

Königswinkel 10 32825 Blomberg Germany Phone +49 5235 9500-0 Fax +49 5235 9500-10

TEST REPORT

Test Report Reference: R30141A Edition 1 Revison 1

Equipment under Test: BCM001 (Bluetooth Comfort Module)

Serial Number: none

FCC ID: QZ9-BURYBCM001

Applicant: connectBlue AB

Manufacturer: Bury GmbH & Co. KG

Test Laboratory (CAB) accredited by DATech e.V. in compliance with DIN EN ISO/IEC 17025 under the Reg. No. TTI-P-G071/94-11 and listed by FCC 31040/SIT1300F2

Contents:

Contents:	Page
1 IDENTIFICATION	
1.1 APPLICANT	3
1.2 MANUFACTURER	3
1.3 DATES	3
1.4 TEST LABORATORY	4
1.5 RESERVATION	4
1.6 NORMATIVE REFERENCES	4
1.7 TEST RESULTS	4
2 TECHNICAL DATA OF EQUIPMENT	5
2.1 DEVICE UNDER TEST	5
2.2 PERIPHERY DEVICES	5
3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES	6
4 LIST OF MEASUREMENTS	7
5 TEST RESULTS	8
5.1 20 dB BANDWIDTH	8
5.1.1 METHODE OF MEASUREMENT (20 dB BANDWIDTH)	8
5.1.2 TEST RESULTS (20 dB BANDWIDTH)	
5.2 CARRIER FREQUENCY SEPARATION	
5.2.1 METHODE OF MEASUREMENT (CARRIER FREQUENCY SEPARATION)	
5.2.2 TEST RESULTS (CARRIER FREQUENCY SEPARATION)	12
	14
5.3.1 METRUDE OF MEASUREMENT (NUMBER OF ROPPING FREQUENCIES)	
5.3.2 TEST RESULTS (NUMBER OF HOPPING FREQUENCIES)	
	10
5.4.1 METHODE OF MEASUREMENT (DWELL TIME)	10 17
5.5 MAXIMI IM DEAK OI ITDI IT DOWER	17 20
	20 20
5.5.2 TEST RESULTS (MAXIMUM PEAK OLITPLIT POWER)	20
5 6 POWER SPECTRAL DENSITY	
5.6.1 METHODE OF MEASUREMENT (POWER SPECTRAL DENSITY)	23
5.6.2 TEST RESULTS (POWER SPECTRAL DENSITY)	24
57 BAND-EDGE COMPLIANCE	26
5.7.1 METHODE OF MEASUREMENT (BAND-EDGE COMPLIANCE)	
5.7.2 TEST RESULT (BAND-EDGE COMPLIANCE)	
5.8 CONDUCTED EMISSIONS (TRANSMITTER)	
5.8.1 METHODE OF MEASUREMENT (CONDUCTED EMISSIONS)	
5.8.2 TEST RESULTS (CONDUCTED EMISSIONS)	
5.9 RADIATED EMISSIONS (TRANSMITTER)	
5.9.1 METHOD OF MEASUREMENT (RADIATED EMISSIONS)	35
5.9.2 TEST RESULTS (RADIATED EMISSIONS)	
6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	51
7 LIST OF ANNEXES	55

1 IDENTIFICATION

1.1 APPLICANT

Name:	ConnectBlue AB		
Address:	Stora Varvsgatan 11 n:1		
	SE-211 19 Malmö		
Country:	Sweden		
Name for contact purposes:	Mr. Olof Viklund		
Phone:	+46 40 630 71 00		
Fax:	+46 40 23 71 37		
Mail address:	olof.viklund@connect blue.se		
Applicant represented during the test by the following person:	Mr. Olof Viklund		

1.2 MANUFACTURER

Name:	Bury GmbH & CO. KG			
Address:	Robert Koch Str. 1-7			
	32584 Löhne			
Country:	Germany			
Name for contact purposes:	Mr. Horst Dreinert			
Phone:	+49 57 32 97 06-210			
Fax:	+49 57 32 97 06-298			
Mail address:	dreinert@thb.de			
Manufacturer represented during the test by the following person:	-			

1.3 DATES

Date of receipt of test sample:	31 March 2003
Start of test:	01 April 2003
End of test:	04 April 2003

1.4 TEST LABORATORY

The tests were carried out at:

PHOENIX TEST-LAB GmbH Königswinkel 10 D-32825 Blomberg Germany

Phone: +49 (0) 52 35 / 95 00-0 Fax: +49 (0) 52 35 / 95 00-10

accredited by DATech e.V. in compliance with DIN EN ISO/IEC 17025 under Reg. No. TTI-P-G071/94-11 and listed by FCC 31040/SIT1300F2.

Ν

 \sim

stamp

Test engineer:	Raimund BLASK	Blask	25 April 2003
	name	signature	date
Test report checked:	Bernd STEINER	B. Slew'	25 April 2003
	name	signature	date
		Phoenix TEST-LAB GmbH Kõnigswinkel 10 32825 Blomberg Tel. 0 52 35 / 95 00-0 Fax 0 52 35 / 95 00-10	

1.5 RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents without written permission of the accredited test laboratory PHOENIX TEST-LAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TEST-LAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TEST-LAB Logo and the TEST REPORT REFERENCE.

1.6 NORMATIVE REFERENCES

- [1] **ANSI C63.4 (1992)** American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC 47 CFR Part 15 (August 2002) Radio Frequency Devices

[3] FCC Public Notice DA 00-705 (March 2000)

1.7 TEST RESULTS

The requirements of this test document are fulfilled by the equipment under test. The complete test results are presented in the following.

2 TECHNICAL DATA OF EQUIPMENT

2.1 DEVICE UNDER TEST

Type of equipment: *	Bluetooth transmitter module
Type designation: *	BCM001 (Bluetooth Comfort Module)
FCC ID: *	QZ9-BURYBCM001
Antenna type: *	GigaAnt 3030A5645-01
Antenna gain: *	Max. 2.7 dBi
Power supply: *	5 V DC (test board 9 V DC)
Type of modulation: *	FHSS (GFSK)
Operating frequency range:*	2.402 to 2.480 GHz
Number of channels: *	79
Output power: *	0 dBm
Temperature range: *	-20 °C to + 55 °C

*: declared by the applicant

Bluetooth operates in the unlicensed ISM band at 2.4 GHZ. In the USA a band with a width of 83.5 MHz is available. In this band 79 RF channels spaced 1 MHz apart are defined. The channel is represented by a pseudo random hopping sequence through the 79 channels. The normally occupancy time of one frequency will be 625 μ s. The ordinary hopping rate will be 1600 hops/s. All frequencies will be used equally.

The following external I/O cables were used:

Cable	Length	Shielding	Connector
RS 232 (TX and RX)	90 cm	No	-

*: declared by the applicant

2.2 PERIPHERY DEVICES

The following equipment was used as control unit and ancillary equipment:

- Laptop Acer 1904 with control software, connected temporary to the RS 232 interface of the EUT.

3 OPERATIONAL STATES AND PHYSICAL BOUNDARIES

The tests were carried out with two samples, one sample (W2-1) with an integrated antenna GigaAnt 3030A5645-01 and one (W2-3) with a temporary antenna connector (SMA-type). All radiated tests were carried out at the module with the integrated antenna, the conducted tests at the module with the temporary antenna connector.

During all tests the modules were mounted on a test board. All cables were connected to this board. The supply voltage of the test board was 9.0 V DC.

For selecting an operation mode, a Laptop with a test software was connected to the test board, to adjust the wanted operation mode. After adjusting the operating mode, the laptop was removed.

As declared by the applicant, the module has no standby-mode; if the supply voltage is connected the receiver of the module starts searching for another transmitter signal. For this reason no tests in standby-mode were carried out.

For modulating the transmitter, a pseudo random bit sequence was used.

During the tests, the modules were not labelled with a FCC-label.

The following operation modes were used during the tests:

Operation mode	Description of the operation mode
1	Continuous transmitting on 2402 MHz, Continuous receiving on 2480 MHz,
2	Continuous transmitting on 2441 MHz, Continuous receiving on 2480 MHz,
3	Continuous transmitting on 2480 MHz, Continuous receiving on 2402 MHz,
4	Paging
5	Inquiry
6	Transmitter off, receiver hopping on all channels

4 LIST OF MEASUREMENTS

Application	Frequency range [MHz]	Limit	Reference standard	FCC 47 CFR Part 15 section	Status
20 dB bandwitdh	General	max. 1 MHz	-	15.247 (a) (1) (ii)	Passed
Carrier frequency separation	General	25 kHz or 20 dB bandwidth of the hopping channel	-	15.247 (a) (1)	Passed
Number of hopping channels	2400.0 - 2483.5	At least 15	-	15.247 (a) (1) (iii)	Passed
Dwell time	2400.0 – 2483.5	Max. 0.4 seconds multiplied with the number of hopping channels	-	15.247 (a) (1) (ii)	Passed
Maximum peak output power	2400.0 – 2483.5	1 W (> 75 channels); 0.125 W (all other); 1 W (digital systems)	-	15.247 (b) (1)	Passed
Power spectral density	2441	Less than 8 dBm in any 3 kHz band	-	15.247 (d)	Passed
Band edge compliance	2400.0 - 2483.5	In any 100 kHz bandwidth outside the frequency band at least 20 dBc.	-	15.247 (c)	Passed
Conducted emissions (transmitter)	0.09 – 25,000	In any 100 kHz bandwidth outside the frequency band at least 20 dBc.	-	15.247 (c)	Passed
Radiated emissions (transmitter)	30 – 25,000	In any 100 kHz bandwidth outside the frequency band at least 20 dBc. In restriced bands see 15.209.	ANSI C63.4 (1992);	15.205 (a) 15.209 (a)	Passed
Radiated emissions (receiver)	30 – 25,000	30 - 88 MHz: 100 μV/m 88 - 216 MHz: 150 μV/m 216 - 960 MHz: 200 μV/m above 960 MHz. 500 μV/m	ANSI C63.4 (1992);	15.109 (a)	Passed

March 30, 2000. [3]

5 TEST RESULTS

5.1 20 dB BANDWIDTH

5.1.1 METHODE OF MEASUREMENT (20 dB BANDWIDTH)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled, the transmitter shall work with its maximum data rate.

The following spectrum analyser shall be used:

- Span: App. 2 to 3 times the 20 dB bandwidth, centred on the actual hopping channel.
- Resolution bandwidth: \geq 1 % of the 20 dB bandwidth.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency lines shall be set on the intersection points between the second display line and the measured curve.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test set-up:

5.1.2 TEST RESULTS (20 dB BANDWIDTH)

Ambient temperature	21 °C	Relative humidity	32 %

30141_2.wmf (20 dB bandwidth at the lower end of the assigned frequency band):

<u>30141_1.wmf (20 dB bandwidth at the middle of the assigned frequency band):</u>

30141_3.wmf (20 dB bandwidth at the upper end of the assigned frequency band):

Channel number	Channel frequency [MHZ]	20 dB bandwidth [kHz]
0	2402	805.6
39	2441	805.6
78	2480	829.7

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.2 CARRIER FREQUENCY SEPARATION

5.2.1 METHODE OF MEASUREMENT (CARRIER FREQUENCY SEPARATION)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser shall be used:

- Span: Wide enough to capture the peaks of two adjacent channels.
- Resolution bandwidth: ≥ 1 % of the span.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker and the delta marker function will be used to determine the separation between the peaks of two adjacent channel signals.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test set-up:

5.2.2 TEST RESULTS (CARRIER FREQUENCY SEPARATION)

Ambient temperature	21 °C	Relative humidity	32 %

30141_6.wmf (channel separation at the lower end of the assigned frequency band):

<u>30141_5.wmf (channel separation at the middle of the assigned frequency band):</u>

<u>30141_4.wmf (channel separation at the upper end of the assigned frequency band):</u>

Channel number	Channel frequency [MHZ]	Channel separation [MHz]	Minimum limit [kHz]
0	2402	1.006	805.6 (20 dB bandwidth)
39	2441	1.006	805.6 (20 dB bandwidth)
78	2480	1.002	829.7 (20 dB bandwidth)

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.3 NUMBER OF HOPPING FREQUENCIES

5.3.1 METHODE OF MEASUREMENT (NUMBER OF HOPPING FREQUENCIES)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser shall be used:

- Span: Equal to the assigned frequency band.
- Resolution bandwidth: \geq 1 % of the span.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

After trace stabilisation the number of hopping channels could be counted. It might be possible to divide the span into some sub ranges in order to clearly show all hopping frequencies.

Test set-up:

5.3.2 TEST RESULTS (NUMBER OF HOPPING FREQUENCIES)

Ambient temperature	21 °C	Relative humidity	32 %

30141_7.wmf (number of hopping channels):

Number of hopping channels	Limit
79	At least 15

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.4 DWELL TIME

5.4.1 METHODE OF MEASUREMENT (DWELL TIME)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser shall be used:

- Span: Zero, centred on a hopping channel.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: As necessary to capture the entire dwell time per hopping channel.
- Detector function: peak.
- Trace mode: Max hold.

The marker and delta marker function of the spectrum analyser will be used to determine the dwell time.

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

If the EUT is possible to operate with different mode of operation (data rates, modulation formats etc.) the test will be repeated with every different operation mode of the EUT.

Test set-up:

5.4.2 TEST RESULTS (DWELL TIME)

Ambient temperature	21 °C	Relative humidity	32 %

30141_10.wmf (dwell time at the lower end of the assigned frequency band), hopping mode DH5:

30141_9.wmf (dwell time at the middle of the assigned frequency band), hopping mode DH5:

30141_8.wmf (dwell time at the middle of the assigned frequency band), hopping mode DH1:

The dwell time is calculated with the following formula:

Dwell time = $t_{pulse} \times n_{hops} / number of channels \times 30s$

Where:

 t_{pulse} is the measured pulse time (pls. refer the plots of the spectrum analyser above) [s], n_{hops} is the number of hops per second in the actual operating mode of the transmitter [1/s].

The hopping rate of the system is 1600 hops per second and the system uses 79 channels. For this reason one time slot has a length of 625μ s.

A DH1 packet need 1 timeslot for transmitting and the next timeslot for receiving. So the system makes in worst case 800 hops per second in transmit mode ($n_{hops} = 800 \text{ 1/s}$)

A DH5 packet need 5 timeslots for transmitting and the next timeslot for receiving. So the system makes in worst case 266,67 hops per second in transmit mode ($n_{hops} = 266.667 \text{ 1/s}$)

Channel number	Channel frequency [MHZ]	t _{pulse}	Dwell time [ms]
0	2402	2.98 ms	301.77 (DH5)
39	2441	2.95 ms	298.73 (DH5)
39	2441	448.8 µs	136.34 (DH1)
78	2480	2.98 ms	301.77 (DH5)

Limit:

The dwell time of the channel shall be less than 0.4s in a 30s period

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.5 MAXIMUM PEAK OUTPUT POWER

5.5.1 METHODE OF MEASUREMENT (MAXIMUM PEAK OUTPUT POWER)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

The following spectrum analyser shall be used:

- Span: Approx. 5 times the 20 dB bandwidth, centred on a hopping channel.
- Resolution bandwidth: > the 20 dB bandwidth of the emission being measured.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The indicated level is the peak output power, which has to be corrected with the value of the cable loss and an external attenuation (if necessary).

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

Test set-up:

5.5.2 TEST RESULTS (MAXIMUM PEAK OUTPUT POWER)

Ambient temperature	21 °C	Relative humidity	32 %
	21.0	Relative Indimidity	52 /0

30141_13.wmf (maximum peak output power at the lower end of the assigned frequency band):

30141_12.wmf (maximum peak output power at the middle of the assigned frequency band):

Channel number	Channel frequency [MHz]	Maximum peak output power [dBm]	Antenna gain	Calculated EIRP	Peak power limit [dBm]
0	2402	0.55	2.7dBi	3.25	21*
39	2441	0.89	2.7dBi	3.59	21*
78	2480	0.40	2.7dBi	3.1	21*

* 21 dBm, because in paging/inquiry mode the number of used channels is below 75.

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.6 POWER SPECTRAL DENSITY

5.6.1 METHODE OF MEASUREMENT (POWER SPECTRAL DENSITY)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on in page/inquiry mode.

The following spectrum analyser shall be used:

- Span: 1.5 MHz, centred in the middle of the assigned frequency range.
- Resolution bandwidth: 3 kHz.
- Video bandwidth: 3 kHz.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The indicated level is the power spectral density.

The measurement will be performed with the EUT in page mode and inquiry mode.

Test set-up:

5.6.2 TEST RESULTS (POWER SPECTRAL DENSITY)

Ambient temperature	21 °C Relative hu	umidity 32 %
---------------------	-------------------	--------------

30141_15.wmf (power spectral density (inquiry mode):

Operation mode	Power spectral density [dBm / 3 kHz] *	Power spectral density limit [dBm / 3 kHz]
Page mode	-9.9	8
Inquiry mode	-10.7	8

* cable loss of 0.7dB respected

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.7 BAND-EDGE COMPLIANCE

5.7.1 METHODE OF MEASUREMENT (BAND-EDGE COMPLIANCE)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

The following spectrum analyser shall be used:

- Span: Wide enough to capture the peak level of the emission on the channel closest to the band-edge, as well as any modulation products, which fall outside the assigned frequency band.
- Resolution bandwidth: \geq 1 % of the span, but not below 30 kHz.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency line shall be set on the edge of the assigned frequency band. Set the second marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is higher than that at the band-edge. After this the difference between this emission level and the signal peek will be calculated. With the value of measured field strength of the signal peak and the calculated difference to the emission level, the level of the field strength of the emission will be calculated.

The measurement will be performed at the upper and lower end of the assigned frequency band and with hopping on and off.

Test set-up:

5.7.2 TEST RESULT (BAND-EDGE COMPLIANCE)

Ambient temperature21 °C	Relative humidity	32 %
--------------------------	-------------------	------

30141_16.wmf (band-edge compliance, lower band edge, hopping off):

30141_20.wmf (band-edge compliance, upper band edge, hopping off):

<u>30141_18.wmf (band-edge compliance, lower band edge, hopping on):</u>

30141_19.wmf (band-edge compliance, upper band edge, hopping on):

-89.

Dat

Start 2.385 GHz

2 MHz/

F1

Stop 2.405 GHz

The plots on the two pages before are showing the band-edge compliance for the upper and lower bandedge, with and without hopping. The display line 1 (D1) in these plots represents the highest level within the assigned frequency band. The display line 2 (D2) represents the 20 dB offset to this highest level and shows the compliance with FCC 47 CFR Part 15.247 (c). The frequency line 1 (F1) shows the edge of the assigned frequency band plus or minus the 100 kHz (upper or lower limit).

Band-edge compliance (hopping disenabled)					
Band-edge Difference to the signal peak [dB] Field strength of this signal peak [dBµV/m] Limit					
Upper	43.9	85.2	54 dBµV/m		
Lower	38.9	87.3	54 dBµV/m		

Band-edge compliance (hopping enabled)					
Band-edge Difference to the signal peak [dB] Field strength of this signal peak [dBµV/m] Limit					
Upper	45.0	85.2	54 dBµV/m		
Lower	39.4	87.3	54 dBµV/m		

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.8 CONDUCTED EMISSIONS (TRANSMITTER)

5.8.1 METHODE OF MEASUREMENT (CONDUCTED EMISSIONS)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disenabled.

The following spectrum analyser shall be used:

- In the frequency range from 9 kHz to 1 MHz:
 - Start frequency: 9 kHz.
 - Stop frequency: 1 MHz.
 - Resolution bandwidth: 200 Hz.
 - Video bandwidth: 200 Hz.
 - Sweep: Auto.
 - Detector function: Peak.
 - Trace mode: Max hold.

In the frequency range from 1 MHz to 25 GHz:

- Start frequency: 1 MHz.
- Stop frequency: 25 GHz.
- Resolution bandwidth: 100 kHz.
- Video bandwidth: 100 kHz.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set 20 dB below the peak marker. Every emission has to be below the display line.

The measurement will be performed with the EUT operates at the middle, the upper and lower end of the assigned frequency band and with hopping off.

Test set-up:

5.8.2 TEST RESULTS (CONDUCTED EMISSIONS)

Ambient temperature	21 °C	Relative humidity	32 %
---------------------	-------	-------------------	------

30141_21.wmf (conducted emissions form 9 kHz to 1 MHz, transmitter at 2402 MHz):

30141_22.wmf (conducted emissions 9 kHz to 1 MHz, transmitter at 2441 MHz):

30141_23.wmf (conducted emissions 9 kHz to 1 MHz, transmitter at 2480 MHz):

30141_25.wmf (conducted emissions form 1 MHz to 25 GHz, transmitter at 2402 MHz):

30141_26.wmf (conducted emissions 1 MHz to 25 GHz, transmitter at 2441 MHz):

30141_24.wmf (conducted emissions 1 MHz to 25 GHz, transmitter at 2480 MHz):

	Conducted emissions with transmitter operates at 2402 MHz							
Frequency GHz	Result dBm	Limit dBm	Margin dB	Reading dBm	Cable loss dB	Reference level [dBm]		
4.804	-54.1	-19.5	34.6	-54.3	0.2	0.5		
	Condu	cted emissi	ons with tra	insmitter opera	ites at 2441 MHz	2		
Frequency GHz	Result dBm	Limit dBm	Margin dB	Reading dBm	Cable loss dB	Reference level [dBm]		
4.882	-55.3	-19.5	35.8	-55.5	0.2	0.5		
	Condu	cted emissi	ons with tra	insmitter opera	ites at 2480 MHz	2		
Frequency GHz	Result dBm	Limit dBm	Margin dB	Reading dBm	Cable loss dB	Reference level [dBm]		
4.960	-56.7	-21.3	35.4	-56.9	0.2	-1.3		

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

31, 46, 54

5.9 RADIATED EMISSIONS (TRANSMITTER)

5.9.1 METHOD OF MEASUREMENT (RADIATED EMISSIONS)

The radiated emission measurement is subdivided into two stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 30 MHz to 1 GHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna height in the frequency range 30 MHz to 1 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 25 GHz.

All measurements will be carried out with the EUT working on the middle and upper and lower edge of the assigned frequency band. For this reason the hopping function of the EUT has to be disenabled.

Preliminary measurement

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-1992 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat 1) to 4) with the other orthogonal axes of the EUT if handheld equipment.
- 7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.

Final measurement (30 MHz to 1 GHz)

A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of

0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Procedure final measurement:

The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT if handheld equipment.

Final measurement (1 GHz to 25 GHz)

This measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-1992 [1].

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to MAX Hold mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in three orthogonal axis in the range of 0 ° to 360 °. If the EUT is larger than the antenna beamwidth, the antenna will be moved to various positions, to cover the whole surface of the EUT. It might be possible to shorter the measuring distance to higher the measurement sensitivity.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz
12 GHz to 18 GHz	1 MHz
18 GHz to 25 GHz	1 MHz

Procedure of measurement:

The measurements were performed in the frequency range 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz and 18 GHz to 25 GHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals.
- 3) Change the antenna polarisation.
- 4) Rotate the EUT by 360 ° to maximize the detected signals.
- 5) Make a hardcopy of the spectrum.
- 6) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) with the other orthogonal axis of the EUT.
- 9) Repeat steps 1) to 8) for the next antenna spot if the EUT is lager than the antenna beamwidth.

5.9.2 TEST RESULTS (RADIATED EMISSIONS)

Ambient temperature		20 / 18 °C		Relative humidity	30 / 22 %	
Position of EUT:	sition of EUT: The EUT was set-up on a wooden table of a height of 0.8 m. The distance between EUT and antenna was 3 m.					
Cable guide:	The cable of the cable g	of the EUT was fixe uide refer to the pi	ed on	the wooden table. For further s in annex A of this test report	information of	
Test record:	The test wa All results a	as carried out in no are shown in the fo	rmal Ilowir	operation mode of the EUT (t ig.	ransmit mode).	
Supply voltage:	During all n	neasurements the	EUT	was supplied with 9 V DC.		

Preliminary measurement

30141_27.wmf (30 MHz to 230 MHz):

30141_28.wmf (230 MHz to 1 GHz):

The following significant frequencies were found during the preliminary radiated emission test:

- 71.997 MHz,
- 81.788 MHz,
- 191.999 MHz,
- 199.033 MHz,
- 209.614 MHz,
- 312.009 MHz,
- 456.017 MHz,
- 480.005 MHz.

The following frequencies were found inside the restricted bands according to FFC 47 CFR Part 15 section 15.205 [2].

- 120.150 MHz,
- 167.106 MHz,
- 408.011 MHz.

These frequencies have to be measured on the open area test site. The results of this final measurement are shown below.

Final measurement (30 MHz to 1 GHz)

The measured points and the limit line in the following diagram refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with x are the measured results of the standard final measurement on the open area test site.

The results of the standard final measurement on the open area test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above-mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

The measurement time with the quasi-peak measuring detector is 1 second.

Result measured with the quasi-peak detector:

Three highest	spurious e	missions o	utside rest	ricted bands					
Frequency	Result	Limit	Margin	Readings	Antenna factor	Cable loss	Height	Azimuth	Pol.
MHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	cm	deg	
71.997	43.8	64.3	20.5	36.1	7.2	0.5	115	133	Vert.
456.017	35.0	64.3	29.3	15.9	17.8	1.3	103	69	Vert.
480.005	37.0	64.3	27.3	17.6	18.0	1.4	101	79	Vert.
Three highest	spurious e	missions in	restricted	bands					
Frequency	Result	Limit	Margin	Readings	Antenna	Cable	Height	Azimuth	Pol.
					factor	loss			
MHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	cm	deg	
120.150	41.0	43.5	2.5	27.4	12.9	0.7	191	204	Vert.
167.106	27.0	43.5	16.5	15.1	11.1	0.8	107	1	Vert.
408.011	24.7	46.0	21.3	6.6	16.9	1.2	137	135	Hor.
Other spuriou	s emissions	s outside re	stricted ba	ands					
Frequency	Result	Limit	Margin	Readings	Antenna	Cable	Height	Azimuth	Pol.
					factor	loss			
MHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	cm	deg	
81.788	29.7	64.3	34.6	20.4	8.8	0.5	177	195	Vert.
191.999	33.1	64.3	31.2	22.6	9.7	0.8	101	275	Vert.
199.033	28.9	64.3	35.4	18.5	9.5	0.9	100	270	Vert.
209.614	27.0	64.3	37.3	16.2	9.9	0.9	105	1	Vert.
312.009	24.3	64.3	40.0	9.4	13.8	1.1	100	114	Vert.

The test results were calculated with the following formula:

Result $[dB\mu V/m]$ = reading $[dB\mu V]$ + cable loss [dB] + antenna factor [dB/m]

Final measurement (1 GHz to 25 GHz)

Transmitter operates at the lower band of the assigned frequency band

30141_30.wmf (1 GHz to 4 GHz):

30141_34.wmf (4 GHz to 12 GHz):

30141_35.wmf (12 GHz to 18 GHz):

30141_40.wmf (18 GHz to 25 GHz):

Transmitter operates at the middle of the assigned frequency band

30141_29.wmf (1 GHz to 4 GHz):

30141_33.wmf (4 GHz to 12 GHz):

30141_36.wmf (12 GHz to 18 GHz):

30141_39.wmf (18 GHz to 25 GHz):

Transmitter operates at the upper band of the assigned frequency band

30141_31.wmf (1 GHz to 4 GHz):

30141 32.wmf (4 GHz to 12 GHz):

30141_37.wmf (12 GHz to 18 GHz):

30141_38.wmf (18 GHz to 25 GHz):

Result measured with the peak detector:

	Trar	nsmitter op	perates a	t the lower e	edge of the	assigned	frequend	cy band		
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value				factor		loss			Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.402	96.1	-	-	63.5	28.5	0	4.1	150	Vert.	-
4.804	54.8	74.0	19.2	15.0	33.8	25	6	150	Hor.	Yes
4.962	53.5	74.0	20.5	13.1	34.4	25	6	150	Hor.	Yes
14.412	55.0	76.1	21.0	19.0	33.4	26	2.6	150	Hor.	No
	Tr	ransmitter	operates	at the mide	lle of the a	ssigned fre	equency	band		
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value				factor		loss			Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.442	93.7	-	-	61.1	28.5	0	4.1	150	Vert.	-
4.806	54.3	74.0	19.7	14.4	33.9	25	6	150	Hor.	Yes
4.882	54.0	74.0	20.0	13.7	34.3	25	6	150	Hor.	Yes
12.210	63.0	74.0	11.0	28.7	32.0	26	2.3	150	Hor.	Yes
14.652	56.1	73.7	17.6	20.0	33.5	26	2.6	150	Hor.	No
	Trar	nsmitter op	erates at	the upper e	edge of the	assigned	frequend	cy band		
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value		-	-	factor		loss			Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.480	93.8	-	-	61.2	28.5	0	4.1	150	Vert.	-
4.806	54.6	74.0	19.4	14.7	33.9	25	6	150	Hor.	Yes
4.960	53.5	74.0	20.5	13.1	34.4	25	6	150	Hor.	Yes
7.440	54.7	74.0	19.3	8.8	37.8	25	8.1	150	Hor.	Yes
12.240	47.4	74.0	26.6	13.1	32.0	26	2.3	150	Hor.	Yes
14.880	56.5	73.8	17.3	20.2	33.7	26	2.6	150	Hor.	No
19.840	45.8	74.0	28.2	6.3	36.2	38	3.3	150	Hor.	Yes
22.320	46.2	74.0	27.8	5.0	37.2	38	4.0	150	Hor.	Yes

Result measured with the average detector:

	Trar	nsmitter op	perates a	t the lower e	edge of the	assigned	frequenc	cy band		
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
CH-		dBu\//m	dP	dBu\/	1/m	dD		om		Danu
GHZ	ивμν/ш	ubµv/ш	uВ	υσμν	1/111	UD	uБ	CIII		
2.402	86.6	-	-	54.0	28.5	0	4.1	150	Vert.	-
4.804	31.4	54.0	22.6	-8.5	33.9	25	6	150	Hor.	Yes
4.962	33.0	54.0	21.0	-7.4	34.4	25	6	150	Hor.	Yes
14.412	45.5	66.6	21.1	9.5	33.4	26	2.6	150	Hor.	NO
	Tr	ransmitter	operates	at the mide	lle of the a	ssigned fre	equency	band		
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value				factor		loss			Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.442	84.2	-	-	51.6	28.5	0	4.1	150	Vert.	-
4.806	30.8	54.0	23.2	-9.1	33.9	25	6	150	Hor.	Yes
4.882	33.0	54.0	21.0	-7.3	34.3	25	6	150	Hor.	Yes
12.210	27.8	54.0	26.2	-6.5	32.0	26	2.3	150	Hor.	Yes
14.652	46.6	64.2	17.6	10.5	33.5	26	2.6	150	Hor.	No
	Trar	nsmitter op	erates at	the upper e	edge of the	assigned	frequend	cy band		
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value		Ũ	Ū	factor		loss	Ŭ		Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.480	84.3	-	-	51.7	28.5	0	4.1	150	Vert.	-
4.806	31.1	54.0	22.9	-8.8	33.9	25	6	150	Hor.	Yes
4.960	32.6	54.0	21.4	-7.7	34.3	25	6	150	Hor.	Yes
7.440	38.8	54.0	15.2	-7.1	37.8	25	8.1	150	Hor.	Yes
12.240	25.9	54.0	28.1	-8.4	32.0	26	2.3	150	Hor.	Yes
14.880	47.0	64.3	17.3	10.7	33.7	26	2.6	150	Hor.	No
19.840	24.3	54.0	29.7	-15.2	36.2	38	3.3	150	Hor.	Yes
22.320	24.7	54.0	29.3	-16.5	37.2	38	4.0	150	Hor.	Yes

Test: Passed

TEST EQUIPMENT USED FOR THE TEST:

14 - 20, 29, 31 - 37, 39, 43, 47, 49 - 51

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

Emiss	Emission measurement at AC mains and DC in / out ports at M4								
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No				
1	Shielded chamber M4	-	Siemens	B83117S1-X158	480088				
2	Measuring receiver	ESAI	Rohde & Schwarz	831953/001 833181/018	480025 480026				
3	LISN	NSLK8128	Schwarzbeck	8128155	480058				
4	DC-filter	B84266-A21- E13	Siemens	940164525	480099				
5	AC-filter	B84299-D87- E3	Siemens	930262292	480097				
6	EMI-Software	ES-K1	Rohde & Schwarz	-	480111				

Radiated emission measurement at M5							
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No		
7	Fully anechoic chamber M5	-	Siemens	B83177-S1-X156	480073		
8	Measuring receiver	ESVS30	Rohde & Schwarz	829673/012	480024		
9	Controller	HD100	Deisel	100/324	480067		
10	Antenna support	MA240	Deisel	228/314	480069		
11	Turntable	DS412	Deisel	412/317	480070		
12	Antenna	CBL6112C	Chase	2689	480327		
13	EMI Software	ES-K1	Rohde & Schwarz	-	480111		

Radia	Radiated emission measurement at M6							
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No			
14	Open area test site	-	Phoenix Test-Lab	-	480085			
15	Measuring receiver	ESVS30	Rohde & Schwarz	829673/012	480024			
16	Controller	HD100	Deisel	100/670	480139			
17	Turntable	DS420HE	Deisel	420/620/80	480087			
18	Antenna support	AS615P	Deisel	615/310	480086			
19	Antenna	CBL6111 A	Chase	1643	480147			
20	EMI Software	ES-K1	Rohde & Schwarz	-	480111			

Radia	Radiated emission measurement at M8							
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No			
21	Fully anechoic chamber M8	-	Siemens	B83117-E7019- T231	480190			
22	Measuring receiver	ESMI	Rohde & Schwarz	843977/001 843530/018	480179 480180			
23	Measuring receiver	ESCS 30	Rohde & Schwarz	828985/014	480270			
24	Controller	HD100	Deisel	100/427	480181			
25	Turntable	DS420	Deisel	420/435/97	480186			
26	Antenna support	AS615P	Deisel	615/310	480187			
27	Antenna	CBL6112 A	Chase	2034	480185			
28	EMI Software	ES-K1	Rohde & Schwarz	_	480111			

Radia	Radiated emission measurement at M20								
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No				
29	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439- T232	480303				
30	Measuring receiver	ESMI	Rohde & Schwarz	843977/001 843530/018	480179 480180				
31	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355				
32	Controller	HD100	Deisel	100/670	480326				
33	Turntable	DS420HE	Deisel	420/620/80	480315				
34	Antenna support	AS615P	Deisel	615/310	480187				
35	Antenna	CBL6112 B	Chase	2688	480328				
36	Antenna	3115 A	EMCO	9609-4918	480183				
37	Standard Gain Horn 11.9GHz – 18GHZ	18240-20	Flann Microwave	483	480294				
38	Standard Gain Horn 11.9GHz – 18GHZ	18240-20	Flann Microwave	482	480295				
39	Standard Gain Horn 17.9GHz – 26.7GHZ	20240-20	Flann Microwave	411	480297				
40	Standard Gain Horn 17.9GHz – 26.7GHZ	20240-20	Flann Microwave	410	480296				
41	Standard Gain Horn 26.4GHz – 40.1GHZ	22240-20	Flann Microwave	469	480299				

No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No
42	Standard Gain Horn 26.4GHz – 40.1GHZ	22240-20	Flann Microwave	468	480298
43	RF-cable No. 30	RTK 081	Rosenberger	-	410141
44	RF-cable No. 31	RTK 081	Rosenberger	-	410142
45	RF-cable 1m	KPS-1533- 400-KPS	Insulated Wire	-	480300
46	RF-cable 1m	KPS-1533- 400-KPS	Insulated Wire	-	480301
47	RF-cable 2m	KPS-1533- 400-KPS	Insulated Wire	-	480302
48	RF-cable No. 5	RTK 081	Rosenberger		410097
49	Preamplifier	JS3- 00101200- 23-5A	Miteq	681851	480337
50	Preamplifier	JS3- 12001800- 16-5A	Miteq	571667	480343
51	Preamplifier	JS3- 18002600- 20-5A	Miteq	658697	480342
52	Preamplifier	JS3- 26004000- 25-5A	Miteq	563593	480344
53	EMI Software	ES-K1	Rohde & Schwarz	-	480111

Ancillary equipment used for testing									
No.	Test equipment	Туре	Manufacturer	Serial No.	PM-No				
54	Power supply	TOE 8852	Toellner	51712	480233				
-	-	-	-	-	-				
-	-	-	-	-	-				
-	-	-	-	-	-				

All used measurement equipment was calibrated (if necessary). The calibration intervals and the calibration history will be given out on request.

7 LIST OF ANNEXES

ANNEX A	PHOTOGRAPHS OF THE TEST SET-UPS:	3 pages
	BCM001 test set-up preliminary emission test below 1 GHz BCM001 test set-up open area test site BCM001 test set-up emission measurement above 1 GHz	30141_a.jpg 30141_b.jpg 30141_e.jpg
ANNEX B	INTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	6 pages
	BCM001 test board, top view BCM001 test board, bottom view BCM001 W2-1 (with integrated antenna), top view BCM001 W2-1 (with integrated antenna), bottom view BCM001 W2-3 (with temporary antenna connector), top view BCM001 W2-3 (with temporary antenna connector), bottom view	30141_3.jpg 30141_4.jpg 30141_8.jpg 30141_5.jpg 30141_7.jpg 30141_6.jpg
ANNEX C	EXTERNAL PHOTOGRAPHS OF THE TEST SAMPLE:	0 pages

Because of the EUT is a module and will build in a housing in a final application, no external Photographs are available.