	
	9.7	Maximum output power	
	9.8	Band edge compliance conducted	
	9.9	Band edge compliance radiated	
	9.10 9.11	TX spurious emissions conducted	
	9.11	TX spurious emissions radiatedRX spurious emissions radiated	
	9.12	Spurious emissions radiated < 30 MHz	
	9.13	Spurious emissions conducted < 30 MHz	
10		est equipment and ancillaries used for tests	
11		bservations	
	nex A	Photographs of the test setup	
	nex B	External photographs of the EUT	
	nex C	Internal photographs of the EUT	
	nex D	Document history	
	nex E	Further information	
Anr	nex F	Accreditation Certificate	74

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2012-12-04
Date of receipt of test item: 2012-12-11
Start of test: 2013-01-07
End of test: 2013-01-17

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	2010-10	Title 47 of the Code of Federal Regulations; Chapter I Part 15 - Radio frequency devices
RSS - 210 Issue 8	2010-12	Spectrum Management and Telecommunications - Radio Standards Specification Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

2013-02-21 Page 3 of 74

Test environment

 T_{nom} +22 °C during room temperature tests

 $\begin{matrix} T_{max} \\ T_{min} \end{matrix}$ +50 °C during high temperature tests Temperature:

°C during low temperature tests

40 % Relative humidity content:

not relevant for this kind of testing Barometric pressure:

> $V_{\text{nom}} \\$ 13.5 V by external DC

Power supply: V_{max} 16.0 V

6.0 V $V_{\text{min}} \\$

5 **Test item**

Kind of test item	:	Bluetooth Car Gate				
Type identification	:	Car Gate (CG1)				
O/N i - l l		Rad. Sample 4				
S/N serial number	:	Cond. Sample 11				
HW hardware status	:	H06				
SW software status	:	X037				
Fue access on bear of FMI I=1	:	ISM band 2400 MHz to 2483.5 MHz				
Frequency band [MHz]		(lowest channel 00 - 2402 MHz; highest channel 78 - 2480 MHz)				
Type of radio transmission	:	FHSS				
Use of frequency spectrum	:	rnss				
Type of modulation	:	GFSK, Pi/4 DQPSK & 8 DPSK				
Number of channels	:	79				
Antenna	:	Integrated antenna				
Power supply	:	13.5 V by external DC				
Temperature range	:	0°C to +50 °C				

Test laboratories sub-contracted

None

2013-02-21 Page 4 of 74

7	Summary	of	measurement	t results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

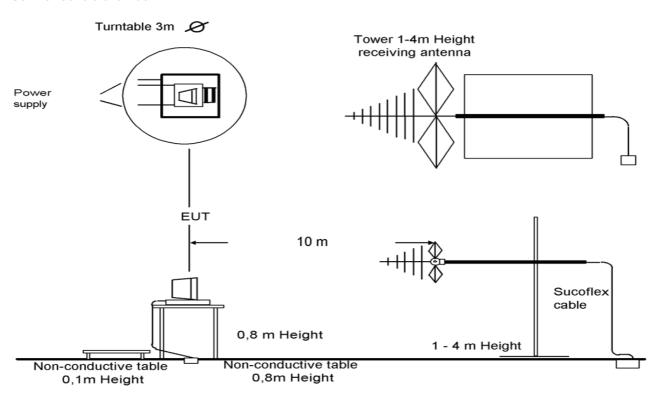
TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 8, Annex 8	Passed	2013-02-21	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	Pass	Fail	NA	NP	Remark
§15.247(b)(4) RSS 210 / A8.4(2)	Antenna gain	Nominal	Nominal	GFSK					complies
§15.247(e) RSS 210 / A8.2(b)	Power spectral density	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					Not applicable for FHSS!
§15.247(a)(1) RSS 210 / A8.1(b)	Carrier frequency separation	Nominal	Nominal	GFSK					complies
§15.247(a)(1) RSS 210 / A8.1(d)	Number of hopping channels	Nominal	Nominal	GFSK					complies
§15.247(a)(1) (iii) RSS 210 / A8.3(1)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	\boxtimes				complies
§15.247(a)(1) RSS 210 / A8.2(a)	Spectrum bandwidth of a FHSS system 20dB bandwidth	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(b)(1) RSS-210 / A8.4(2)	Maximum output power	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(d) RSS-210 / A8.5	Band edge compliance conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.205 RSS-210 / A8.5	Band edge compliance radiated	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(d) RSS-210 / A8.5	TX spurious emissions conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	GFSK					complies
§15.109 RSS-Gen	RX spurious emissions radiated	Nominal	Nominal	-/-					complies
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	GFSK	\boxtimes				complies
§15.107(a)	Conducted emissions < 30 MHz	Nominal	Nominal	GFSK					-/-

Note: NA = Not Applicable; NP = Not Performed

2013-02-21 Page 5 of 74

8 RF measurements


8.1 Description of test setup

8.1.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 25 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

Antennas are confirmed with ANSI C63.2-1996 item 15.

Semi anechoic chamber

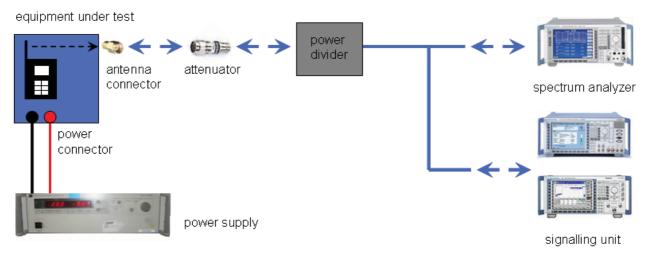
Picture 1: Diagram radiated measurements

9 kHz - 30 MHz: active loop antenna

30 MHz – 1 GHz: tri-log antenna

> 1 GHz: horn antenna

All measurements are done in accordance with the Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems DA 00-705 and Appendix A "BLUETOOTH® APPROVALS"


The EUT is powered by an external power supply with nominal voltage. The signalling is performed from outside the chamber with a signalling unit (CMU200 or other) by air link using signalling antenna.

2013-02-21 Page 6 of 74

8.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the communication base Station (CMU200 or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm.

Picture 2: Diagram conducted measurements

8.2 Additional comments

The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

Reference documents:	None				
Special test descriptions:	None				
Configuration descriptions:	payload	s: were performed with x-DH5 packets and static PRBS pattern d. ndby tests: BT test mode enabled, scan enabled, TX Idle			
Test mode:		Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU)			
		Special software is used. EUT is transmitting pseudo random data by itself			

2013-02-21 Page 7 of 74

8.3 RSP100 test report cover sheet / performance test data

Test report number	:	1-3415/11-01-03		
Equipment model number	Car Gate (CG1)			
Certification number	:	5927A-CG1		
Manufacturer (complete address)	:	Bury GmbH & Co. KG Robert-Koch-Str. 1-7 32584 Löhne / GERMANY		
Tested to radio standards specification no.	:	RSS 210, Issue 8, Annex 8		
Open area test site IC No.	:	IC 3462C-1		
Frequency range	:	lowest channel 2402 MHz, highest channel 2480 MHz		
RF-power [W] (max.)	:	Cond.: 2.58 mW (GFSK modulation) EIRP: 4.14 mW (GFSK modulation) Cond.: 2.04 mW (Pi/4-DQPSK modulation) EIRP: 3.34 mW (Pi/4-DQPSK modulation) Cond.: 2.26 mW (8DPSK modulation) EIRP: 3.68 mW (8DPSK modulation)		
Occupied bandwidth (99%-BW) [kHz]	:	938 (GFSK modulation) 1299 (Pi/4-DQPSK modulation) 1299 (8DPSK modulation)		
Type of modulation	:	FHSS technology with GFSK, Pi/4 DQPSK and 8 DPSK modulation.		
Emission designator (TRC-43) :		938KFXD (GFSK modulation) 1M30GXD(Pi/4-DQPSK modulation) 1M30GXD(8DPSK modulation)		
Antenna information :		Integrated antenna		
Transmitter spurious (worst case) [dBµV/m @ 3m	47 @ 12.75 GHz (noise floor)			
Receiver spurious (worst case) [dBµV/m @ 3m	46 @ 12.75 GHz (noise floor)			

ATTESTATION:

DECLARATION OF COMPLIANCE:

I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory manager:

2013-02-21 Date Christoph Schneider

Name Signature

cn=Christoph Schneider, o=CETECOM ICT Services GmbH, ou=SND-120402, email=christoph.schneider@cetecom.com, c=DE 2013.02.21 14:29:46 +01'00'

2013-02-21 Page 8 of 74

9 Measurement results

9.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth 6 devices, the GFSK modulation is used.

Measurement parameters:

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Video bandwidth:	3 MHz				
Resolution bandwidth:	3 MHz				
Span:	5 MHz				
Trace-Mode:	Max hold				

Limits:

FCC	IC				
Antenna Gain					
6 dBi					

Results:

T _{nom}	T _{nom} V _{nom}		middle channel 2441 MHz	highest channel 2480 MHz
	oower [dBm] GFSK modulation	3.94	4.12	2.98
	ower [dBm] SFSK modulation	6.10	6.00	6.17
Gain [dBi] Calculated		2.16	1.88	3.19

Result: Passed

2013-02-21 Page 9 of 74

9.2 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. This requirement is only valid for digitally modulated systems without hopping functionality.

Measurement:

Measuremei	nt parameter
Detector:	Peak
Sweep time:	500 s
Video bandwidth:	3 kHz
Resolution bandwidth:	3 kHz
Span:	150 kHz
Trace-Mode:	Max Hold

Limits:

FCC	IC
Power Spec	ctral Density
For digitally modulated systems the transmitter power spe	ctral density conducted from the transmitter to the antenna

For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

Results:

Modulation	Power s	spectral density [dB	m/3kHz]
Frequency	2412 MHz	2437 MHz	2462 MHz
GFSK			
Pi/4 DQPSK	Not rec	quired for hopping sy	vstems!
8DPSK			
Measurement uncertainty		± 1.5 dB	

2013-02-21 Page 10 of 74

9.3 Carrier frequency separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement:

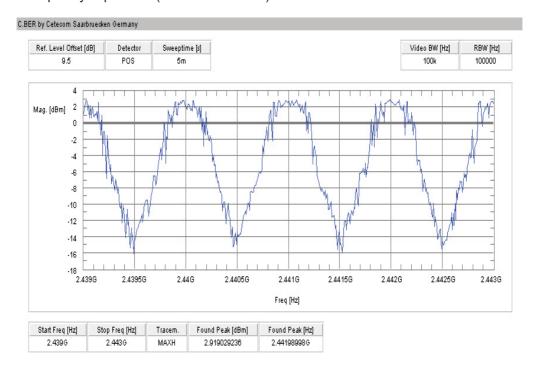
Measureme	nt parameter
Detector:	Peak
Sweep time:	Auto
Video bandwidth:	100 kHz
Resolution bandwidth:	100 kHz
Span:	4 MHz
Trace-Mode:	Max Hold

Limits:

FCC	IC
Carrier Freque	ncy Separation
Minimum 25 kHz or two-thirds of the 20 dB band	width of the hopping system whichever is greater.

Result:

Carrier frequency separation	~ 1 MHz
Carrier frequency separation	~ I IVITZ


Result: Passed

2013-02-21 Page 11 of 74

Plot:

Plot 1: Carrier frequency separation (GFSK modulation)

2013-02-21 Page 12 of 74

9.4 Number of hopping channels

Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement:

Measurement parameter	
Detector:	Peak
Sweep time:	Auto
Video bandwidth:	500 kHz
Resolution bandwidth:	500 kHz
Span:	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz
Trace-Mode:	Max Hold

Limits:

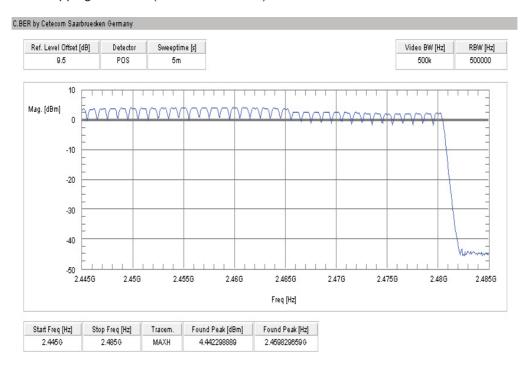
FCC	IC
Number of hop	oping channels
At least 15 non overlap	pping hopping channels

Result:

Number of hopping channels	79
----------------------------	----


Result: Passed

2013-02-21 Page 13 of 74



Plots:

Plot 1: Number of hopping channels (GFSK modulation)

Plot 2: Number of hopping channels (GFSK modulation)

2013-02-21 Page 14 of 74

9.5 Time of occupancy (dwell time)

Measurement:

For Bluetooth® devices no measurements mandatory depending on the fixed requirements according to the Bluetooth® Core Specifications!

For Bluetooth® devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth[®] devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \mu s * 1600*1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 * 625 \mu s * 1600/3 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots)

Channel staying time = $5 * 625 \mu s * 1600/5 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

This is according the Bluetooth® Core Specification V2.0 & V2.1 & V3.0 & V4.0 (+ critical errata) for all Bluetooth® devices.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

^{*} according Bluetooth® specification

Results:

Packet Size	Pulse Width [ms]*	Max. number of transmissions in 31.6 sec	Dwell time [Pulse width * Number of transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

IC		FCC
pancy (dwell time)	Time of occupa	
 pancy (dwell time)	Time of occupa	

The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.

Result: Passed

2013-02-21 Page 15 of 74

9.6 Spectrum bandwidth of a FHSS system – 20 dB bandwidth

Description:

Measurement of the 20dB bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

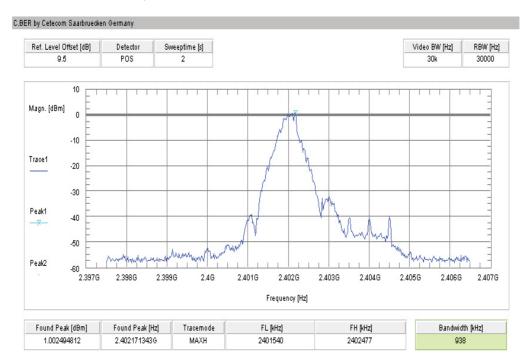
Measurement parameter		
Detector:	Peak	
Sweep time:	2 s	
Video bandwidth:	30 kHz	
Resolution bandwidth:	10 kHz	
Span:	3 MHz	
Trace-Mode:	Max Hold	

Limits:

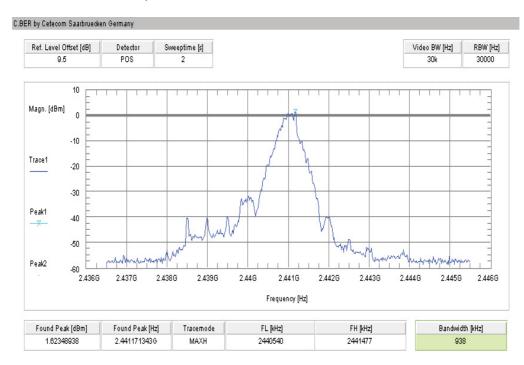
FCC	IC
Spectrum bandwidth of a FHSS system – 20 dB bandwidth	
GFSK < 1500 kHz Pi/4 DQPSK < 1500 kHz 8DPSK < 1500 kHz	

Results:

Modulation	20 dB BANDWIDTH [kHz]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	938	938	938
Pi/4 DQPSK	1281	1299	1281
8DPSK	1299	1281	1281
Measurement uncertainty		± 10 kHz	

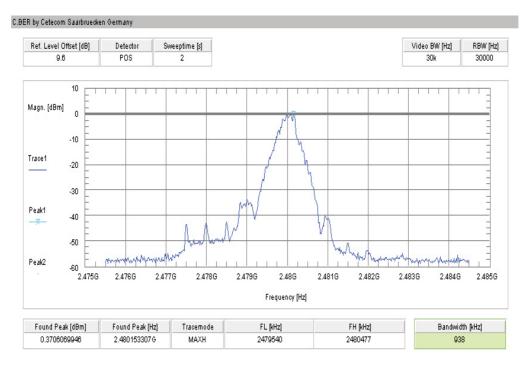

Result: Passed

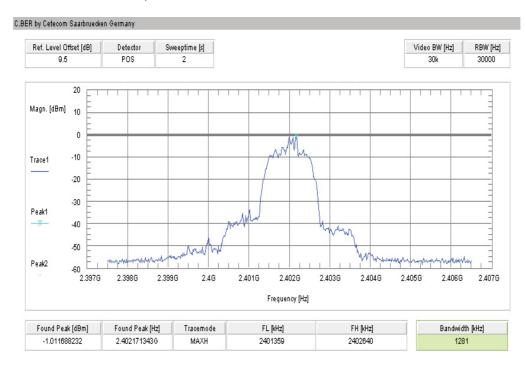
2013-02-21 Page 16 of 74



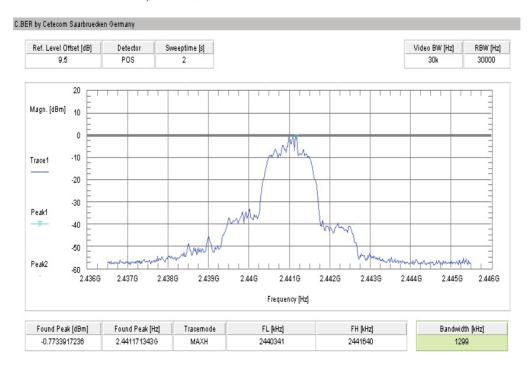
Plots:

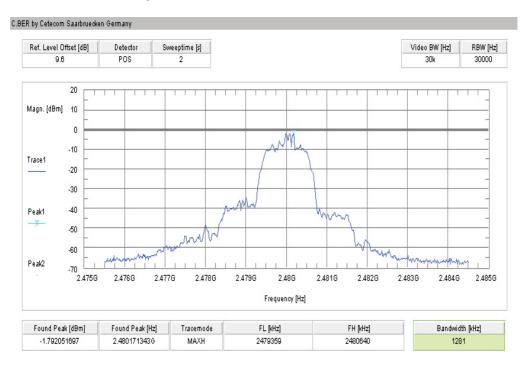
Plot 1: lowest channel - 2402 MHz, GFSK modulation


Plot 2: middle channel – 2441 MHz, GFSK modulation

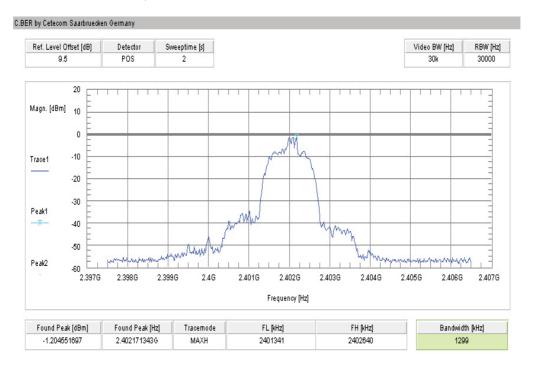

2013-02-21 Page 17 of 74

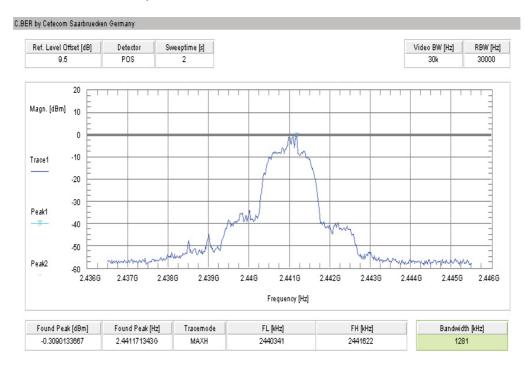
Plot 3: highest channel – 2480 MHz, GFSK modulation


Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

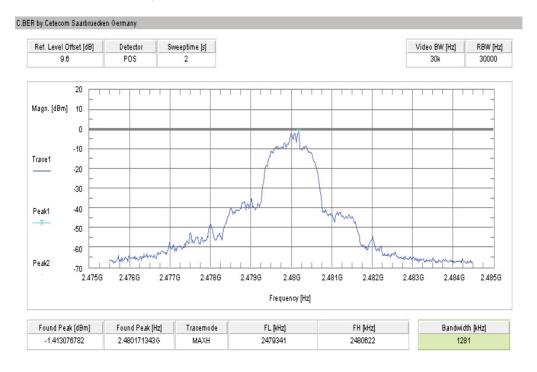

2013-02-21 Page 18 of 74

Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation


Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation


2013-02-21 Page 19 of 74

Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation


Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

2013-02-21 Page 20 of 74

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

2013-02-21 Page 21 of 74

9.7 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	3 MHz	
Resolution bandwidth: 3 MHz		
Span:	5 MHz	
Trace-Mode:	Max Hold	

Limits:

FCC	IC
Maximum o	output power
Systems using more that	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi

2013-02-21 Page 22 of 74

Results:

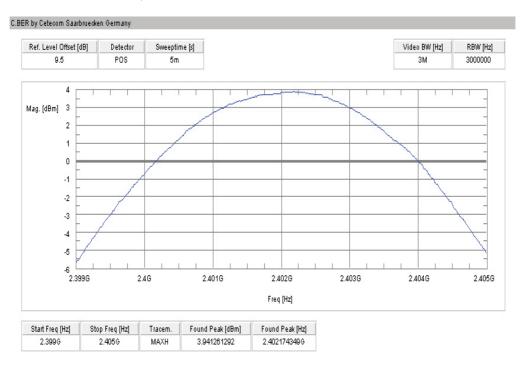
Modulation	Maximum (output power conduc	cted [dBm]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	3.94	4.12	2.98
Pi/4 DQPSK	2.94	3.09	2.05
8DPSK	3.28	3.54	2.47
Measurement uncertainty		± 1 dB	

Result: Passed

Results:

Modulation	Maximum ou	tput power radiated	- EIRP [dBm]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	6.10	6.00	6.17
Pi/4 DQPSK *)	5.10	4.97	5.24
8DPSK *)	5.44	5.42	5.66
Measurement uncertainty		± 3 dB	

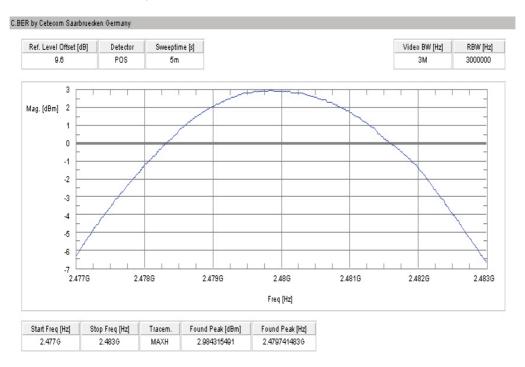
^{*) -} Values calculated with antenna gain

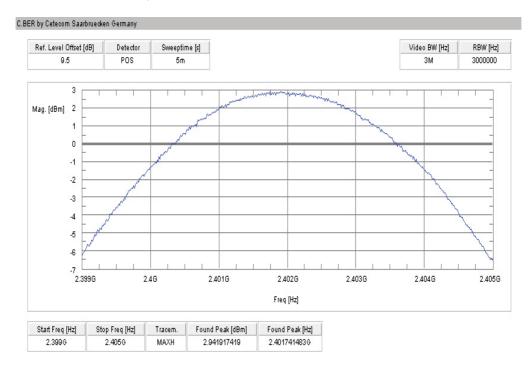

Result: Passed

2013-02-21 Page 23 of 74

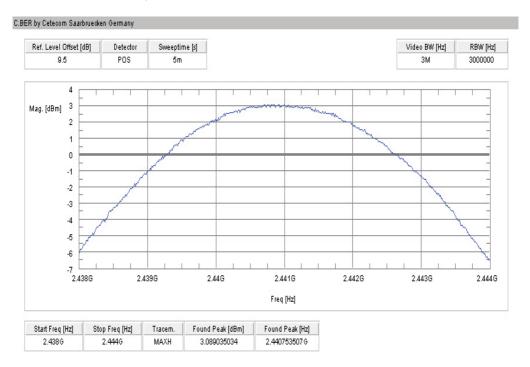
Plots:

Plot 1: lowest channel - 2402 MHz, GFSK modulation


Plot 2: middle channel – 2441 MHz, GFSK modulation

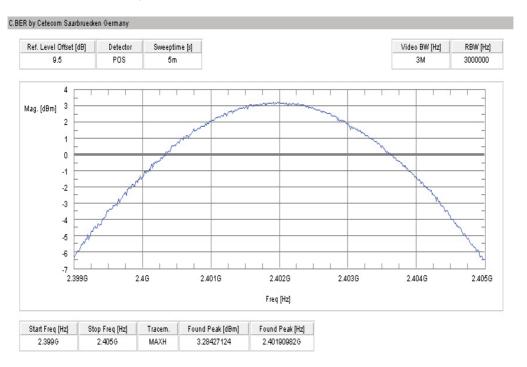

2013-02-21 Page 24 of 74

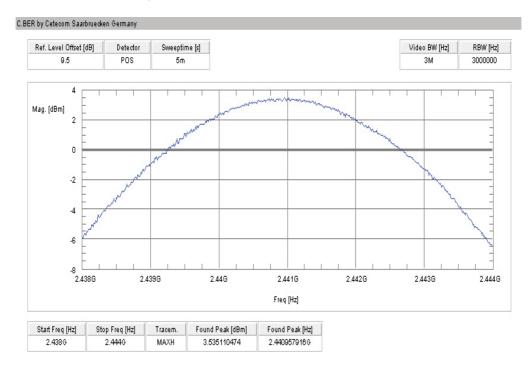
Plot 3: highest channel – 2480 MHz, GFSK modulation


Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation


2013-02-21 Page 25 of 74

Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation


Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation


2013-02-21 Page 26 of 74

Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation


Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

2013-02-21 Page 27 of 74

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

2013-02-21 Page 28 of 74

9.8 Band edge compliance conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	100 kHz	
Resolution bandwidth:	100 kHz	
Span:	Lower Band Edge: 2395 – 2405 MHz higher Band Edge: 2478 – 2489 MHz	
Trace-Mode:	Max Hold	

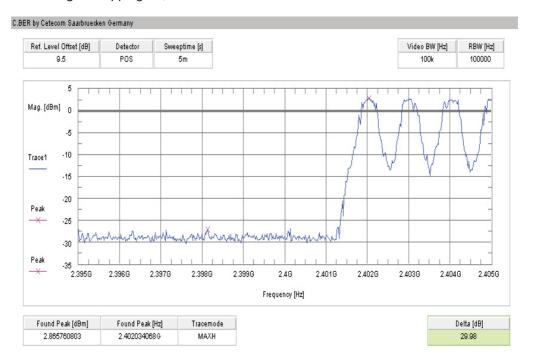
Limits:

FCC	IC
Band edge compliance conducted	

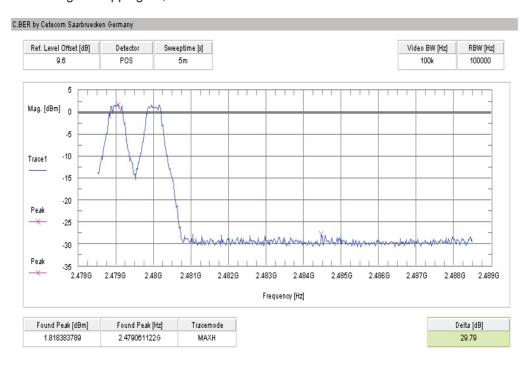
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results:

Scenario	Band edç	ge compliance condu	cted [dB]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Measurement uncertainty		± 1.5 dB	

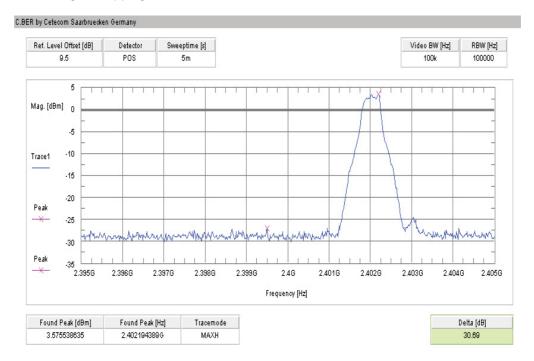

Result: Passed

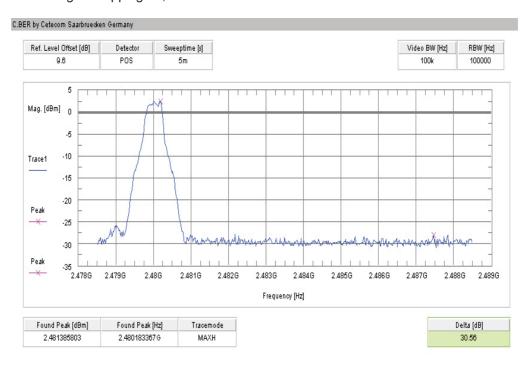
2013-02-21 Page 29 of 74



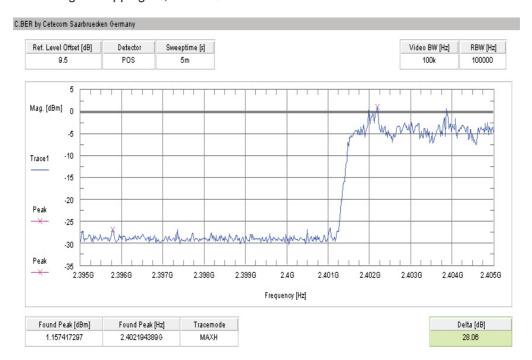
Plots:

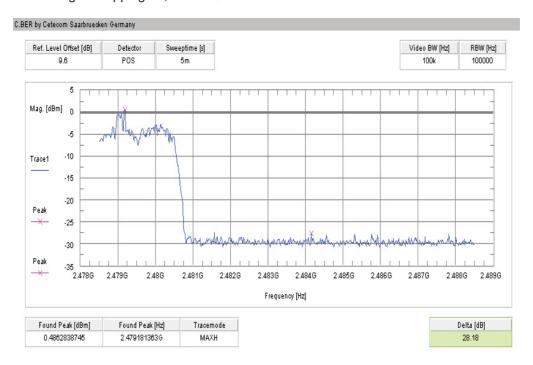
Plot 1: Lower band edge - hopping on, GFSK modulation


Plot 2: Upper band edge – hopping on, GFSK modulation

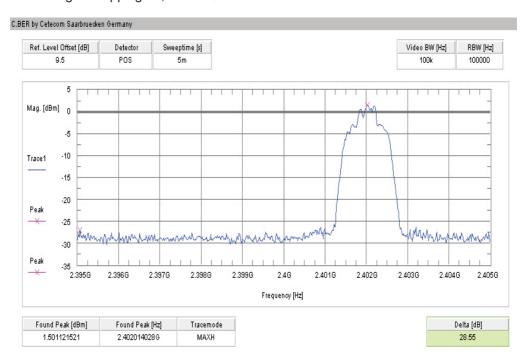

2013-02-21 Page 30 of 74

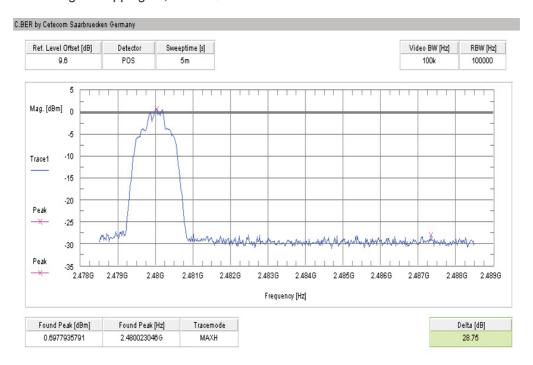
Plot 3: Lower band edge – hopping off, GFSK modulation


Plot 4: Upper band edge – hopping off, GFSK modulation

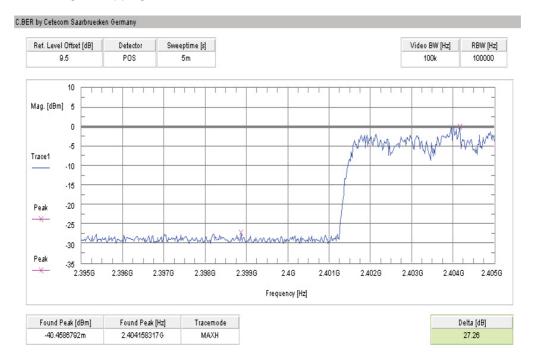

2013-02-21 Page 31 of 74

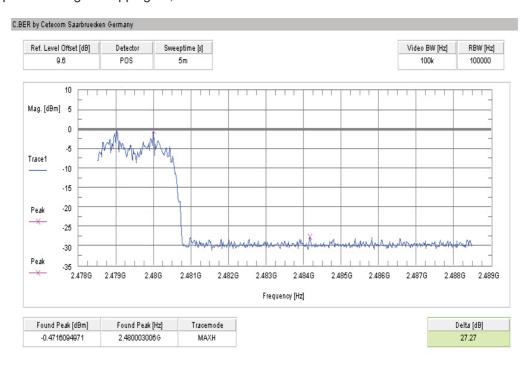
Plot 5: Lower band edge - hopping on, Pi/4 DQPSK modulation


Plot 6: Upper band edge - hopping on, Pi/4 DQPSK modulation

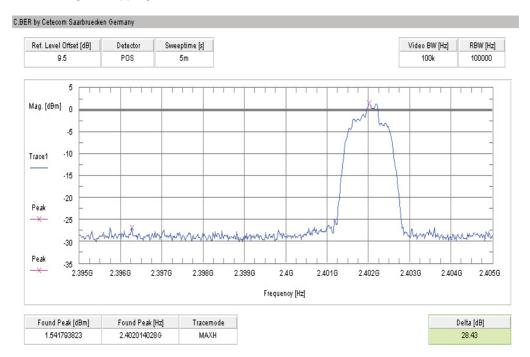

2013-02-21 Page 32 of 74

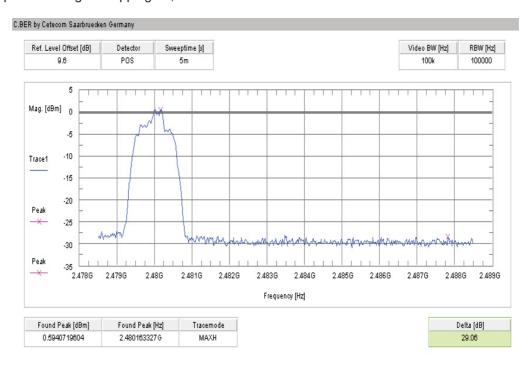
Plot 7: Lower band edge - hopping off, Pi/4 DQPSK modulation


Plot 8: Upper band edge – hopping off, Pi/4 DQPSK modulation


2013-02-21 Page 33 of 74

Plot 9: Lower band edge – hopping on, 8DPSK modulation


Plot 10: Upper band edge – hopping on, 8DPSK modulation


2013-02-21 Page 34 of 74

Plot 11: Lower band edge – hopping off, 8DPSK modulation

Plot 12: Upper band edge – hopping off, 8DPSK modulation

2013-02-21 Page 35 of 74

9.9 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement:

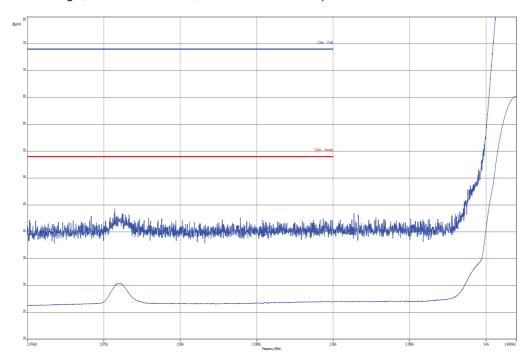
Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	1 MHz Peak / 10 Hz AVG	
Resolution bandwidth:	1 MHz	
Span:	Lower Band: 2370 – 2400 MHz higher Band: 2480 – 2500 MHz	
Trace-Mode:	Max Hold	

Limits:

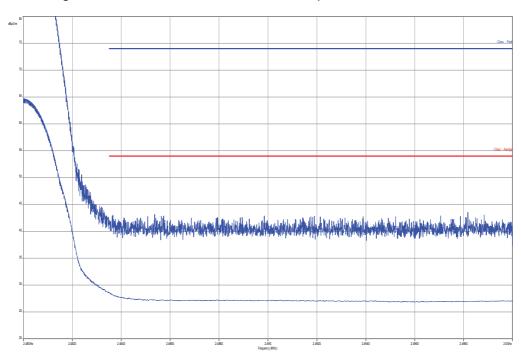
FCC	IC
Band edge com	pliance radiated
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).	
· ·	//m AVG //m Peak

Results:

Scenario	Band edge compliance radiated [dBμV/m]		
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP
Measurement uncertainty	± 3 dB		

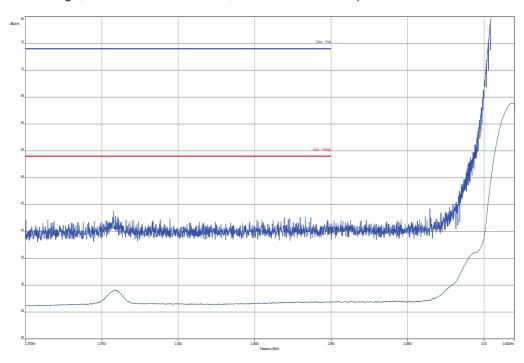

Result: Passed

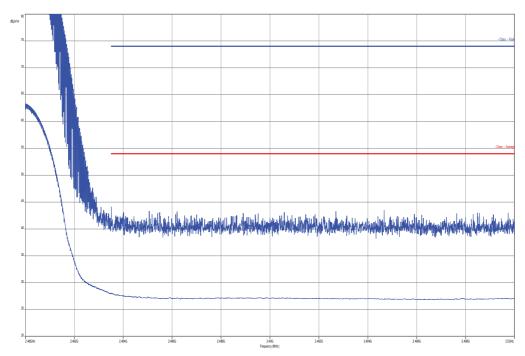
2013-02-21 Page 36 of 74



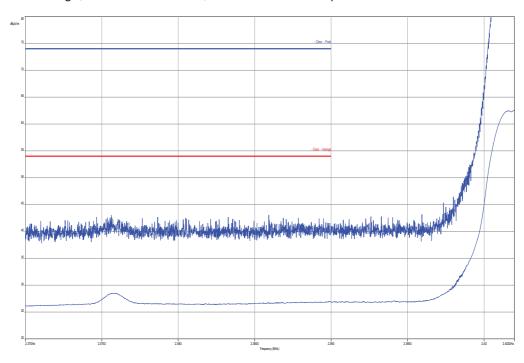
Plots:

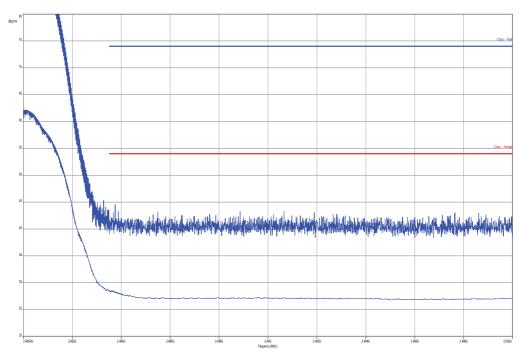
Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization


Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization


2013-02-21 Page 37 of 74

Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization


Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization


2013-02-21 Page 38 of 74

Plot 5: Lower band edge, 8 DPSK modulation, vertical & horizontal polarization

Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization

2013-02-21 Page 39 of 74

9.10 TX spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement:

Measurement parameter									
Detector:	Peak								
Sweep time:	Auto								
Video bandwidth:	F < 1 GHz: 500 kHz F > 1 GHz: 500 kHz								
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz								
Span:	9 kHz to 25 GHz								
Trace-Mode:	Max Hold								

Limits:

FCC	IC
TX spurious emi	ssions conducted

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

2013-02-21 Page 40 of 74

Results:

			TX spu	irious emissions condu	ıcted						
	GFSK - mode										
f [MHz]		amplitude of emission [dBm]		emission		emiss		limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results	
2402				30 dBm		Operating frequency					
N	o critical peaks de	etected				complies					
				-20 dBc							
2441				30 dBm		Operating frequency					
N	o critical peaks de	etected				complies					
				-20 dBc							
2480				30 dBm		Operating frequency					
N	o critical peaks de	etected				complies					
	-			-20 dBc							
Measu	rement uncertain	ty			± 3 dB						

Result: Passed

Results:

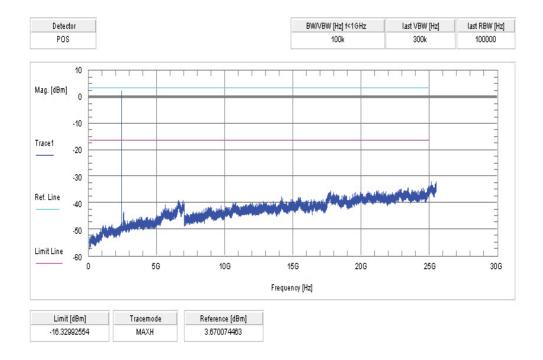
	TX spurious emissions conducted									
	Pi/4-DQPSK - mode									
f [MHz]	lHz]		MHz]		ude of sion m]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results		
2402				30 dBm		Operating frequency				
N	lo critical peaks de	etected				complies				
				-20 dBc						
2441				30 dBm		Operating frequency				
N	lo critical peaks de	etected				complies				
			-20 dBc							
2480				30 dBm		Operating frequency				
N	lo critical peaks de	etected				complies				
				-20 dBc						
Meası	urement uncertain	ty			± 3dB					

Result: Passed

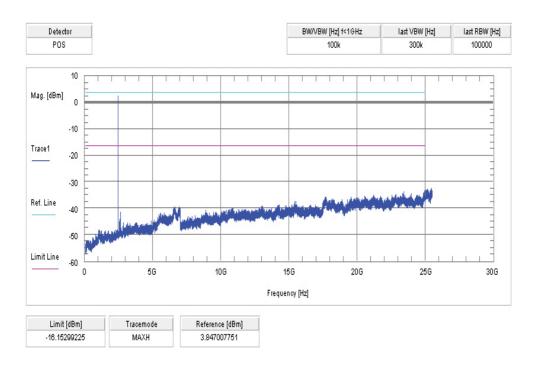
2013-02-21 Page 41 of 74

Results:

			TX spu	urious emissions condu	ıcted						
	8DPSK - mode										
f [MHz]		amplitude of emission [dBm]		emission		limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results			
2402				30 dBm		Operating frequency					
N	o critical peaks de	etected				complies					
				-20 dBc							
2441				30 dBm		Operating frequency					
N	o critical peaks de	etected				complies					
				-20 dBc							
2480				30 dBm		Operating frequency					
N	o critical peaks de	etected				complies					
				-20 dBc							
Measu	rement uncertain	ty			± 3dB						

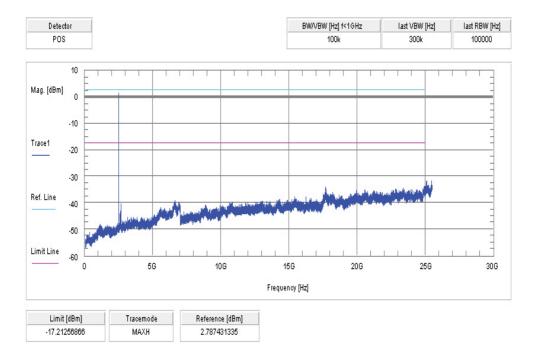

Result: Passed

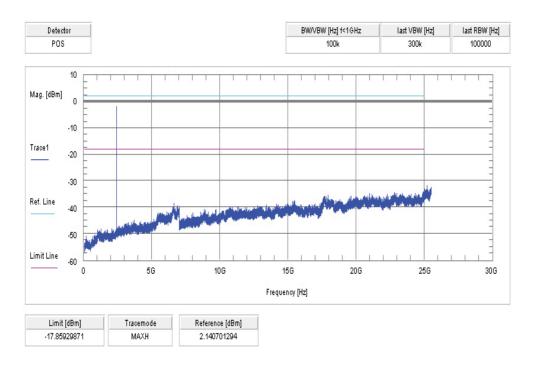
2013-02-21 Page 42 of 74



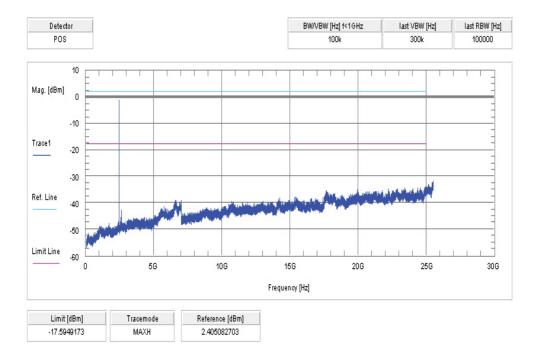
Plots:

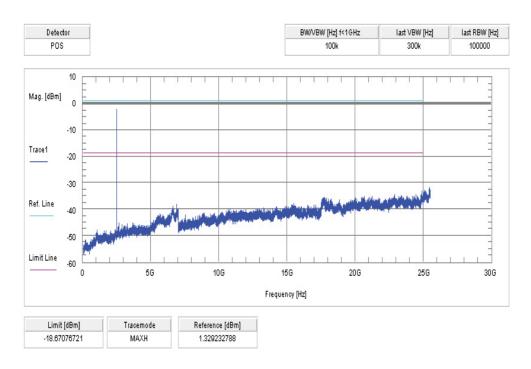
Plot 1: lowest channel – 2402 MHz, GFSK modulation


Plot 2: middle channel – 2441 MHz, GFSK modulation

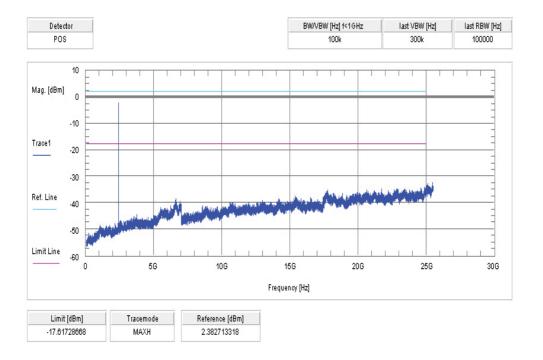

2013-02-21 Page 43 of 74

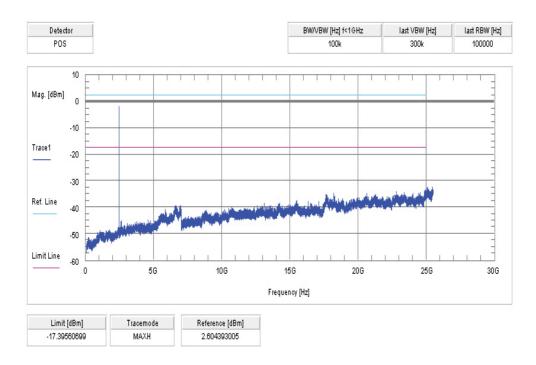
Plot 3: highest channel – 2480 MHz, GFSK modulation


Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

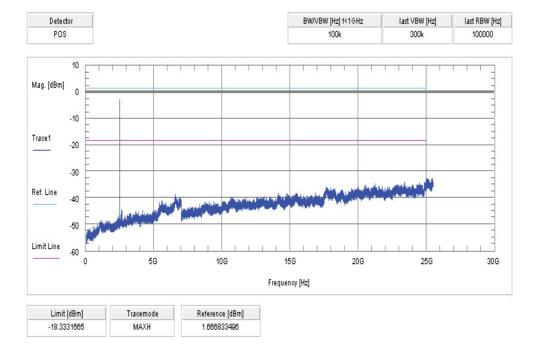

2013-02-21 Page 44 of 74

Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation


Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation


2013-02-21 Page 45 of 74

Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation


Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

2013-02-21 Page 46 of 74

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

2013-02-21 Page 47 of 74

9.11 TX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement:

Measurement parameter										
Detector:	Peak / Quasi Peak									
Sweep time:	Auto									
Video bandwidth:	Sweep: 100 kHz Remeasurement: 10 Hz									
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz									
Span:	30 MHz to 25 GHz									
Trace-Mode:	Max Hold									
Measured Modulation:	☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK									

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC									
TX spurious emissions radiated									
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
§15.209									
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						

Frequency (MHz)	Field strength (dBμV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

2013-02-21 Page 48 of 74

Results:

	TX spurious emissions radiated [dBμV/m]										
	2402 MHz			2441 MHz			2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]			
No cr	itical peaks de	etected	No crit	ical peaks de	tected	No cri	tical peaks de	tected			
Meas	urement unce	ertainty			± 3	dB					

Result: Passed

2013-02-21 Page 49 of 74

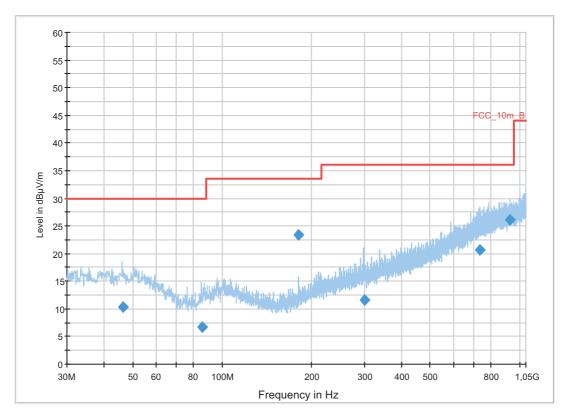
Plots:

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

EUT: Car Gate ECU

Serial Number:

Test Description: FCC part 15 C class B @ 10 m


Operating Conditions: BT 3DH5 CH0
Operator Name: Medrow
Comment: DC 12V

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Receiver: [ESCI 3] Level Unit: dBµV/m

FCC_10m(B)_3

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Polarizatio n	Azimut h (deg)	Corr. (dB)	Margi n (dB)	Limit (dBµV/m)	Comment
46.354350	10.3	1000.0	120.000	170.0	Н	190.0	13.3	19.7	30.0	
85.455900	6.6	1000.0	120.000	170.0	Н	265.0	9.9	23.4	30.0	
179.993700	23.3	1000.0	120.000	105.0	V	265.0	10.4	10.2	33.5	
299.858550	11.6	1000.0	120.000	170.0	Н	100.0	14.5	24.4	36.0	
734.042250	20.7	1000.0	120.000	170.0	V	90.0	23.3	15.3	36.0	
927.451050	26.1	1000.0	120.000	143.0	V	-10.0	25.3	9.9	36.0	

2013-02-21 Page 50 of 74

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.42

Signal Path: without Notch

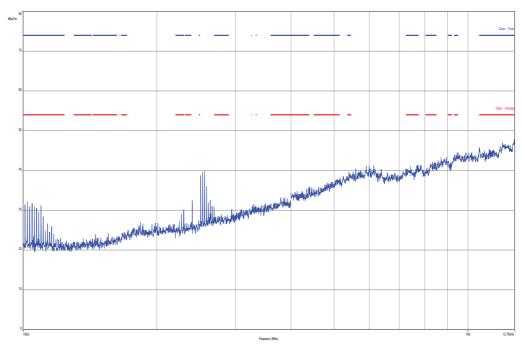
FW 1.0

Antenna: VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (1005)

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

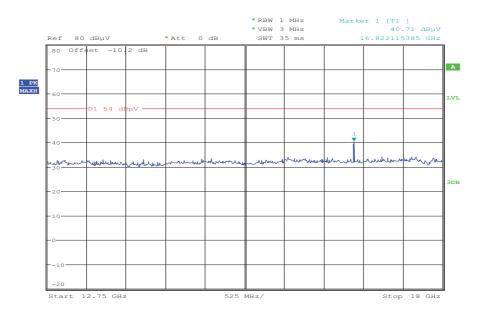

@ GPIB0 (ADR 8), FW REV 3.12

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

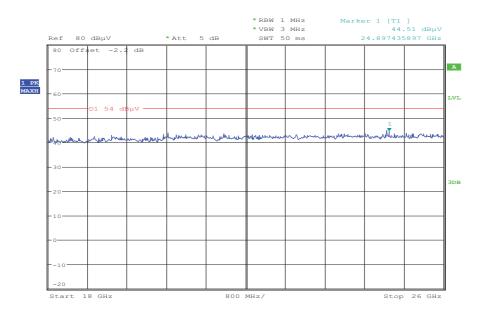
EMC 32 Version 8.10.00

Plot 2: 1 GHz to 12.75 GHz, TX mode, channel 00, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

2013-02-21 Page 51 of 74



Plot 3: 12.75 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 17.JAN.2013 10:08:02

Plot 4: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 17.JAN.2013 10:12:59

2013-02-21 Page 52 of 74

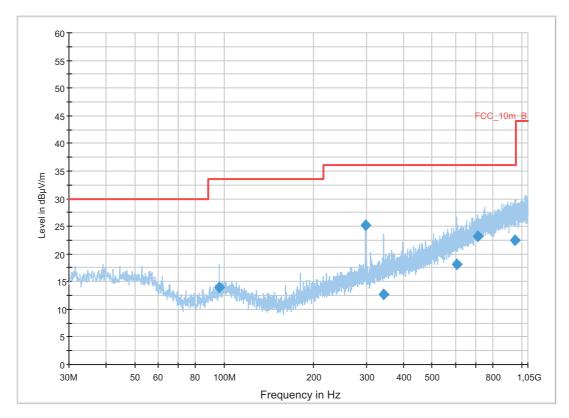
Plot 5: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

EUT: Car Gate ECU

Serial Number:

Test Description: FCC part 15 C class B @ 10 m

Operating Conditions: BT 3DH5 CH39


Operator Name: Medrow Comment: DC 12V

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Receiver: [ESCI 3] Level Unit: dBµV/m

FCC_10m(B)_3

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Polarizatio n	Azimut h (deg)	Corr. (dB)	Margi n (dB)	Limit (dBµV/m)	Comment
96.009150	13.9	1000.0	120.000	105.0	V	280.0	11.4	19.6	33.5	
299.313750	25.1	1000.0	120.000	112.0	V	0.0	14.5	10.9	36.0	
343.675950	12.8	1000.0	120.000	170.0	V	-10.0	15.9	23.2	36.0	
606.849300	18.2	1000.0	120.000	98.0	Н	-2.0	20.8	17.8	36.0	
710.749800	23.2	1000.0	120.000	170.0	Н	-10.0	22.8	12.8	36.0	
950.019450	22.5	1000.0	120.000	170.0	Н	273.0	25.4	13.5	36.0	

2013-02-21 Page 53 of 74

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.42

Signal Path: without Notch FW 1.0

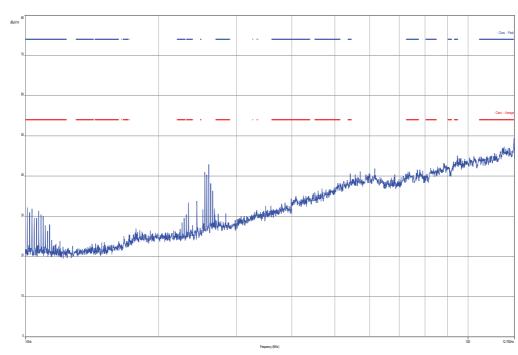
VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (1005)

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

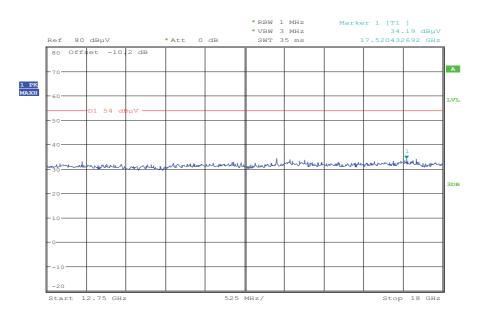

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

EMC 32 Version 8.52

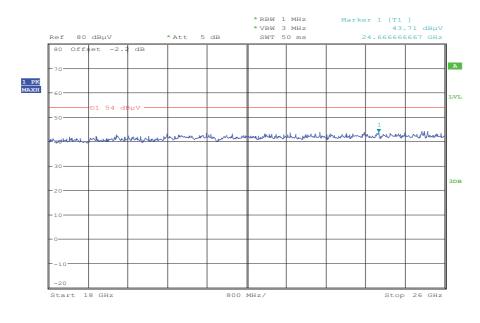
Antenna:

Plot 6: 1 GHz to 12.75 GHz, TX mode, channel 39, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

2013-02-21 Page 54 of 74



Plot 7: 12.75 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 17.JAN.2013 10:08:46

Plot 8: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 17.JAN.2013 10:13:50

2013-02-21 Page 55 of 74

Plot 9: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization

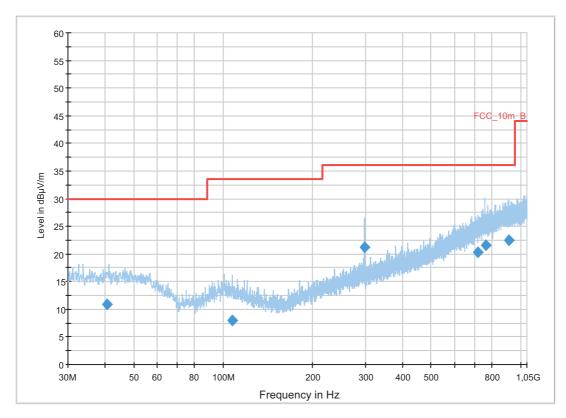
EUT: Car Gate ECU

Serial Number:

Test Description: FCC part 15 C class B @ 10 m

Operating Conditions: BT 3DH5 CH78

Operator Name: Medrow Comment: DC 12V


Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

 $\begin{array}{ll} \text{Receiver:} & \text{[ESCI 3]} \\ \text{Level Unit:} & \text{dB}\mu\text{V/m} \end{array}$

SubrangeStep SizeDetectorsIF BWMeas. Time30 MHz - 2 GHz60 kHzQPK120 kHz1 s20 dB

FCC_10m(B)_3

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Polarizatio n	Azimut h (deg)	Corr. (dB)	Margi n (dB)	Limit (dBµV/m)	Comment
40.713300	10.9	1000.0	120.000	98.0	V	10.0	13.4	19.1	30.0	
107.389950	8.0	1000.0	120.000	170.0	Н	100.0	11.2	25.5	33.5	
299.202900	21.1	1000.0	120.000	98.0	V	190.0	14.5	14.9	36.0	
718.392750	20.3	1000.0	120.000	170.0	V	190.0	22.9	15.7	36.0	
760.857600	21.6	1000.0	120.000	116.0	Н	180.0	23.7	14.4	36.0	
915.805500	22.4	1000.0	120.000	170.0	V	268.0	25.2	13.6	36.0	

2013-02-21 Page 56 of 74

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.42

Signal Path: without Notch FW 1.0

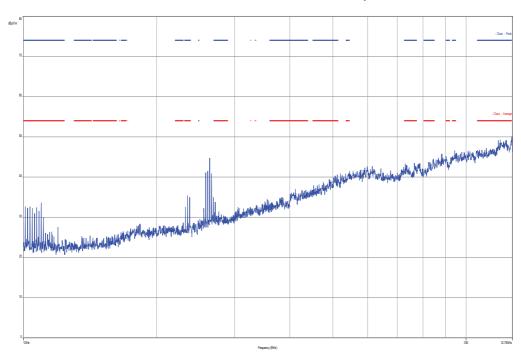
VULB 9163

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (1005)

Antenna Tower: Tower [EMCO 2090 Antenna Tower]

@ GPIB0 (ADR 8), FW REV 3.12

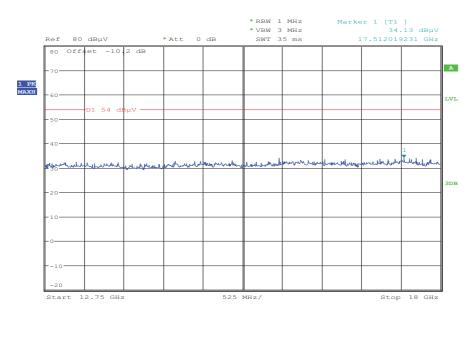

Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

EMC 32 Version 8.52

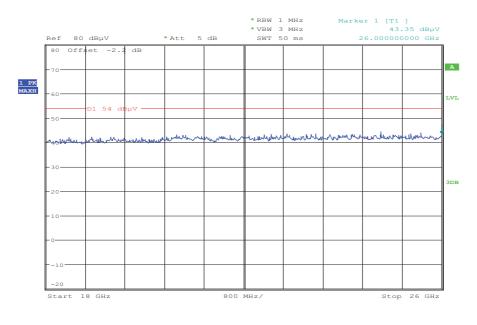
Antenna:

Plot 10: 1 GHz to 12.75 GHz, TX mode, channel 78, vertical & horizontal polarization



The carrier signal is notched with a 2.4 GHz band rejection filter.

2013-02-21 Page 57 of 74



Plot 11: 12.75 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

Date: 17.JAN.2013 10:09:30

Plot 12: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization

Date: 17.JAN.2013 10:14:35

2013-02-21 Page 58 of 74

9.12 RX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in idle/receive mode. The EUT is detached so all oscillators are active.

Measurement:

Measurement parameter							
Detector:	Peak / Quasi peak						
Sweep time:	Auto						
Video bandwidth:	Sweep: 100 kHz Remeasurement: 10 Hz						
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz						
Span:	30 MHz to 25 GHz						
Trace-Mode:	Max Hold						

Limits:

FCC			IC
	RX Spurious Em	issions Radiated	
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance
30 - 88	30.0		10
88 – 216	33.5		10
216 – 960	36.0		10
Above 960	54	1.0	3

Results:

RX spurious emissions radiated [dBμV/m]								
F [MHz]								
No critical peaks detected								
Measurement uncertainty	±3 dB							

Result: Passed

2013-02-21 Page 59 of 74

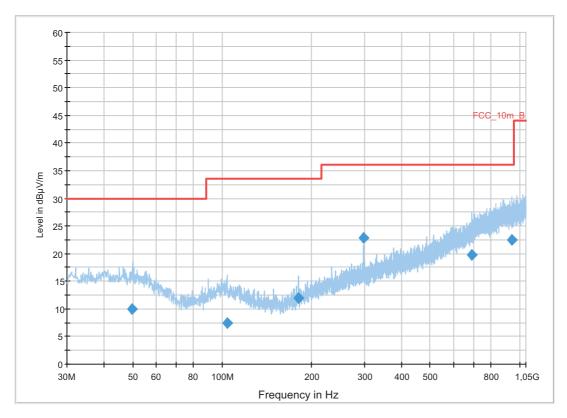
Plots:

Plot 1: 30 MHz to 1 GHz, RX mode, vertical & horizontal polarization

EUT: Car Gate ECU

Serial Number:

Test Description: FCC part 15 B class B @ 10 m


Operating Conditions: BT rx mode
Operator Name: Medrow
Comment: DC 12V

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Electric Field (NOS)

Receiver: [ESCI 3] Level Unit: dBµV/m

FCC_10m(B)_3

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Polarizatio n	Azimut h (deg)	Corr. (dB)	Margi n (dB)	Limit (dBµV/m)	Comment
49.694100	10.0	1000.0	120.000	163.0	Н	90.0	13.4	20.0	30.0	
104.072700	7.4	1000.0	120.000	170.0	Н	265.0	11.5	26.1	33.5	
179.985450	12.0	1000.0	120.000	170.0	V	86.0	10.4	21.5	33.5	
299.191500	22.8	1000.0	120.000	98.0	V	10.0	14.5	13.2	36.0	
692.451600	19.7	1000.0	120.000	170.0	V	273.0	22.3	16.3	36.0	
940.085550	22.5	1000.0	120.000	120.0	V	-10.0	25.3	13.5	36.0	

2013-02-21 Page 60 of 74

Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Subrange 1

Frequency Range: 30 MHz - 2 GHz

Receiver: Receiver [ESCI 3]

@ GPIB0 (ADR 20), SN 100083/003, FW 4.42

Signal Path: without Notch

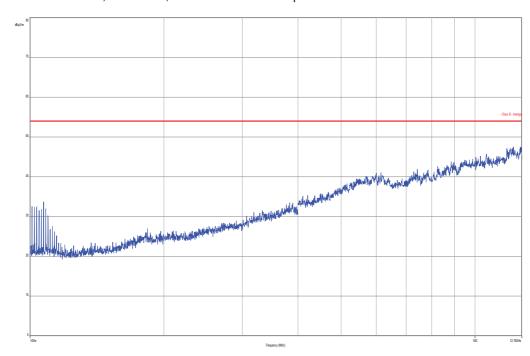
FW 1.0

Antenna: **VULB 9163**

SN 9163-295, FW ---

Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (1005)

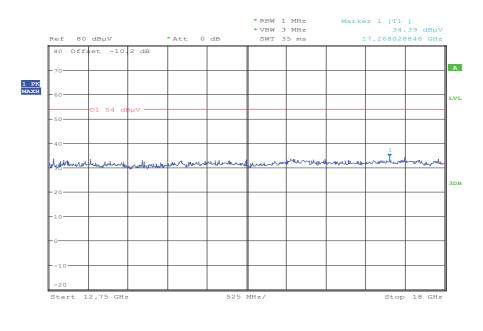
Tower [EMCO 2090 Antenna Tower] Antenna Tower:


@ GPIB0 (ADR 8), FW REV 3.12

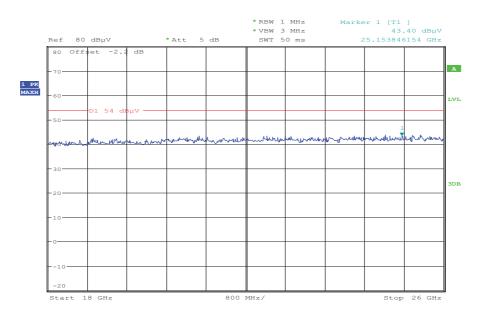
Turntable: Turntable [EMCO Turntable]

@ GPIB0 (ADR 9), FW REV 3.12

EMC 32 Version 8.52


Plot 2: 1 GHz to 12.75 GHz, RX mode, vertical & horizontal polarization

2013-02-21 Page 61 of 74



Plot 3: 12.75 GHz to 18 GHz, RX mode, vertical & horizontal polarization

Date: 17.JAN.2013 10:10:26

Plot 4: 18 GHz to 26 GHz, RX mode, vertical & horizontal polarization

Date: 17.JAN.2013 10:15:13

2013-02-21 Page 62 of 74

9.13 Spurious emissions radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

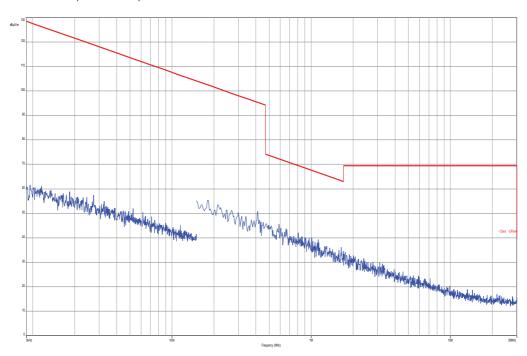
Measurement parameter						
Detector:	Peak / Quasi peak					
Sweep time:	Auto					
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace-Mode:	Max Hold					

Limits:

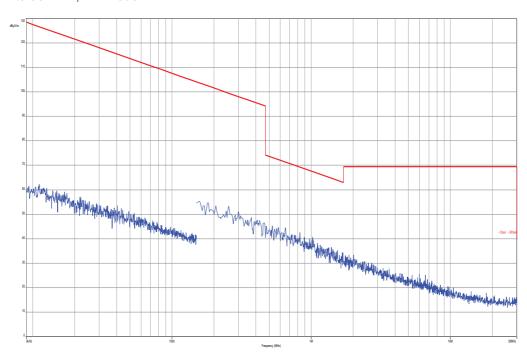
FCC			IC				
TX spurious emissions radiated < 30 MHz							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance				
0.009 – 0.490	2400/I	F(kHz)	300				
0.490 – 1.705	24000/F(kHz)		30				
1.705 – 30.0	3	0	30				

Results:

TX spurious emissions radiated < 30 MHz [dBμV/m]							
F [MHz]	F [MHz] Detector Level [dBµV/m]						
	No critical peaks detected						
Measurement uncertainty ± 3 dB							


Result: Passed

2013-02-21 Page 63 of 74



Plots:

Plot 1: 9 kHz to 30 MHz, TX mode, channel 39

Plot 4: 9 kHz to 30 MHz, RX mode

2013-02-21 Page 64 of 74

9.14 Spurious emissions conducted < 30 MHz

Not applicable!

2013-02-21 Page 65 of 74

10 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Labor/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch / Control Unit	3488A	HP Meßtechnik		300001691	ne		
2	n. a.	Power Supply DC	NGPE 40/40	R&S	388	400000078	vlKI!	21.08.2012	21.08.2014
3	n. a.	Power Sensor 50 Ohms, 10 MHz - 18 GHz, 1 nW - 20 mW	NRV-Z1	R&S	833894/011	300002681- 0010	k	22.08.2012	22.08.2014
4	n. a.	Hygro- Thermometer	-/-, 5-45°C, 20-100%rF	Thies Clima	-/-	400000080	k	24.09.2012	24.09.2013
5	n. a.	Vector Signal Generator, 300 kHz to 2.2 GHz	SMIQ03B	R&S	835541/055	300002681- 0001	k	18.08.2011	18.08.2014
6	n. a.	Signal Generator 0.01/2 - 20 GHz, Frequ. Resol. 0.1Hz	SMP02	R&S	835133/011	300002681- 0003	k	12.08.2011	12.08.2014
7	n. a.	Dual Channel Power Meter	NRVD	R&S	835430/044	300002681- 0004	k	22.08.2012	22.08.2014
8	n. a.	Signal Analyzer 20Hz-26,5GHz- 150 to + 30 DBM	FSIQ26	R&S	835540/018	300002681- 0005	k	01.02.2012	01.02.2014
9	n. a.	Frequency Standard (Rubidium Frequency Standard)	MFS (Rubidium)	R&S (Datum)	002	300002681- 0009	Ve	21.08.2012	21.08.2014
10	n. a.	Directional Coupler	101020010	Krytar	70215	300002840	ev		
11	n. a.	DC-Blocker	8143	Inmet Corp.	none	300002842	ne		
12	n. a.	Powersplitter	6005-3	Inmet Corp.		300002841	ev		
13	n. a.	Temperature Test Chamber	VT 4002	Heraeus Voetsch	58566046820 010	300003019	Ve	20.09.2011	20.09.2013
14	n. a.	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000 K35	R&S	100185	300003416	vIKI!	21.08.2012	21.08.2014
15	n. a.	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	22.08.2012	22.08.2014
16	n. a.	CBT-K57 Software-Option for CBT/CBT32	CBT-K57	R&S	101051	300003910	ne		
17	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2818A03450	300001040	Ve	12.01.2012	12.01.2015
18	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	11.05.2011	11.05.2013
19	n. a.	Active Loop Antenna	6502	EMCO	2210	300001015	ne		
20	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
21	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	*	300000199	ne		
22	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	2719A15013	300001156	ne		
23	9	Isolating Transformer	MPL IEC625 Bus	Erfi	91350	300001155	ne		

2013-02-21 Page 66 of 74

			Regeltrennt						
			ravo						
24	n. a.	Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997	ne		
25	n. a.	Amplifier	js42- 00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
26	n. a.	Band Reject filter	WRCG185 5/1910- 1835/1925- 40/8SS	Wainwright	7	300003350	ev		
27	n. a.	Band Reject filter	WRCG240 0/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
28	n. a.	Highpass Filter	WHKX7.0/1 8G-8SS	Wainwright	18	300003789	ne		
29	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbe ck	371	300003854	vIKI!	14.10.2011	14.10.2014
30	n. a.	MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologi es	MY51210197	300004405	k		

Agenda: Kind of Calibration

vlkl! Attention: extended calibration interval

k calibration / calibrated EK limited calibration

ne not required (k, ev, izw, zw not required) zw cyclical maintenance (external cyclical maintenance)

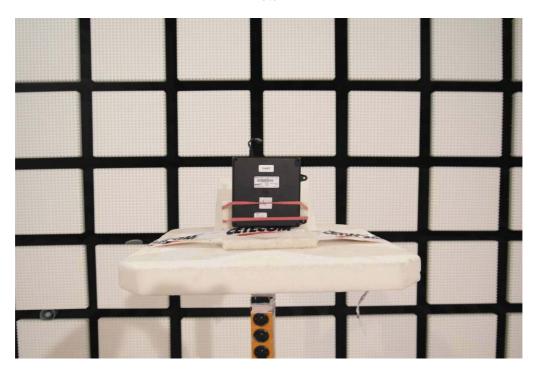
ev periodic self verification izw internal cyclical maintenance Ve long-term stability recognized g blocked for accredited testing

IK! Attention: not calibrated *) next calibration ordered / currently in progress

11 Observations

No observations exceeding those reported with the single test cases have been made.

2013-02-21 Page 67 of 74



Annex A Photographs of the test setup

Photo 1:

Photo 2:

2013-02-21 Page 68 of 74

Photo 3:

Photo 4:

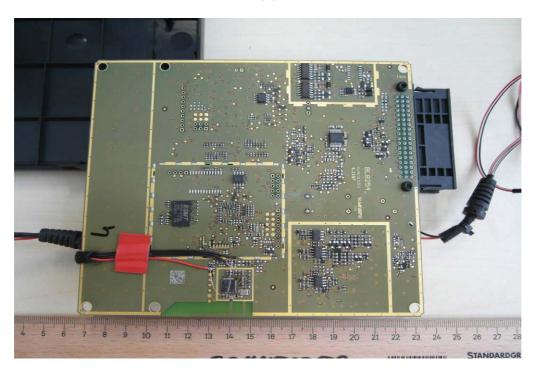
2013-02-21 Page 69 of 74

Annex B External photographs of the EUT

Photo 1:

Photo 2:

2013-02-21 Page 70 of 74



Annex C Internal photographs of the EUT

Photo 1:

Photo 2:

2013-02-21 Page 71 of 74

Photo 3:

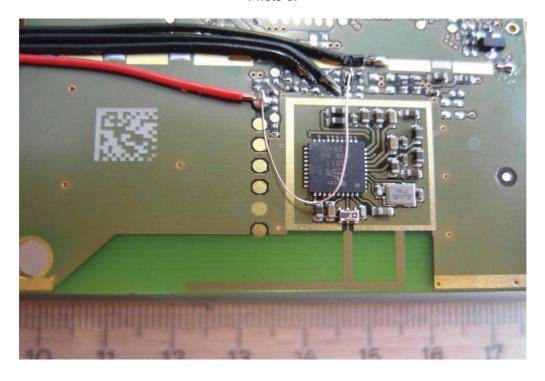


Photo 4:

2013-02-21 Page 72 of 74

Annex D Document history

Version	Applied changes	Date of release
1.0	Initial release	2013-01-30
-A	Updated FCC and IC numbers	2013-02-21

Annex E Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

Serial number

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak

SW - Software

S/N

2013-02-21 Page 73 of 74

Annex F Accreditation Certificate

Front side of certificate

Back side of certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/fileadmin/de/CETECOM D Saarbruecken/accreditations Jan 2010/DAKKS Akkredi Urk EN17025-En_incl_Annex.pdf

2013-02-21 Page 74 of 74