

Königswinkel 10 32825 Blomberg Germany Phone: +49 (0) 52 35 95 00-0 Fax: +49 (0) 52 35 95 00-10

Test Report

Report Number: F121762E1

Applicant:

Bury GmbH & Co. KG

Manufacturer:

Bury GmbH & Co. KG

Equipment under Test (EUT):

SIM Card Reader

Laboratory (CAB) accreditedby Deutsche Gesellschaft für Akkreditierung mbH in compliance with DIN EN ISO/IEC 17025 under the Reg. No. DGA-PL-105/99-22, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1

REFERENCES

- [1] ANSI C63.4-2009 American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC CFR 47 Part 15 (August 2011) Radio Frequency Devices
- [3] FCC Public Notice DA 00-705 (March 2000)
- [4] Publication Number 913591 (March 2007) Measurement of radiated emissions at the edge of the band for a Part 15 RF Device

TEST RESULT

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer:	Manuel BASTERT	1. Jast	04 June 2012
	Name	Signature	Date
Authorized reviewer:	Thomas KÜHN	1.6	04 June 2012
	Name	Signature	Date

RESERVATION

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

Contents:

Page

1	IDENTIF	ICATION	4
	1.1 Applic	ant	4
	1.2 Manu	facturer	4
		aboratory	
	,	Equipment Under Test)	
		ical data of equipment	
2	OPERAT	IONAL STATES	6
3	ADDITIO	NAL INFORMATION	7
4	OVERVI	EW	8
5	TEST RE	SULTS	9
	5.1 20 dB	bandwidth	9
	5.1.1	Method of measurement (20 dB bandwidth)	
	5.1.2	Test results (20 dB bandwidth)	10
	5.2 Carrie	r frequency separation	12
	5.2.1	Method of measurement (carrier frequency separation)	
	5.2.2	Test results (carrier frequency separation)	
		er of hopping frequencies	
	5.3.1	Method of measurement (number of hopping frequencies)	
	5.3.2	Test results (number of hopping frequencies)	
		time	
	5.4.1	Method of measurement (dwell time)	
	5.4.2 5.5 Maxin	Test results (dwell time)	
	5.5 Maxin 5.5.1	num peak output power Method of measurement (maximum peak output power)	
	5.5.1	Test results (maximum peak output power, radiated)	
		edge compliance	
	5.6.1	Method of measurement (band-edge compliance (radiated))	
	5.6.2	Test results	
	5.7 Radia	ted emissions	
	5.7.1	Method of measurement (radiated emissions)	29
	5.7.2	Test results	34
	5.7.2.1	Preliminary radiated emission measurement (9 kHz to 1 GHz)	34
	5.7.2.2		
	5.7.2.3	Final radiated emission measurement (1 GHz to 25 GHz)	
6	TEST EC	UIPMENT AND ANCILLARIES USED FOR TESTS	47
7	REPORT	HISTORY	48
8	LIST OF	ANNEXES	48

1 IDENTIFICATION

1.1 Applicant

Name:	Bury GmbH & Co. KG
Address:	Robert-Koch-Str. 1-7
	32584 Löhne
Country:	Germany
Name for contact purposes:	Mr. Christoph KOSTON
Phone:	+49 (0) 5732-9706-284
Fax:	+49 (0) 5732-9706-99
Mail address:	koston@bury.com

1.2 Manufacturer

Name:	Bury GmbH & Co. KG
Address:	Robert-Koch-Str. 1-7
	32584 Löhne
Country:	Germany
Name for contact purposes:	Mr. Christoph KOSTON
Phone:	+49 (0) 5732-9706-284
Fax:	+49 (0) 5732-9706-99
Mail address:	koston@bury.com

1.3 Test laboratory

The tests were carried out at:

PHOENIX TESTLAB GmbH Königswinkel 10 32825 Blomberg Germany

Accredited by DGA Deutsche Gesellschaft für Akkreditierung mbH in compliance with DIN EN ISO/IEC 17025 under Reg. No. DGA-PL-105/99-22, FCC Test site registration number 90877 and Industry Canada Test site registration IC3469A-1.

1.4 EUT (Equipment Under Test)

Equipment under test: *	SIM Card Reader for hands-free telephony in vehicles
Model name: *	SIM Card Reader
Brand name: *	Bury GmbH & Co KG
Article number: *	3W3.035.950
FCC ID: **	QZ9-BTSIMREAD
Serial number: *	Engineering sample
Hardware version: *	0003
Software version: *	0108

*: **:

Declared by the applicant. The EUT was not labeled with an FCC ID during the tests.

1.5 Technical data of equipment

Bluetooth part

Fulfills Bluetooth specification: *	V. 2.1 with EDR				
Antenna type: *	Inverted F – PCB ante	Inverted F – PCB antenna			
Antenna gain: *	2 dBi	2 dBi			
Rated output power: *	4 dBm				
Antenna connector: *	None (SMA connector temporary installed for conducted tests)				
Power supply: *	$U_{nom} = 12.0 V_{DC}$ $U_{min} = 9.0 V_{DC}$ $U_{max} = 16.0 V_{DC}$				
Type of modulation: *	FHSS (GFSK, π/4-DQPSK, 8DPSK)				
Operating frequency range:*	2402 MHz to 2480 MHz				
Number of channels: *	79				

*: Declared by the applicant.

The following external I/O cables were used:

None.

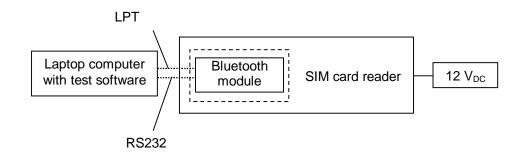
1.6 Dates

Date of receipt of test sample:	15 May 2012
Start of test:	16 May 2012
End of test:	25 May 2012

2 OPERATIONAL STATES

The EUT is a transceiver allowing hands free telephony in vehicles using Bluetooth. Two samples were used for the measurements: One with internal antenna and one with a temporary antenna connector installed instead of the internal antenna. Both samples could be set into a test mode. The needed operation mode was adjusted with the help of a configuration-software installed on a laptop computer. It was connected to the EUT via RS232 and LPT interfaces.

If not otherwise stated, for modulating the transmitter, a pseudo random bit sequence with a length of 339 byte and with a pattern type DH5 was used. During all tests a power setting of 50 was used.


The spurious emission measurement was carried out as radiated spurious emissions with the integrated antenna. During the tests the test sample was battery powered with $12 V_{DC}$ using a vehicular battery.

Operation mode	Description of the operation mode	Modulation	Data rate / Mbps
1		GFSK	1
1a	Continuous transmitting on 2402 MHz	π/4-DQPSK	2
1b		8DPSK	3
2		GFSK	1
2a	Continuous transmitting on 2441 MHz	π/4-DQPSK	2
2b		8DPSK	3
3		GFSK	1
3a	Continuous transmitting on 2480 MHz	π/4-DQPSK	2
3b		8DPSK	3
4		GFSK	1
4a	Transmitter hopping on all channels	π /4-DQPSK	2
4b		8DPSK	3

The following operation modes were used during the tests:

<u>Set up</u>

Preliminary tests were performed in different data rates and different orthogonal directions (if applicable), to find worst-case configuration and position. The data rate shown in the table below shows the found worst-case rate with respect to specific test item. The following table shows a list of the test modes used for the results, documented in this report. The radiated emission measurement was carried out in the orthogonal direction that emits the highest spurious emission levels.

Test items	Operation mode
20 dB bandwidth	1b, 2b, 3b
Carrier frequency separation	4b
Number of hopping channels	4
Dwell time	2
Maximum peak output power	1, 2, 3
Band edge compliance (radiated)	1, 3, 4
Radiated emissions (transmitter)	1, 2, 3

3 ADDITIONAL INFORMATION

None.

Ancillary equipment used to perform the measurments:

Laptop Fujitsu Siemens Lifebook S7110

4 OVERVIEW

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS 210, Issue 8 [4] or	Status	Referpage
			RSS-Gen, Issue 3 [5]		
20 dB bandwitdh	General	15.247 (a) (1)	A8.1 (a) [4]	Passed	9 et seq.
Carrier frequency separation	General	15.247 (a) (1)	A8.1 (b) [4]	Passed	12 et seq.
Number of hopping channels	2400.0 - 2483.5	15.247 (a) (1) (iii)	A8.1 (c) [4]	Passed	15 et seq.
Dwell time	2400.0 - 2483.5	15.247 (a) (1) (iii)	A8.1 (d) [4]	Passed	17 et seq.
Maximum peak output power	2400.0 - 2483.5	15.247 (b) (1)	A8.4 (2) [4]	Passed	21 et seq.
Band edge compliance	2400.0 - 2483.5	15.247 (d)	A8.5 [4]	Passed	24 et seq.
Radiated emissions (transmitter)	0.009 - 25,000	15.205 (a) 15.209 (a)	A8.5 [4] 2.5 [4]	Passed	29 et seq.
Conducted emissions on supply line	0.15 - 30	15.207 (a)	7.2.2 [5]	Not a	pplicable *
* Not applicable, because of vehicular use.					

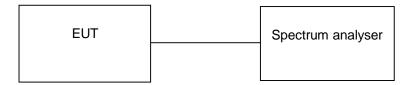
Not applicable, because of vehicular use.

5 TEST RESULTS

5.1 20 dB bandwidth

5.1.1 Method of measurement (20 dB bandwidth)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disabled, the transmitter shall work with its maximum data rate.

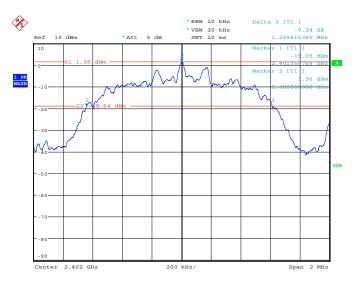

The following spectrum analyser settings shall be used:

- Span: App. 2 to 3 times the 20 dB bandwidth, centred on the actual hopping channel.
- Resolution bandwidth: \geq 1 % of the 20 dB bandwidth.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

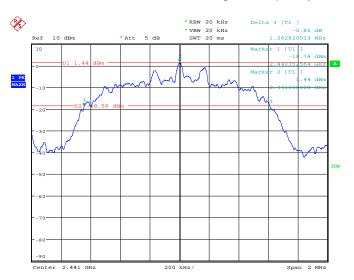
After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency lines shall be set on the intersection points between the second display line and the measured curve.

The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

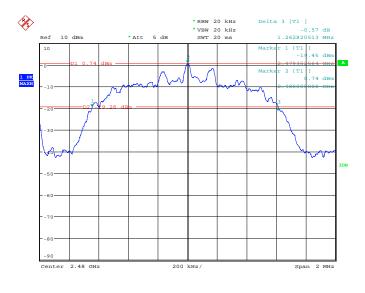
Test set-up:



5.1.2 Test results (20 dB bandwidth)


Ambient temperature	21 °C	Relative humidity	36 %

121762 6.wmf: 20 dB bandwidth at the lower end of the assigned frequency band:


Date: 16.MAY.2012 09:22:45

121762_5.wmf: 20 dB bandwidth at the middle of the assigned frequency band:

Date: 16.MAY.2012 09:03:41

121762_4.wmf: 20 dB bandwidth at the upper end of the assigned frequency band:

Date: 16.MAY.2012 08:59:30

Only the plots of the worst case measurements are shown.

Channel number	Channel number Channel frequency [MHz]					
	Operation mode 1, 2, 3 (GFSK)					
0	2402	830.128				
39	2441	830.128				
78	2480	826.923				
Operation mode 1b, 2b, 3b (8DPSK)						
0	2402	1259.615				
39	2441	1262.821				
78 2480		1262.821				
Measurer	+0.66 dB / -0.72 dB					

TEST EQUIPMENT USED FOR THE TEST:

5.2 Carrier frequency separation

5.2.1 Method of measurement (carrier frequency separation)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

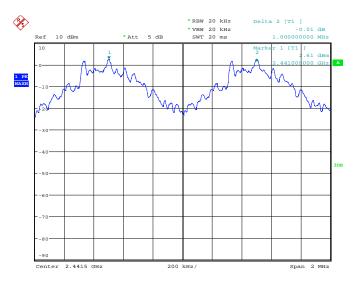
- Span: Wide enough to capture the peaks of two adjacent channels.
- Resolution bandwidth: \geq 1 % of the span.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

After trace stabilisation the marker and the delta marker function will be used to determine the separation between the peaks of two adjacent channel signals.

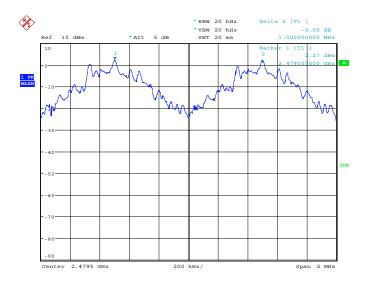
The measurement will be performed at the upper, the lower end and the middle of the assigned frequency band.

Test set-up:

5.2.2 Test results (carrier frequency separation)


Ambient temperature	21 °C	Relative humidity	36 %
---------------------	-------	-------------------	------

<u>121762</u> 8.wmf: Carrier frequency separation at the lower end of the assigned frequency band:


Date: 16.MAY.2012 10:03:59

121762_9.wmf: Carrier frequency at the middle of the assigned frequency band:

Date: 16.MAY.2012 10:12:43

<u>121762_10.wmf: Carrier frequency at the upper end of the assigned frequency band:</u>

Date: 16.MAY.2012 10:16:27

Channel number	Channel frequency [MHz]	Channel separation [kHz]	Minimum limit [kHz] 25 kHz or ² / ₃ of the 20 dB bandwidth				
Operation mode 4b							
0	2402	1000.000	839.743 (2 / ₃ of the 20 dB bandwidth)				
39	2441	1000.000	841.881 (2 / ₃ of the 20 dB bandwidth)				
78	2480 10		841.881 ($^{2}/_{3}$ of the 20 dB bandwidth)				
N	leasurement uncertai	<10 ⁻⁷					

Test result:

Passed

TEST EQUIPMENT USED FOR THE TEST:

5.3 Number of hopping frequencies

5.3.1 Method of measurement (number of hopping frequencies)

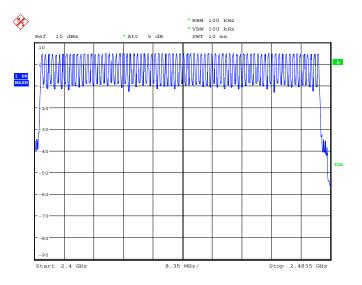
The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

- Span: Equal to the assigned frequency band.
- Resolution bandwidth: \geq 1 % of the span.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

After trace stabilisation the number of hopping channels could be counted. It might be possible to divide the span into some sub ranges in order to clearly show all hopping frequencies.

Test set-up:



5.3.2 Test results (number of hopping frequencies)

121762 7.wmf: Number of hopping channels:

Ambient temperature

Date: 16.MAY.2012 09:58:53

Number of hopping channels	Limit		
79	At least 15		

TEST EQUIPMENT USED FOR THE TEST:

5.4 Dwell time

5.4.1 Method of measurement (dwell time)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be enabled.

The following spectrum analyser settings shall be used:

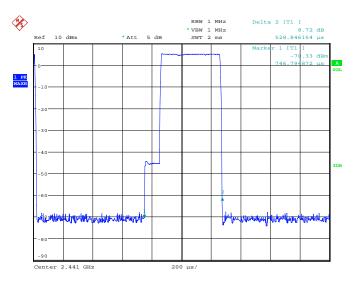
- Span: Zero, centred on a hopping channel.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: As necessary to capture the entire dwell time per hopping channel.
- Detector function: peak.
- Trace mode: Max hold.

The marker and delta marker function of the spectrum analyser will be used to determine the dwell time.

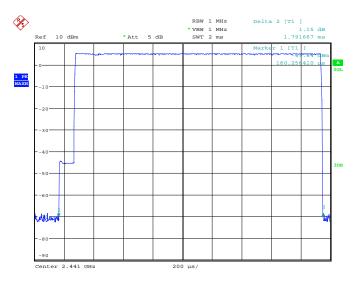
The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

If the EUT is possible to operate with different mode of operation (data rates, modulation formats etc.) the test will be repeated with every different operation mode of the EUT.

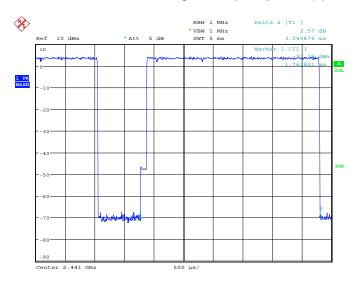
Test set-up:



5.4.2 Test results (dwell time)


Ambient temperature	21 °C	Relative humidity	36 %

<u>121762</u> 11.wmf: Dwell time at the middle of the assigned frequency band (operation mode 2):


Date: 16.MAY.2012 10:19:49

121762_12.wmf: Dwell time at the middle of the assigned frequency band (operation mode 2):

Date: 16.MAY.2012 10:21:04

121762_.wmf: Dwell time at the middle of the assigned frequency band (operation mode 2):

Date: 16.MAY.2012 10:22:37

The dwell time is calculated with the following formula:

Dwell time = $t_{pulse} \times n_{hops}$ / number of hopping channels x 31.6 (equal to 0.4 s x number of hopping channels)

Where:

 t_{pulse} is the measured pulse time (pls. refer the plots of the spectrum analyser above) [s], n_{hops} is the number of hops per second in the actual operating mode of the transmitter [1/s].

The hopping rate of the system is 1600 hops per second and the system uses 79 channels. For this reason one time slot has a length of 625 $\mu s.$

With the used hopping mode (DH1) a packet need 1 timeslot for transmitting and the next timeslot for receiving. So the system makes in worst case 800 hops per second in transmit mode (n_{hops} = 800 1/s).

With the used hopping mode (DH3) a packet need 3 timeslots for transmitting and the next timeslot for receiving. So the system makes in worst case 400 hops per second in transmit mode (n_{hops} = 400 1/s).

With the used hopping mode (DH5, 2DH5 and 3DH5) a packet need 5 timeslots for transmitting and the next timeslot for receiving. So the system makes in worst case 267 hops per second in transmit mode (n_{hops} = 267 1/s).

	Operation mode 2 (DH 1)							
Channel number	Channel frequency [MHz]	t _{pulse} [µs]	Dwell time [ms]	Limit [ms]				
39	2441	525.64	168.45	400				
		Operation mode 2 (Dł	H 3)					
Channel number	Channel frequency [MHz]	t _{pulse} [µs]	Dwell time [ms]	Limit [ms]				
39	2441	1788.46	286.57	400				
		Operation mode 2 (DI	H 5)					
Channel number	Channel frequency [MHz]	t _{pulse} [µs]	Dwell time [ms]	Limit [ms]				
39	2441	3038.46	324.98	400				
	Measurement unc	<10	7					

Test result:

Passed

TEST EQUIPMENT USED FOR THE TEST:

5.5 Maximum peak output power

5.5.1 Method of measurement (maximum peak output power)

The calibration of the spectrum analyser has to be checked with the help of a known signal from a signal generator. The EUT has to be connected to the spectrum analyser via a low loss cable. If the EUT is not equipped with an antenna connector, a temporary antenna connector has to be installed. The EUT has to be switched on and the hopping function has to be disabled.

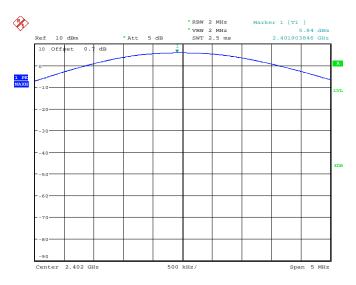
The following spectrum analyser settings shall be used:

- Span: Approx. 5 times the 20 dB bandwidth, centred on a hopping channel.
- Resolution bandwidth: > the 20 dB bandwidth of the emission being measured.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: peak.
- Trace mode: Max hold.

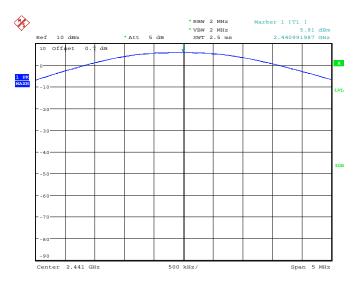
After trace stabilisation the marker shall be set on the signal peak. The indicated level is the peak output power, which has to be corrected with the value of the cable loss and an external attenuation (if necessary).

The measurement will be performed at the upper and lower end and the middle of the assigned frequency band.

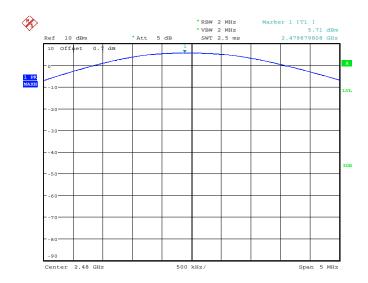
Test set-up:



5.5.2 Test results (maximum peak output power, radiated)


Ambient temperature	21 °C	Relative humidity	36 %

<u>121762</u> <u>15-1.wmf:Maximum peak output power at the lower end of the assigned frequency band</u> (operation mode 1):


Date: 16.MAY.2012 10:42:02

<u>121762_14-1.wmf: Maximum peak output power at the middle of the assigned frequency band</u> (operation mode 2):

Date: 16.MAY.2012 10:39:33

<u>121762_16-1.wmf: Maximum peak output power at the upper end of the assigned frequency band</u> (operation mode 3):

Date: 16.MAY.2012 10:43:10

Operation mode	Channel number	Channel frequency [MHz]	Maximum peak output power [dBm]	Antenna gain [dBi]	Peak power limit [dBm]	
1 1a 1b	0	2402	5.84 5.03 5.12	2.0	30.0	
2 2a 2b	39	2441	5.91 5.17 2.0 5.31		30.0	
3 3a 3b	78	2480	5.71 4.72 4.91	2.0	30.0	
	Measurer	+0.66	dB / -0.72 dB			

Only the plots for the measurements using the modulation resulting to the highest maximum peak output power are shown above.

Test result: Passed

TEST EQUIPMENT USED FOR THE TEST:

30

5.6 Band-edge compliance

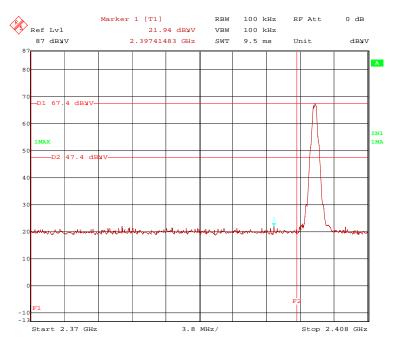
5.6.1 Method of measurement (band-edge compliance (radiated))

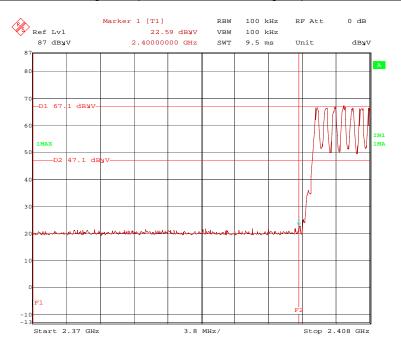
The same test set-up as used for the final radiated emission measurement shall be used (refer also subclause 5.2.1 of this test report). The measurements shall be carried out with using a resolution bandwidth of 100 kHz.

The following spectrum analyser settings shall be used:

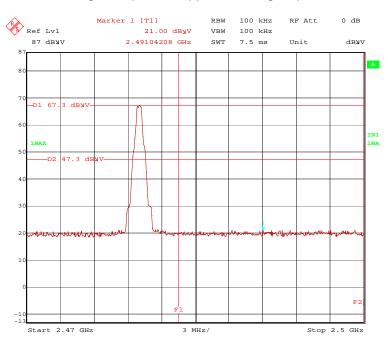
- Span: Wide enough to capture the peak level of the emission on the channel closest to the band-edge, as well as any modulation products, which fall outside the assigned frequency band.
- Resolution bandwidth: 100 kHz.
- Video bandwidth: \geq the resolution bandwidth.
- Sweep: Auto.
- Detector function: Peak.
- Trace mode: Max hold.

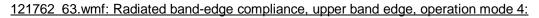
After trace stabilisation the marker shall be set on the signal peak. The first display line has to be set on this value. The second display line has to be set 20 dB below the first line (or the peak marker). The frequency line shall be set on the edge of the assigned frequency band. Set the second marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is higher than that at the band-edge. This frequency shall be measured with the EMI receiver as described in subclause 5.2.1 of this test report, but 100 kHz resolution bandwidth shall be used.

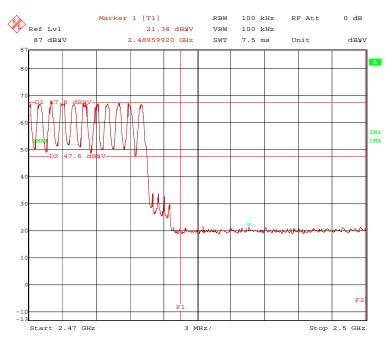

The measurement will be performed at the upper end of the assigned frequency band and with hopping on and off.


5.6.2 Test results

Ambient temperature	21 °C	Relative humidity	38 %


121762 60.wmf: Radiated band-edge compliance, lower band edge, operation mode 1:


121762_61.wmf: Radiated band-edge compliance, lower band edge, operation mode 4:



121762_62.wmf: Radiated band-edge compliance, upper band edge, operation mode 3:

The plots on the page before are showing the radiated band-edge compliance for the upper band-edge, with and without hopping. The display line 1 (D1) in these plots represents the highest level within the assigned frequency band. The display line 2 (D2) represents the 20 dB offset to this highest level and shows the compliance with FCC 47 CFR Part 15.247 (d). The frequency line 1 (F1) shows the edge of the assigned frequency.

	Band-edge compliance (lower band edge. hopping disabled)									
	Result measured with the peak detector:									
Frequency GHz	Corr. value dBµV/m	Limit dBµV/m	Margin dB	Readings dBµV	Antenna factor 1/m	Preamp dB	Cable loss dB	Height cm	Pol.	Restr. Band
2.402	99.9	-	-	67.9	28.3	0.0	3.7	150	Hor.	-
2.398	52.7	79.9	27.2	20.7	28.3	0.0	3.7	150	Hor.	No
		F	Result me	asured with	n the avera	ge detecto	or:			
Frequency GHz	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm	Llar	
2.402	89.4	-	-	57.4	28.3	0.0	3.7	150	Hor.	-
2.398	39.9	69.4	29.5	7.9	28.3	0.0	3.7	150	Hor.	No
	Measurement uncertainty							+2.2 dB	/ -3.6 dl	3

	Band-edge compliance (lower band edge. hopping enabled)									
	Result measured with the peak detector:									
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.402	99.9	-	-	67.9	28.3	0.0	3.7	150	Hor.	-
2.400	58.0	79.9	21.9	26.0	28.3	0.0	3.7	150	Hor.	Yes
		F	Result me	easured with	n the avera	ge detecto	or:			
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.402	89.4	-	-	57.4	28.3	0.0	3.7	150	Hor.	-
2.400	40.0	69.4	29.4	8.0	28.3	0.0	3.7	150	Hor.	Yes
		Measure	ement un	certainty				+2.2 dB	/ -3.6 dl	3

	Band-edge compliance (upper band edge. hopping disabled)									
	Result measured with the peak detector:									
_	-									
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value				factor		loss			Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.480	99.8	-	-	67.5	28.5	0.0	3.8	150	Hor.	-
2.491	52.8	74.0	21.2	20.5	28.5	0.0	3.8	150	Hor.	Yes
		F	Result me	easured with	n the avera	ge detecto	or:			
Frequency	Corr.	Limit	Margin	Readings	Antenna	Preamp	Cable	Height	Pol.	Restr.
	value		-	_	factor	-	loss	_		Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.480	89.3	-	-	57.0	28.5	0.0	3.8	150	Hor.	-
2.491	39.9	54.0	14.1	7.6	28.5	0.0	3.8	150	Hor.	Yes
	Measurement uncertainty							+2.2 dB	/ -3.6 dl	3

Band-edge compliance (upper band edge. hopping enabled)										
Result measured with the peak detector:										
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.480	99.8	-	-	67.5	28.5	0.0	3.8	150	Hor.	-
2.490	52.3	74.0	21.7	20.0	28.5	0.0	3.8	150	Hor.	Yes
	Result measured with the average detector:									
Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.480	89.3	-	-	57.0	28.5	0.0	3.8	150	Hor.	-
2.490	39.9	54.0	14.1	7.6	28.5	0.0	3.8	150	Hor.	Yes
Measurement uncertainty						+2.2 dB / -3.6 dB				

Test result: Passed

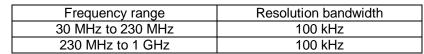
TEST EQUIPMENT USED FOR THE TEST:

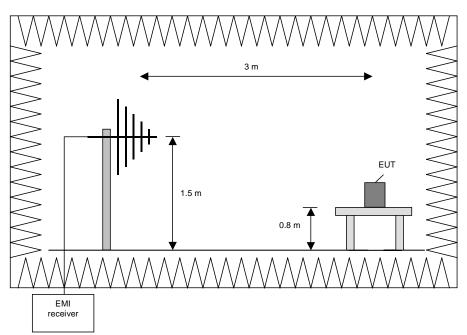
29, 31 – 34, 36, 43, 44

5.7 Radiated emissions

5.7.1 Method of measurement (radiated emissions)

The radiated emission measurement is subdivided into four stages.

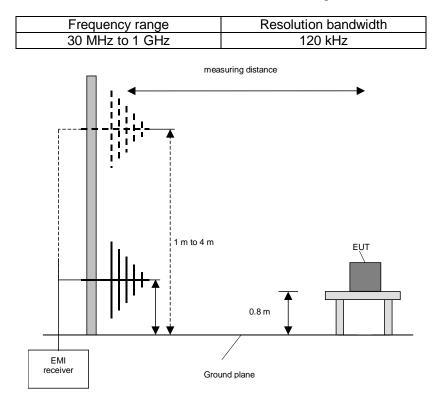

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 30 MHz to 1 GHz.
- A final measurement carried out on an open area test side with reflecting ground plane and various antenna height in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a variable antenna distance and height in the frequency range 1 GHz to 110 GHz.
- A final measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 1 GHz to 110 GHz.


All measurements will be carried out with the EUT working on the middle of the assigned frequency band.

Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The setup of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.


Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 230 MHz and 230 MHz to 1 GHz. The following procedure will be used:

- 1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2. Manipulate the system cables within the range to produce the maximum level of emission.
- 3. Rotate the EUT by 360 ° to maximize the detected signals.
- 4. Make a hardcopy of the spectrum.
- 5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6. Repeat 1) to 4) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.

Final measurement (30 MHz to 1 GHz)

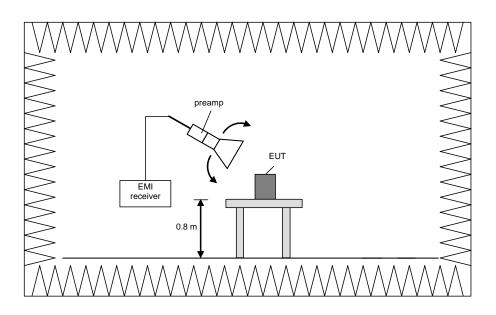
A final measurement on an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

Procedure final measurement:

The following procedure will be used:

- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).

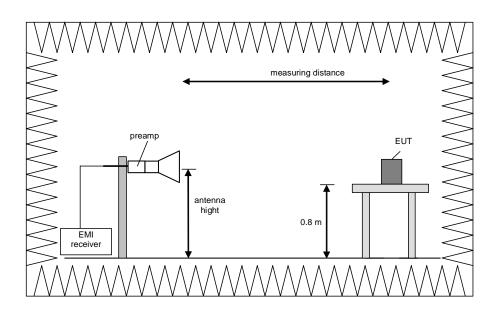
Preliminary and final measurement (1 GHz to 110 GHz)


This measurement will be performed in a fully anechoic chamber. Tabletop devices will set up on a nonconducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The setup of the Equipment under test will be in accordance to ANSI C63.4-2009 [1].

Preliminary measurement (1 GHz to 110 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The spectrum analyser set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna, the antenna close to the EUT and while moving the antenna over all sides of the EUT. With the spectrum analyser in CLEAR / WRITE mode the cone of the emission should be found and then the measuring distance will be set to 3 m with the receiving antenna moving in this cone of emission. At this position the final measurement will be carried out.

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	100 kHz
4 GHz to 12 GHz	100 kHz
12 GHz to 18 GHz	100 kHz
18 GHz to 26.5 GHz	100 kHz
26.5 GHz to 40 GHz	100 kHz
40 GHz to 60 GHz	100 kHz
50 GHz to 75 GHz	100 kHz
75 GHz to 110 GHz	100 kHz



Final measurement (1 GHz to 110 GHz)

The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 ° in order to have the antenna inside the cone of radiation.

Frequency range	Resolution bandwidth
1 GHz to 4 GHz	1 MHz
4 GHz to 12 GHz	1 MHz
12 GHz to 18 GHz	1 MHz
18 GHz to 26.5 GHz	1 MHz
26.5 GHz to 40 GHz	1 MHz
40 GHz to 60 GHz	1 MHz
50 GHz to 75 GHz	1 MHz
75 GHz to 110 GHz	1 MHz

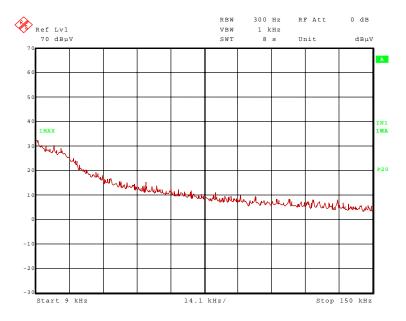
Procedure of measurement:

The measurements were performed in the frequency range 1 GHz to 4 GHz, 4 GHz to 12 GHz, 12 GHz to 18 GHz, 18 GHz to 26.5 GHz, 26.5 GHz to 40 GHz, 40 GHz to 60 GHz, 60 GHz to 75 GHz and 75 GHz to 110 GHz.

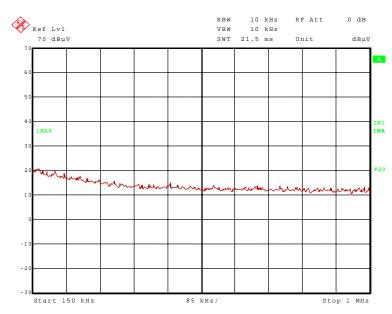
The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and move the antenna over all sides of the EUT (if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarisation and repeat 1) with vertical polarisation.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear / Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3 m and the antenna will be still inside the cone of emission.
- Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.

Step 1) to 6) are defined as preliminary measurement.

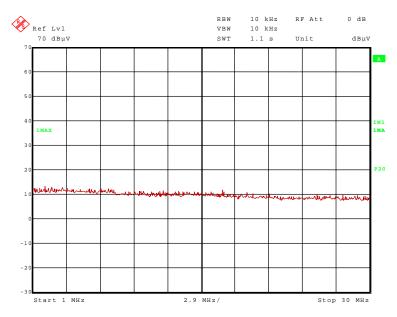


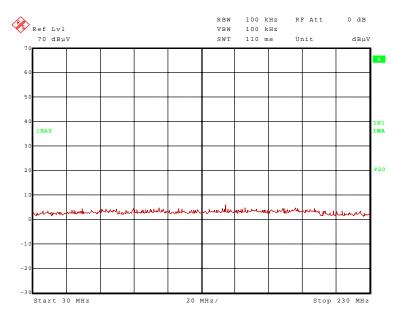
5.7.2 Test results


5.7.2.1 Preliminary radiated emission measurement (9 kHz to 1 GHz)

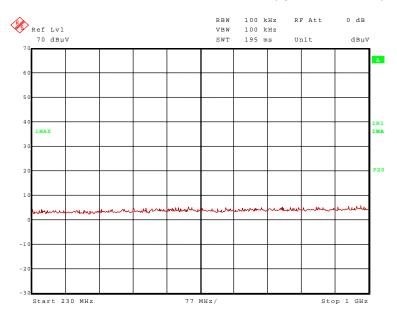
Ambient temperature	22 °C	Relative humidity	36 %				
Position of EUT:	The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance between EUT and antenna was 3 m.						
Cable guide:	ble guide: The cable of the EUT is running vertically to the false floor. For detai information of test set-up and the cable guide refer to the pictures in annex A of this test report.						
Test record:	All results are shown i	in the following.					
Supply voltage:	During all measureme	ents the EUT was battery supplied with	12.0 V _{DC} .				
Remark:	independent of the tra	nitted in the frequency range from 9 kH Insmitter operation mode. Therefore the documented with a continuous transm	e emissions in this				

121762_42.wmf: Spurious emissions from 9 kHz to 150 kHz (operation mode 2):




121762 43.wmf: Spurious emissions from 150 kHz to 1 MHz (operation mode 2):

121762 44.wmf: Spurious emissions from 1 MHz to 30 MHz (operation mode 2):

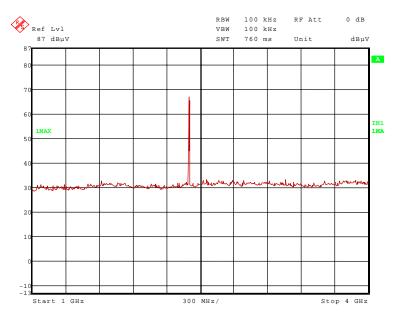

No significant frequencies above the noise floor of the system were found during the preliminary radiated emissions test, therefore no measurements were carried out on the outdoor test site.

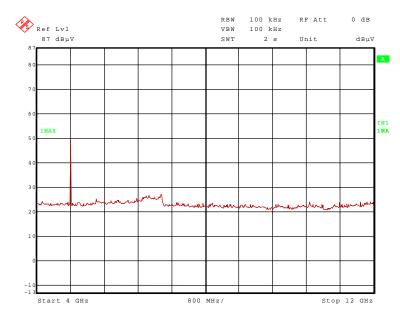
121762 40.wmf: Spurious emissions from 30 MHz to 230 MHz (operation mode 2):

121762 41.wmf: Spurious emissions from 230 MHz to 1000 MHz (operation mode 2):

No significant frequencies above the noise floor of the system were found during the preliminary radiated emission test inside this frequency range, so no measurements were carried out on the open area test site.

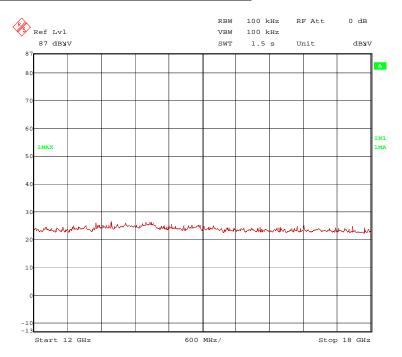
TEST EQUIPMENT USED FOR THE TEST:

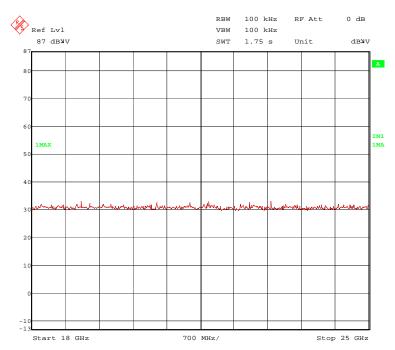

29, 31 – 35, 45, 55


Ambient temperature	21 °C	Relative humidity	38 %				
Position of EUT:	The EUT was set-up on a non-conducting table of a height of 0.8 m. The distance between EUT and antenna was 3 m.						
Cable guide:	The cable of the EUT is running vertically to the false floor. For detail information of test set-up and the cable guide refer to the pictures in annex A of this test report.						
Test record:	All results are shown in the following.						
Supply voltage:	During all measurements the EUT was battery supplied with 12.0 $V_{\text{DC}}.$						

Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

121762 30.wmf: Spurious emissions from 1 GHz to 4 GHz:





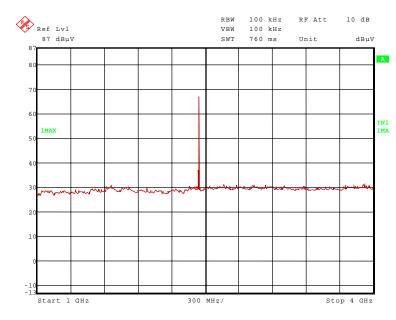
121762_34.wmf: Spurious emissions from 4 GHz to 12 GHz:

121762_45.wmf: Spurious emissions from 12 GHz to 18 GHz:

121762 47.wmf: Spurious emissions from 18 GHz to 25 GHz:

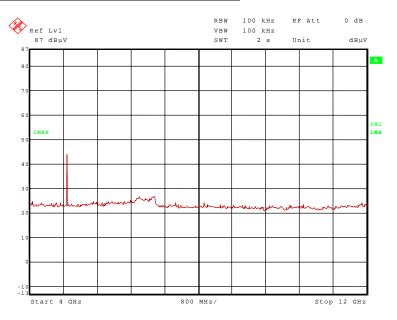
The following frequency was found inside the restricted bands during the preliminary radiated emission test:

- 4.804 GHz.

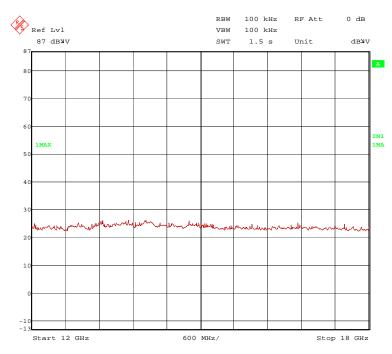

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 2.402 GHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

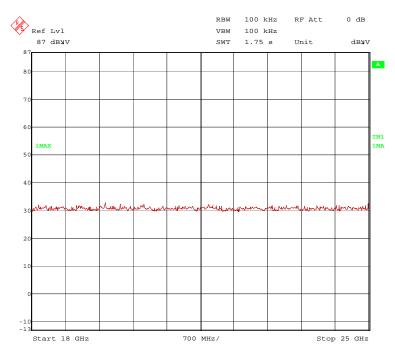


Transmitter operates on the middle of the assigned frequency band (operation mode 2)



121762_32.wmf: Spurious emissions from 1 GHz to 4 GHz:

121762_33.wmf: Spurious emissions from 4 GHz to 12 GHz:

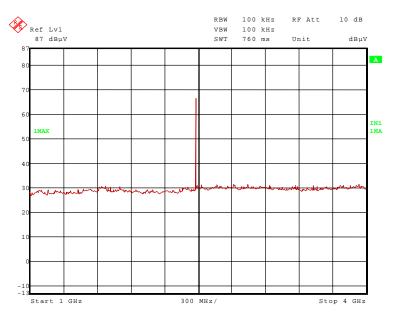


121762 49.wmf: Spurious emissions from 12 GHz to 18 GHz:

121762_48.wmf: Spurious emissions from 18 GHz to 25 GHz:

The following frequency was found inside the restricted bands during the preliminary radiated emission test:

- 4.882 GHz.

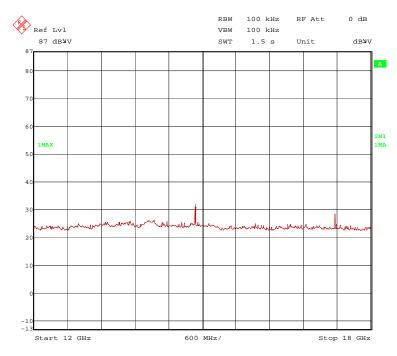

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 2.441 GHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

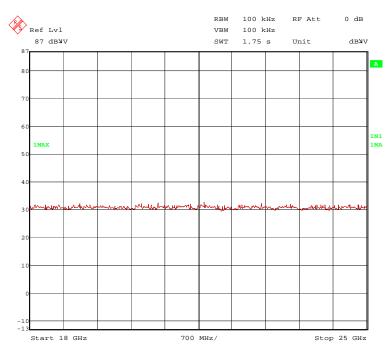


Transmitter operates on the upper end of the assigned frequency (operation mode 3)



121762_32.wmf: Spurious emissions from 1 GHz to 4 GHz:

121762 35.wmf: Spurious emissions from 4 GHz to 12 GHz:



121762 50.wmf: Spurious emissions from 12 GHz to 18 GHz:

121762 51.wmf: Spurious emissions from 18 GHz to 25 GHz:

The following frequency was found inside the restricted bands during the preliminary radiated emission test:

- 4.960 GHz, 14.88 GHz, 17.36GHz

The following frequency was found outside the restricted bands during the preliminary radiated emission test:

- 2.480 GHz.

These frequencies have to be measured in a final measurement. The results were presented in the following.

TEST EQUIPMENT USED FOR THE TEST:

29, 31 - 34, 36, 37, 39, 43, 44, 46, 49 - 51, 72

5.7.2.3 Final radiated emission measurement (1 GHz to 25 GHz)

Ambient temperature	21 °C	Relative humidity	38 %				
Position of EUT:	The EUT was set-up on a distance between EUT an	non-conducting table of a height of d antenna was 3 m.	0.8 m. The				
Cable guide:	The cable of the EUT is running vertically to the false floor. For detail information of test set-up and the cable guide refer to the pictures in annex A of this test report.						
Test record:	All results are shown in the	e following.					
Supply voltage:	During all measurements the EUT was battery supplied with 12.0 $V_{\text{\tiny DC}}$						
Resolution bandwidth:	olution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.						

Transmitter operates at the lower end of the assigned frequency band (operation mode 1)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.402	99.9	-	-	67.9	28.3	0.0	3.7	150	Hor.	-
4.804	63.5	74.0	10.5	51.3	32.6	25.7	5.3	150	Hor.	Yes
	Ме	asuremen	t uncertai		+2.2	dB / -3.6	dB			

Result measured with the average detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		20110
2.402	89.4	-	-	57.4	28.3	0.0	3.7	150	Hor.	-
4.804	51.2	54.0	2.8	39.0	32.6	25.7	5.3	150	Hor.	Yes
	Me	asurement	t uncertai		+2.2	dB / -3.6	dB			

Transmitter operates at the middle of the assigned frequency band (operation mode 2)

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	Cm		20.10
2.441	100.0	-	-	67.9	28.4	0.0	3.7	150	Hor.	-
4.882	61.7	74.0	12.3	49.3	32.8	25.7	5.3	150	Hor.	Yes
	Ме	asurement	t uncertai		+2.2	dB / -3.6	dB			

Result measured with the peak detector:

Result measured with the average detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		
2.441	89.4	-	-	57.3	28.4	0.0	3.7	150	Hor.	-
4.882	49.8	54.0	4.2	37.4	32.8	25.7	5.3	150	Hor.	Yes
	Me	asuremen	t uncerta		+2.2	dB / -3.6	dB			

Transmitter operates at the upper end of the assigned frequency band (operation mode 3)

Result measured with the peak detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		Danu
2.480	99.8	-	-	67.5	28.5	0.0	3.8	150	Hor.	-
4.960	59.5	74.0	14.5	46.9	32.9	25.6	5.3	150	Hor.	Yes
14.880	48.0	79.8	31.8	38.5	33.7	26.7	2.5	150	Hor.	No
17.360	45.4	79.8	34.4	36.2	33.9	27.2	2.5	150	Hor.	No
	Me	asurement	t uncertai		+2.2	dB / -3.6	dB			

Result measured with the average detector:

Frequency	Corr. value	Limit	Margin	Readings	Antenna factor	Preamp	Cable loss	Height	Pol.	Restr. Band
GHz	dBµV/m	dBµV/m	dB	dBµV	1/m	dB	dB	cm		Bana
2.480	78.6	-	-	46.3	28.5	0.0	3.8	150	Vert.	-
4.960	35.9	54.0	18.1	23.3	32.9	25.6	5.3	150	Hor.	Yes
14.880	31.9	69.3	37.4	22.4	33.7	26.7	2.5	150	Hor.	No
17.360	29.9	69.3	39.4	20.7	33.9	27.2	2.5	150	Hor.	No
	Ме	asurement	t uncertai		+2.2	dB / -3.6	dB			

Test result: Passed

TEST EQUIPMENT USED FOR THE TEST:	
29, 31 – 34, 36, 37, 39, 43, 44, 46, 49 - 51, 72	

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal. due
29	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439-T232	480303	Weekly ve (system	
30	Spectrum analyser	FSU	Rohde & Schwarz	200125	480956	02/15/2010 02/2014	
31	Measuring receiver	ESI 40	Rohde & Schwarz 100064 480355 02		02/13/2010	02/2014	
32	Controller	MCU	Maturo	MCU/043/971107	480832	-	-
33	Turntable	DS420HE	Deisel	420/620/80	480315	-	-
34	Antenna support	AS615P	Deisel	615/310	480187	-	-
35	Antenna	CBL6112 B	Chase	2688	480328	04/21/2011	04/2013
36	Antenna	3115	EMCO	9609-4918	480183	11/09/2011	11/2013
37	Standard Gain Horn 11.9 GHz – 18 GHz	18240-20	Flann Microwave	483	480294	Six month v (system	
39	Standard Gain Horn 17.9 GHz – 26.7 GHz	20240-20	Flann Microwave	411	480297	Six month verification (system cal.)	
43	RF-cable No. 3	RTK 081	Rosenberger	-	481330	Weekly verification (system cal.)	
44	RF-cable No. 40	RTK 081	Rosenberger	-	480670	Weekly ve (system	
45	RF-cable No. 36	RTK 081	Rosenberger	-	410571	Weekly ve (system	
46	RF-cable 1 m	KPS-1533- 400-KPS	Insulated Wire	-	480301	Six month v (system	
49	Preamplifier	JS3- 00101200- 23-5A	Miteq	681851	480337	Six month v (system	
50	Preamplifier	JS3- 12001800- 16-5A	Miteq	571667	480343	Six month verification (system cal.)	
51	Preamplifier	JS3- 18002600- 20-5A	Miteq	658697	480342	Six month verification (system cal.)	
55	Antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	02/16/2012	02/2014
72	4 GHz High Pass Filter	WHKX4.0/18 G-8SS	Wainwright Instruments	1	480587	Weekly ve (system	

7 REPORT HISTORY

Report Number	Date	Comment			
F121762E1	04 June 2012	Document created			

8 LIST OF ANNEXES

ANNE	ХA	TEST SETUP PHOTOS	4 pages
	121762_2 121762_3	l.jpg: Test setup fully anechoic chamber 2.jpg: Test setup fully anechoic chamber 3.jpg: Test setup fully anechoic chamber 4.jpg: Test setup fully anechoic chamber	
ANNE	ХB	EXTERNAL PHOTOS	2 pages
		5.jpg: EUT – 3D view 1 6.jpg: EUT – 3D view 2	
ANNE	ХC	INTERNAL PHOTOS	3 pages
	121762_1	9.jpg: EUT, PCB top view 10.jpg: EUT, PCB bottom view 11.jpg: EUT, temporary antenna connector	