TEST REPORT BNetzA-CAB-02/21-102 Test report no.: 1-2660/21-01-06-A ### **Testing laboratory** ### CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: https://www.ctcadvanced.com e-mail: <u>mail@ctcadvanced.com</u> ### **Accredited Testing Laboratory:** The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01. ### **Applicant** BURY Sp. z o.o. ul. Wojska Polskiego 4 PL-39-300 Mielec / POLAND Phone: +48 017 788 46 00 Contact: -/--/- ### Manufacturer BURY Sp. z o.o. ul. Wojska Polskiego 4 PL-39-300 Mielec / POLAND #### Test standard/s FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices RSS - 210 Issue 10 Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment For further applied test standards please refer to section 3 of this test report. **Test Item** Kind of test item: Wireless charger with NFC card protection functionality Model name:15W WLC MLBEvoFCC ID:QZ9-15WWLCISED certification number:5927A-15WWLCFrequency:13.56MHzTechnology tested:RFID Antenna: Integrated antenna Power supply: 9.0 V to 16 V DC Temperature range: -40°C to +45°C This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. | Test report authorized: | Test performed: | |-------------------------|-------------------------| | | | | | | | Christoph Cohnoider | Hana Jasahim Waladarfar | | Christoph Schneider | Hans-Joachim Wolsdorfer | Lab Manager Lab Manager Radio Communications dio Communications Radio Communications # 1 Table of contents | 1 | Table o | of contents | 2 | |----|------------------------------|--|----------| | 2 | Genera | ıl information | 3 | | | 2.1
2.2
2.3 | Notes and disclaimerApplication details | 3 | | 3 | Test st | andard/s, references and accreditations | | | 4 | | ing statements of conformity – decision rule | | | 5 | - | nvironment | | | 6 | | em | | | • | 6.1
6.2 | General descriptionAdditional information | 6 | | 7 | Descri | ption of the test setup | 7 | | | 7.1
7.2
7.3 | Shielded fully anechoic chamber | 9 | | 8 | Seque | nce of testing | 12 | | | 8.1
8.2 | Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHz | 12
13 | | 9 | Measu | rement uncertainty | 14 | | 10 | Sun | nmary of measurement results | 15 | | 11 | Add | litional comments | 15 | | 12 | Mea | asurement results | 16 | | | 12.1
12.2
12.3
12.4 | Occupied bandwidthField strength of the fundamentalField strength of the harmonics and spuriousFrequency error | 18
19 | | 13 | Obs | ervations | 23 | | 14 | Glos | ssary | 24 | | 15 | Doc | ument history | 25 | | 16 | Acc | reditation Certificate - D-PL-12076-01-04 | 25 | | 17 | Acc | reditation Certificate - D-PL-12076-01-05 | 26 | ### 2 General information ### 2.1 Notes and disclaimer The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH. The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH". CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer. Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided. Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH. All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval. This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. This test report replaces the test report with the number 1-2660/21-01-06 and dated 2022-06-09. ### 2.2 Application details Date of receipt of order: 2021-11-02 Date of receipt of test item: 2022-04-18 Start of test:* 2022-04-20 End of test:* 2022-05-23 Person(s) present during the test: -/- ### 2.3 Test laboratories sub-contracted None © CTC advanced GmbH Page 3 of 26 ^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software. # 3 Test standard/s, references and accreditations | Test standard | Date | Description | | | | |--|------------------|--|--|--|--| | FCC - Title 47 CFR Part 15 | | FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices | | | | | RSS - 210 Issue 10 | December
2019 | Spectrum Management and Telecommunications Radio
Standards Specification - Licence-Exempt Radio Apparatus:
Category I Equipment | | | | | RSS - Gen Issue 5 incl.
Amendment 1 & 2 | February
2021 | Spectrum Management and Telecommunications Radio
Standards Specification
- General Requirements for Compliance of Radio Apparatus | | | | | Guidance | Version | Description | | | | | ANSI C63.4-2014
ANSI C63.10-2013 | -/- | American National Standard for Methods of Measurement of
Radio-Noise Emissions from Low-Voltage Electrical and
Electronic Equipment in the Range of 9 kHz to 40 GHz
American National Standard of Procedures for Compliance
Testing of Unlicensed Wireless Devices | | | | | Accreditation | Description | 1 | | | | | D-PL-12076-01-04 | | nunication and EMC Canada .dakks.de/as/ast/d/D-PL-12076-01-04e.pdf Deutsche Akkreditierungsstelle D-PL-12076-01-04 | | | | | D-PL-12076-01-05 | | unication FCC requirements akks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-05 | | | | ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002 © CTC advanced GmbH Page 4 of 26 # 4 Reporting statements of conformity – decision rule Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, see chapter 8, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong." © CTC advanced GmbH Page 5 of 26 ## 5 Test environment | Temperature | : | T _{nom}
T _{max}
T _{min} | +22 °C during room temperature tests
+45 °C during high temperature tests
-40 °C during low temperature tests | |---------------------------|---|--|---| | Relative humidity content | : | | 55 % | | Barometric pressure | : | | 1021 hpa | | | | V_{nom} | 14 V DC | | Power supply | : | V_{max} | 16 V | | | | V_{min} | 9.0 V | ## 6 Test item # 6.1 General description | Kind of test item : | Wireless charger with NFC card protection functionality | |-----------------------------|---| | Model name : | 15W WLC MLBEvo | | HMN : | -/- | | PMN : | 15W WLC MLBEvo | | HVIN : | 15W WLC MLBEvo | | FVIN : | -/- | | S/N serial number : | Rad. HBM-03423.03.2200180062 | | S/N Serial Humber . | Cond. HBM-03423.03.2200180062 | | Hardware status : | H07 | | Software status : | X504 | | Firmware status : | -/- | | Frequency band : | 13.56MHz | | Type of radio transmission: | modulated carrier | | Use of frequency spectrum : | modulated carrier | | Type of modulation : | ASK | | Number of channels : | 1 | | Antenna : | Integrated antenna | | Power supply : | 9.0 V to 16 V DC | | Temperature range : | -40°C to +45°C | # 6.2 Additional information The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing. Test setup and EUT photos are included in test report: 1-2660/21-01-01_AnnexA 1-2660/21-01-01_AnnexB 1-2660/21-01-01_AnnexD © CTC advanced GmbH Page 6 of 26 # 7 Description of the test setup Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard). In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item). Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A. ### **Agenda:** Kind of Calibration | k | calibration / calibrated | EK | limited calibration | |------|--|-----|--| | ne | not required (k, ev, izw, zw not required) | ZW | cyclical maintenance (external cyclical maintenance) | | ev | periodic self verification | izw | internal cyclical maintenance | | Ve | long-term stability recognized | g | blocked for accredited testing | | vlk! | Attention: extended calibration interval | | | | NK! | Attention: not calibrated | *) | next calibration ordered / currently in progress | © CTC advanced GmbH Page 7 of 26 # 7.1 Shielded fully anechoic chamber Measurement distance: loop antenna 3 meter FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor) ### Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$ ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|---|---|-------------------------|--------------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Active Loop
Antenna 9 kHz to
30 MHz | 6502 | EMCO | 2210 | 300001015 | vlKl! | 01.07.2021 | 31.07.2023 | | 2 | Α | Power Supply 0-20V | 6632A | HP | 2851A01814 | 300000924 | ne | -/- | -/- | | 3 | А | 4U RF Switch
Platform | L4491A | Agilent
Technologies | MY50000032 | 300004510 | ne | -/- | -/- | | 4 | Α | Computer | Intel Core i3
3220/3,3 GHz,
Prozessor | | 2V2403033A54
21 | 300004591 | ne | -/- | -/- | | 5 | Α | NEXIO EMV-
Software | BAT EMC V3.21.0.27 | EMCO | | 300004682 | ne | -/- | -/- | | 6 | Α | Anechoic chamber | | TDK | | 300003726 | ne | -/- | -/- | | 7 | Α | EMI Test Receiver
9kHz-26,5GHz | ESR26 | Rohde & Schwarz | 101376 | 300005063 | k | 15.12.2021 | 31.12.2022 | © CTC advanced GmbH Page 8 of 26 ### 7.2 Shielded semi anechoic chamber The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63. Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.59.00 FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor) Example calculation: FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ © CTC advanced GmbH Page 9 of 26 # **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|--------------|----------------------------------|------------|-----------|------------------------|---------------------|---------------------| | 1 | А | DC power supply,
60Vdc, 50A, 1200 W | 6032A | НР | 2920A04466 | 300000580 | ne | -/- | -/- | | 2 | Α | Semi anechoic
chamber | 3000023 | MWB AG | | 300000551 | ne | -/- | -/- | | 3 | Α | Antenna Tower | Model 2175 | ETS-Lindgren | 64762 | 300003745 | izw | -/- | -/- | | 4 | Α | Positioning
Controller | Model 2090 | ETS-Lindgren | 64672 | 300003746 | izw | -/- | -/- | | 5 | Α | Turntable Interface-
Box | Model 105637 | ETS-Lindgren | 44583 | 300003747 | izw | -/- | -/- | | 6 | А | TRILOG Broadband
Test-Antenna 30
MHz - 3 GHz | VULB9163 | Schwarzbeck Mess -
Elektronik | 318 | 300003696 | vlKI! | 30.09.2021 | 29.09.2023 | | 7 | Α | Turntable | 2089-4.0 | EMCO | | 300004394 | ne | -/- | -/- | | 8 | Α | PC | TecLine | F+W | | 300004388 | ne | -/- | -/- | | 9 | Α | EMI Test Receiver | ESR3 | Rohde & Schwarz | 102587 | 300005771 | k | 08.12.2021 | 31.12.2022 | © CTC advanced GmbH Page 10 of 26 # 7.3 Conducted measurements normal and extreme conditions OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path) ## Example calculation: OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW) ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|-----------------------------|------------------|------------------|------------|-----------|------------------------|---------------------|---------------------| | 1 | A,B | HF-Cable 1 m | BPS-1551-394-BPS | Insulated Wire | 080492 | 300001713 | g | -/- | -/- | | 2 | A,B | Loop Antenna | | ZEG TS Steinfurt | | 400001208 | ev | -/- | -/- | | 3 | А | Temperature Test
Chamber | VT 4002 | Heraeus Voetsch | 521/83761 | 300002326 | ev | 12.05.2022 | 11.05.2024 | | 4 | A,B | Signal analyzer | FSW26 | Rohde&Schwarz | 101455 | 300004528 | k | 14.12.2021 | 31.12.2022 | | 5 | A,B | Power Supply | HMP2020 | Rohde & Schwarz | 101961 | 300006102 | k | 04.08.2020 | 31.08.2022 | © CTC advanced GmbH Page 11 of 26 ## 8 Sequence of testing ### 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz ### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, it is placed on a table with 0.8 m height. - If the EUT is a floor standing device, it is placed directly on the turn table. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. ### Premeasurement* - The turntable rotates from 0° to 315° using 45° steps. - The antenna height is 1 m. - At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions. ### Final measurement - Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°. - Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT) - The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored. *)Note: The sequence will be repeated three times with different EUT orientations. © CTC advanced GmbH Page 12 of 26 ## 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz ### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane. - If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement** - The turntable rotates from 0° to 315° using 45° steps. - The antenna is polarized vertical and horizontal. - The antenna height changes from 1 m to 3 m. - At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions. #### Final measurement - The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4. - Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m. - The final measurement is done with quasi-peak detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored. © CTC advanced GmbH Page 13 of 26 # 9 Measurement uncertainty | Measurement uncertainty | | | | | | |--|-------------|--|--|--|--| | Test case | Uncertainty | | | | | | Occupied bandwidth | ± used RBW | | | | | | Field strength of the fundamental | ± 3 dB | | | | | | Field strength of the harmonics and spurious | ± 3 dB | | | | | | Receiver spurious emissions and cabinet radiations | ± 3 dB | | | | | | Conducted limits | ± 2.6 dB | | | | | © CTC advanced GmbH Page 14 of 26 # 10 Summary of measurement results | \boxtimes | No deviations from the technical specifications were ascertained | |-------------|---| | | There were deviations from the technical specifications ascertained | | | This test report is only a partial test report. The content and verdict of the performed test cases are listed below. | | TC Identifier | Description | Verdict | Date | Remark | |---------------|------------------|------------|------------|--------| | | CFR Part 15 | | | | | RF-Testing | RSS 210 Issue 10 | See table! | 2022-06-22 | -/- | | | RSS Gen Issue 5 | | | | | Test specification clause | Test case | Temperature conditions | Power source conditions | С | NC | NA | NP | Remark | |----------------------------------|--|-----------------------------|-----------------------------------|-------------|----|-------------|----|------------------| | RSS Gen
Issue 5 | Occupied
bandwidth | Nominal | Nominal | \boxtimes | | | | -/- | | | | | | | | | | | | § 15.225 (a)
RSS 210 Issue 10 | Field strength of the fundamental | Nominal | Nominal | \boxtimes | | | | -/- | | § 15.209
&
§ 15.225 (b-d) | Field strength of
the harmonics and
spurious | Nominal | Nominal | × | | | | -/- | | | | | | | | | | | | § 15.109 | Receiver spurious
emissions and
cabinet radiations | Nominal | Nominal | | | X | | -/- | | | | | | | | | | | | §15.107
§15.207 | Conducted limits | Nominal | Nominal | | | \boxtimes | | vehicular
use | | | | | | | | | | | | § 15.225 (a)
RSS 210 Issue 10 | Frequency
tolerance | Normal & extreme conditions | Normal &
extreme
conditions | X | | | | -/- | | 1100 210 133ue 10 | tolerance | conditions | conditions | | | | | | ## Note: C Compliant NC Not compliant NA Not applicable NP Not performed # 11 Additional comments Reference documents: Customer Questionnaire_1-2660-21_1_15W_WLC_MLBEvo_20220404.docx Special test descriptions: None Configuration descriptions: None © CTC advanced GmbH Page 15 of 26 ## 12 Measurement results # 12.1 Occupied bandwidth ### **Measurement:** The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Measurement performed according to ANSI C63.10, chapter 6.9.3, "Occupied bandwidth—power bandwidth (99%) measurement procedure" | Measurement parameters | | | | | |--------------------------|-------------------------------------|--|--|--| | Detector: | Peak | | | | | Resolution bandwidth: | 1 % - 5 % of the occupied bandwidth | | | | | Video bandwidth: | ≥ 3x RBW | | | | | Trace mode: | Max hold | | | | | Analyser function: | 99 % power function | | | | | Used equipment: | See chapter 7.3A | | | | | Measurement uncertainty: | See chapter 9 | | | | ### Limit: | IC | |---| | for RSP-100 test report coversheet only | ### Result: | 99% emission bandwidth | | | | | |------------------------|--|--|--|--| | 701.335kHz | | | | | © CTC advanced GmbH Page 16 of 26 ## Plot: ## Plot 1:99 % emission bandwidth 11:37:43 05.05.2022 © CTC advanced GmbH Page 17 of 26 # 12.2 Field strength of the fundamental ## **Measurement:** The maximum detected field strength for the carrier signal. Measurement performed according to ANSI C63.10 chapter 6.4 | Measurement parameters | | | | | |--------------------------|------------------|--|--|--| | Detector: | average | | | | | Resolution bandwidth: | 120 kHz | | | | | Video bandwidth: | ≥ 3x RBW | | | | | Trace mode: | Max hold | | | | | Used equipment: | See chapter 6.2A | | | | | Measurement uncertainty: | See chapter 9 | | | | ## Limit: | FCC & IC | | | | | | | |------------------|--------------------|----------------------|--|--|--|--| | Frequency | Field strength | Measurement distance | | | | | | / MHz | / (μV/m) | / m | | | | | | 13.553 to 13.567 | 15,848 (84 dBµV/m) | 30 | | | | | # **Recalculation:** | According to ANSI C63.10 | | | | | | |--------------------------|--|----------------------------|--|--|--| | Frequency | Formula | Correction value | | | | | 13.56 MHz | $FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{nearfield}}{d_{measure}}\right) - 20 \log \left(\frac{d_{limit}}{d_{nearfield}}\right)$ $FS_{limit} \qquad \text{is the calculation of field strength at the limit distance,}$ $\text{expressed in dB}_{\mu\nu}/m$ $FS_{max} \qquad \text{is the measured field strength, expressed in dB}_{\mu\nu}/m$ $d_{near field} \qquad \text{is the $\lambda/2\pi$ distance}$ $d_{measure} \qquad \text{is the distance of the measurement point from EUT}$ $d_{limit} \qquad \text{is the reference limit distance}$ | -21.4 dB
from 3m to 30m | | | | ## Result: | Field strength of the fundamental | | | | | | |-----------------------------------|-------------|-------------|--|--|--| | Frequency | 13.56 MHz | | | | | | Distance | @ 3 m | @ 30 m | | | | | Measured / calculated value | 47.99dBµV/m | 26.59dBµV/m | | | | © CTC advanced GmbH Page 18 of 26 # 12.3 Field strength of the harmonics and spurious ### **Measurement:** The maximum detected field strength for the harmonics and spurious. Measurement performed according to ANSI C63.10, chapter 6.4 and 6.5 | Measurement parameters | | | | |--------------------------|-------------------------------|--|--| | Detector: | Quasi peak / average or | | | | Detector. | peak (worst case - pre-scan) | | | | | F < 150 kHz: 200 Hz | | | | Resolution bandwidth: | 150 kHz < F < 30 MHz: 9 kHz | | | | | 30 MHz < F < 1 GHz: 120 kHz | | | | | F < 150 kHz: 1 kHz | | | | Video bandwidth: | 150 kHz < F < 30 MHz: 100 kHz | | | | | 30 MHz < F < 1 GHz: 300 kHz | | | | Trace mode: | Max hold | | | | Used equipment: | See chapter 7.1A & 7.2A | | | | Measurement uncertainty: | See chapter 9 | | | ## Limit: | FCC & IC | | | | | | | | |---------------|-------------------|----------------------|--|--|--|--|--| | Frequency | Field strength | Measurement distance | | | | | | | (MHz) | (dBµV/m) | (m) | | | | | | | 0.009 - 0.490 | 2400/F(kHz) | 300 | | | | | | | 0.490 - 1.705 | 24000/F(kHz) | 30 | | | | | | | 1.705 – 30 | 30 (29.5 dBμV/m) | 30 | | | | | | | 30 – 88 | 100 (40 dBμV/m) | 3 | | | | | | | 88 – 216 | 150 (43.5 dBμV/m) | 3 | | | | | | | 216 - 960 | 200 (46 dBμV/m) | 3 | | | | | | **Note:** For a reduced measurement distance, please take a look at the limit line and the ANSI C63.10-2013 sub clause 6.4 radiated emissions from unlicensed wireless devices below 30 MHz. ### Result: see table below plot © CTC advanced GmbH Page 19 of 26 ## Plots: Plot 1: 9 kHz - 30 MHz, magnetic emissions Plot 2: Spectrum mask (the limits are recalculated according to the ANSI C63.10-2013 sub clause 6.4) © CTC advanced GmbH Page 20 of 26 Plot 3: 30 MHz – 1 GHz, vertical and horizontal polarisation # Final_Result | Frequency | QuasiPeak | Limit | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr. | |-----------|-----------|----------|--------|------------|-----------|--------|-----|---------|--------| | (MHz) | (dBµV/m) | (dBµV/m) | (dB) | (ms) | (kHz) | (cm) | | (deg) | (dB/m) | | 63.996 | 23.14 | 30.0 | 6.9 | 1000 | 120.0 | 275.0 | ٧ | 225 | 13 | | 119.995 | 21.30 | 33.5 | 12.2 | 1000 | 120.0 | 161.0 | V | 199 | 11 | | 347.355 | 12.25 | 36.0 | 23.8 | 1000 | 120.0 | 200.0 | V | 45 | 17 | | 479.958 | 18.43 | 36.0 | 17.6 | 1000 | 120.0 | 157.0 | V | 10 | 19 | | 728.085 | 19.03 | 36.0 | 17.0 | 1000 | 120.0 | 142.0 | Н | 253 | 23 | | 968.997 | 21.41 | 44.0 | 22.6 | 1000 | 120.0 | 204.0 | Н | 62 | 26 | © CTC advanced GmbH Page 21 of 26 ### 12.4 Frequency error ### **Measurement:** The maximum detected field strength for the spurious. Measurement performed according to ANSI C63.10, chapter 6.8 | Measurement parameters | | | | | |--------------------------|------------------|--|--|--| | Detector: | Peak detector | | | | | Resolution bandwidth: | 10 Hz / 100 Hz | | | | | Video bandwidth: | > RBW | | | | | Trace mode: | Max hold | | | | | Used equipment: | See chapter 7.3B | | | | | Measurement uncertainty: | See chapter 9 | | | | ### Limit: ### FCC & IC The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. (±1.356 kHz) Carrier frequency stability shall be maintained to ±0.01% (±100 ppm) ## **Result:** Temperature variation | Frequency tolerance | | | | | |---------------------|-----------------|-----------------------|-----------|--| | Measured frequency | Frequency error | Conditions | Result | | | 13.560197 | 0.197 | -20 °C & 100% voltage | compliant | | | 13.560207 | 0.207 | -10 °C & 100% voltage | compliant | | | 13.560205 | 0.205 | 0 °C & 100% voltage | compliant | | | 13.560192 | 0.192 | +10 °C & 100% voltage | compliant | | | 13.560162 | 0.162 | +20 °C & 100% voltage | compliant | | | 13.560122 | 0.122 | +30 °C & 100% voltage | compliant | | | 13.560077 | 0.077 | +40 °C & 100% voltage | compliant | | | 13.560057 | 0.057 | +50 °C & 100% voltage | compliant | | # **Result:** Voltage variation | Frequency tolerance | | | | | |---------------------|-----------------|-----------------------|-----------|--| | Measured frequency | Frequency error | Conditions | Result | | | 13.560085 | 0.085 | +20 °C & 85% voltage | compliant | | | 13.560162 | 0.162 | +20 °C & 100% voltage | compliant | | | 13.560086 | 0.086 | +20 °C & 115% voltage | compliant | | © CTC advanced GmbH Page 22 of 26 # 13 Observations No observations except those reported with the single test cases have been made. © CTC advanced GmbH Page 23 of 26 # 14 Glossary | EUT | Equipment under test | | |------------------|--|--| | DUT | Device under test | | | UUT | Unit under test | | | GUE | GNSS User Equipment | | | ETSI | European Telecommunications Standards Institute | | | EN | European Standard | | | FCC | Federal Communications Commission | | | FCC ID | Company Identifier at FCC | | | IC | Industry Canada | | | PMN | Product marketing name | | | HMN | Host marketing name | | | HVIN | Hardware version identification number | | | FVIN | Firmware version identification number | | | EMC | Electromagnetic Compatibility | | | HW | Hardware | | | SW | Software | | | Inv. No. | Inventory number | | | S/N or SN | Serial number | | | C | Compliant | | | NC | Not compliant | | | NA
NA | Not applicable | | | NP | Not performed | | | PP | Positive peak | | | QP | Quasi peak | | | AVG | Average | | | OC | Operating channel | | | OCW | Operating channel bandwidth | | | OBW | Occupied bandwidth | | | OOB | Out of band | | | DFS | Dynamic frequency selection | | | CAC | Channel availability check | | | OP | Occupancy period | | | NOP | Non occupancy period | | | DC | Duty cycle | | | PER | Packet error rate | | | CW | Clean wave | | | MC | Modulated carrier | | | WLAN | Wireless local area network | | | RLAN | Radio local area network | | | DSSS | Dynamic sequence spread spectrum | | | OFDM | Orthogonal frequency division multiplexing | | | FHSS | Frequency hopping spread spectrum | | | GNSS | Global Navigation Satellite System | | | C/N ₀ | Carrier to noise-density ratio, expressed in dB-Hz | | | | | | © CTC advanced GmbH Page 24 of 26 # 15 Document history | Version | Applied changes | Date of release | |---------|----------------------|-----------------| | -/- | Initial release | 2022-06-09 | | -A | update serial number | 2022-06-22 | # 16 Accreditation Certificate - D-PL-12076-01-04 | first page | last page | | |--|--|--| | DAKS Deutsche Akkreditlerungsstelle | | | | Deutsche Akkreditierungsstelle GmbH | Deutsche Akkreditierungsstelle GmbH | | | Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation | Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig | | | The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken | | | | is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards | | | | | The publication of extracts of the accreditation certificate is subject to the prior written approval by
Deutsche Akkreditierungsstelle GmbH (DAXS). Exempted is the unchanged form of separate
disseminations of the cover sheet by the conformity assessment body mentioned overleaf.
No impression shall be made that the accreditation also extends to fields beyond the scope of
accreditation attested by DAMS. | | | The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-I-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PI-12076-01-04 | The accreditation was granted pursuant to the Act on the Accreditation Body (Akl-StelleG) of 31 July 2009
(Federal Law Gazette Ip. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of
the Council of 9 July 2008 Setting out the requirements for accreditation and markets unveillance relating
to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAMS is
a signatory to the Multilateral Agreements for Muttual Recognition of the European co-operation for
Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation
Cooperation (ILC). The signatories to these agreements recognise each other's accreditations.
The up-to-dates tated of membership can be retrieved from the following websites: | | | Frankfurt am Main, 09.06.2020 by order (SplIng. 176)2450 Egner
Head of Division | EA: www.european-accreditation.org II.AC: www.ialc.org IAF: www.iaf.nu | | | The certificate together with its amer reflects the status at the time of the date of issue. The current status of the scope of exceedination can be found in the database of exceeding bodies of Davische Akhreititerungsteile GmbH.
Maga-//www.dolbis. dolog/content/occredited-bodies database of Davische Akhreititerungsteile GmbH.
Into cass status. | | | Note: The current certificate annex is published on the websites (link see below). https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf © CTC advanced GmbH Page 25 of 26 # 17 Accreditation Certificate - D-PL-12076-01-05 | first page | last page | | |---|--|--| | Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) | Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmach 1:0 Europa-Allie 5:2 Europa-Allie 5:2 Europa-Allie 5:3 Europa-Allie 5:3 Europa-Allie 5:3 Bundesallee 1:00 38116 Braunschweig | | | The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by order four interest of Devices. The certificate together with its annex reflects the stease of the time of the date of asset. The current stease of the scope of accreditation can be from in the destables of accredited bodies of Devistohe Akkrediberungsstelle GmbM. Inter-Chromod disks afterly content/occredited-bodies-adsks. The water sensitud. | The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkASsellaG) of 31 July 2009 (Federal Law Gastels 1 to .2625) and the Regulation (EC) No 765/2009 of the Suropean Parliament and of the Health of 9 July 2008 series to 1 the sequence of 10 July 2008 series to 1 the requirements for accreditation and markets any environment for accreditation and markets any environment for accreditation and accreditation for the furness one co-paration for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC), the signatories to these agreements recognise each other's accreditations. The U-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.liaCorg IAF: www.liaCorg | | Note: The current certificate annex is published on the websites (link see below). https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf