

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 100991982LEX-001 Project Number: G100991982

Evaluation of Model Number: 363, 366, & 369

FCCID: QYUSE13 ICID: 4571A-SE13

Tested to the SAR Criteria in FCC Part §2.1093
Industry Canada RSS-102 Issue 4

For

Nike, Digital Sports Division

Test Performed by:

Intertek 731 Enterprise Drive Lexington, KY 40510 Test Authorized by:

Nike, Digital Sports Division 15475 SW Koll Parkway Beaverton, OR 97006

Prepared By:

Date:

8/16/13

Approved By:

Date:

8/16/13

Bryan Taylor, Team Leader

Jason Centers, Senior Project Engineer

SYSTEMS

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

TABLE OF CONTENTS

1.0	DOCUMENT HISTORY	3
2.0	INTRODUCTION	4
N	MODIFICATIONS MADE TO TEST SAMPLE	4
3.0	TEST SITE DESCRIPTION	5
	MEASUREMENT EQUIPMENT	
	MEASUREMENT UNCERTAINTY	
1.0	JOB DESCRIPTION	
5.0	SYSTEM VERIFICATION	
	YSTEM VALIDATION	
	ISSUE SIMULATING LIQUID DESCRIPTION AND VALIDATION	
5.0 	EVALUATION PROCEDURES	
	EST POSITIONS:	
	REFERENCE POWER MEASUREMENT:	
	AREA SCAN:	
	ZOOM SCAN:	
	NTERPOLATION, EXTRAPOLATION AND DETECTION OF MAXIMA:	
K	RF AMBIENT ACTIVITY:	
7.0	TEST CONFIGURATION	17
3.0	CRITERIA	18
0.0	TABULAR TEST RESULTS	19
C	CONDUCTED POWER MEASUREMENTS	19
В	BODY MODE SAR TEST RESULTS	20
S	IMULTANEOUS TRANSMISSION TEST RESULTS	20
10.0	REFERENCES	21
11.0	APPENDIX A – SAR PLOTS	22
12.0	APPENDIX B – SYSTEM VERIFICATION PLOTS	48
13.0	APPENDIX C – SYSTEM VALIDATION SUMMARY	50

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

1.0 DOCUMENT HISTORY

Revision/	Writer Initials	Date	Change
Project Number			
1.0 /G100991982	JC	8/16/13	Original document

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

2.0 INTRODUCTION

At the request of Nike, Digital Sports Division, the NIKE+FUELBAND SE was evaluated for SAR in accordance with the requirements for RF Exposure compliance testing defined in FCC Part §2.1093 and KDB 447498. Testing was performed at the Intertek facility in Lexington, Kentucky.

For the evaluation, the dosimetric assessment system DASY52 was used. The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be $\pm 21.4\%$.

The 363, 366, & 369 was tested at the maximum output power measured by Intertek. Maximum output power measurements are tabulated under 9.0 Tabular Test Results.

The maximum spatial peak SAR value for the sample device averaged over 1g was found to be:

Model	Transmit Band (MHz)	Mode	Channel	Frequency (MHz)	Conducted Output Power (dBm)	Reported SAR _{1g} – Body Mode (W/kg)	Limit (W/kg)
Small	2400- 2480	BLE	20	2442.0	6.0	0.43	1.6
Med/Lrg	2400- 2480	BLE	20	2442.0	6.0	0.37	1.6
XL	2400- 2480	BLE	20	2442.0	6.0	0.26	1.6

Table 1: Maximum Measured SAR

Based on the worst-case data presented above, the NIKE+FUELBAND SE was found to be **compliant** with the 1.6 mW/g requirement for uncontrolled environment/general exposure limit specified in ANSI/IEEE standard C95.1-1992 when tested in accordance to the test methodology of KDB 447498 and RSS-102.

Modifications made to test sample

Intertek implemented no modifications.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

3.0 TEST SITE DESCRIPTION

The SAR test site located at 731 Enterprise Drive, Lexington KY 40510 is comprised of the SPEAG model DASY 5.2 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3]. This system is installed in an ambient-free shielded chamber. The ambient temperature is controlled to $22.0 \pm 2^{\circ}$ C. During the SAR evaluations, the RF ambient conditions are monitored continuously for signals that might interfere with the test results. The tissue simulating liquid is also stored in this area in order to keep it at the same constant ambient temperature as the room.

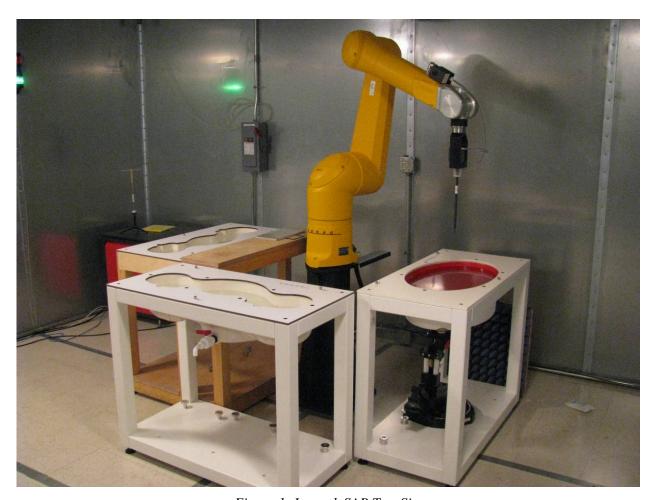


Figure 1: Intertek SAR Test Site

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Measurement Equipment

The following major equipment/components were used for the SAR evaluation:

Description	Serial Number	Manufacture	Model	Cal. Date	Cal. Due	Eq. Used
SAR Probe	3516	Speag	EXDV3	12/10/12	12/10/13	
System Verification Dipole	1042	Speag	D750V3	9/20/12	9/20/13	
System Verification Dipole	4d122	Speag	D835V2	9/14/12	9/14/13	
System Verification Dipole	13	Speag	D900V2	12/7/12	12/7/13	
System Verification Dipole	224	Speag	D1800V2	12/5/12	12/5/13	
System Verification Dipole	718	Speag	D2450V2	12/4/12	12/4/13	\boxtimes
System Verification Dipole	1025	Speag	D5GHzV2	12/11/12	12/11/13	
DAE	358	Speag	DAE4	9/11/12	9/11/13	\boxtimes
Signal Generator	2065	HP	83620B	3/19/13	3/19/14	
Vector Signal Generator	257708	Rohde & Schwarz	SMBV100A	5/30/13	5/30/14	\boxtimes
Network Analyzer	US391739 83	Agilent	8753ES	3/20/13	3/20/14	\boxtimes
Power Meter	Power Meter 1838538 Gigatronic		8542C	6/29/12	6/29/13	
Power Sensor	1830320	Gigatronics	80601A	6/29/12	6/29/13	
USB Power Sensor	100705	Rohde & Schwarz	NRP-Z51	9/1/12	9/1/13	\boxtimes
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/11/12	9/11/13	\boxtimes
Base Station Simulator	100401	Rohde & Schwarz	CMU200	8/12/12	8/12/13	
Base Station Simulator	1065295	Rohde & Schwarz	CMW500	6/14/12	6/14/13	
Dielectric Probe Kit	3080	Agilent	85070D	NCR	NCR	
Dielectric Probe Kit	1111	Speag	DAK-3.5	NCR	NCR	
ELI5 Phantom	1144	Speag	QDOVA002AA	NCR	NCR	
Twin SAM Phantom	1663	Speag	QD000P40CD	NCR	NCR	
Twin SAM Phantom	1243	Speag	QD000P40CA	NCR	NCR	
6-axis robot	F11/5H1Y A/A/01	Staubli	RX-90	NCR	NCR	

NCR - No Calibration Required

Table 2: Test Equipment Used for SAR Evaluation

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Measurement Uncertainty

The Table below includes the uncertainty budget suggested by the IEEE Std 1528-2003 and determined by SPEAG for the DASY5 measurement System.

		Prob.				Std.Unc.	Std.Unc.	
Error Description	Uncertainty Value	Dist.	Div.	(1g)	$c_i(10g)$	(1g)	(10g)	(v _i) v _{eff}
Measurement System								
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	00
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	00
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	00
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	- x
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	œ
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	œ
Liquid Permittivity (target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Standard Uncertainty						±10.7%	±10.5%	387
Expanded STD Uncertainty						±21.4%	±21.0%	

Notes:

1. Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2003. The budget is valid for the frequency range 300 MHz – 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

		Prob.				Std.Unc.	Std.Unc.	
Error Description	Uncertainty Value	Dist.	Div.	c_i (1g)	$c_i(10g)$	(1g)	(10g)	(v _i) V _{eff}
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	√3	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	× ×
Liquid Conductivity (target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	- x
Combined Standard Uncertainty						±12.8%	±12.8%	330
Expanded STD Uncertainty						±25.6%	±25.2%	

Notes:

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2003. The budget is valid for the frequency range 3~GHz-6~GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

4.0 JOB DESCRIPTION

At the request of Nike, Digital Sports Division, the 363, 366, & 369 was evaluated to the requirements defined in FCC Part §2.1093 and KDB 447498.

SAR testing was performed on each of the three models.

Test sample						
Manufacturer	Nike, Digital Sports Division					
Model Number	363, 366, & 369					
Serial Number	SYS00BO0010					
Receive Date	6/26/13					
Device Received Condition	Good					
Device Category	Portable					
RF Exposure Category	General Population/Uncontrolled Environment					
Antenna Type	Internal					
Contact Information						
Contact Name Greg Vissia						
Phone Number	(503) 671-3190					
Email Address	greg.vissia@nike.com					

Table 3: Product Information

Operating Bands	Frequency Range (MHz)	Modulation	Duty Cycle
2.4GHz ISM	2400-2480	BLE	1:1

Table 4: Operating Bands

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

5.0 SYSTEM VERIFICATION

System Validation

Prior to the assessment, the system was verified to be within $\pm 10\%$ of the specifications by using the system validation kit. The system validation procedure tests the system against reference SAR values and the performance of probe, readout electronics and software. The test setup utilizes a phantom and reference dipole. The results from the system verifications with a dipole are shown in Table 5.

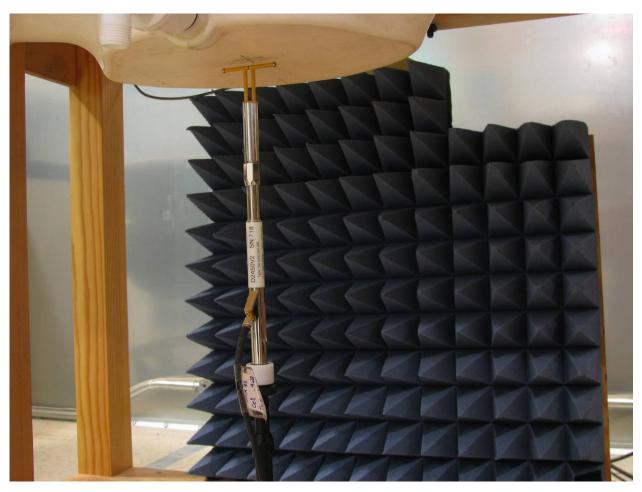


Figure 2: System Verification Setup

Reference Dipole Validation									
					Dipole				
Ambient Fluid Frequency				Power	Cal. Lab	Measured	% Error		
Temp (°C)	Temp (°C)	(MHz)	Dipole	Fluid Type	Input	SAR (1g)	SAR (1g)	SAR (1g)	Date
23.2	22.5	2450	D2450V2	MSL2450	1W	51.5	54.1	5.05	6/26/13

Table 5: Dipole Validation

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Tissue Simulating Liquid Description and Validation

The dielectric parameters were verified to be within 5% of the target values prior to assessment. The dielectric parameters (ε_r, σ) are shown in Table 6. A recipe for the tissue simulating fluid used is shown in Table 7.

	Measured Tissue Properties										
Frequency Dielectric			Dielectric								
Tissue	Measure	Constant	Conductivity	ductivity Constant Imaginary Conductivity Dielectric		Imaginary Conductivity		Conductivity			
Type	(MHz)	Target	Target	Measure	Part	Measure	% Deviation	% Deviation	Date		
	2400	52.77	1.95	50.8	14.26	1.90	3.73	2.43	6/26/13		
	2450	52.7	1.95	50.69	14.44	1.9669	3.81	0.86	6/26/13		
2450MSL	2480	52.66	1.95	50.56	14.58	2.0103	3.99	3.09	6/26/13		

Table 6: Dielectric Parameter Validation

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Table 7: Tissue Simulating Fluid Recipe

 $TYPICAL\ COMPOSITION\ OF\ INGREDIENTS\ FOR\ LIQUID\ TISSUE\ PHANTOMS,\ Supplement\ C\ Edition\ 01-01\ to\ OET\ Bulletin\ 65\ Edition\ 97-01,\ Page\ 36.\ (450MHz\ to\ 2450\ MHz\ data\ only)$

Ingredient	f (MHz)												
(% by weight)	4:	50	83	835		915		1900		2450		5500	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56	54.9	70.45	62.7	68.64	65.53	78.67	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.36	0.5	0	0	0	
Sugar	56.32	46.78	56	45	56.5	41.76	0	0	0	0	0	0	
HEC	0.98	0.52	1	1	1	1.21	0	0	0	0	0	0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0	0	0	0	0	0	
Triton X-100	0	0	0	0	0	0	0	0	36.8	0	17.235	10.665	
DGBE	0	0	0	0	0	0	44.92	29.18	0	31.37	0	0	
DGHE	0	0	0	0	0	0	0	0	0	0	17.235	10.665	
Dielectric Constant	43.42	58	42.54	56.1	42	56.8	39.9	53.3	39.8	52.7			
Conductivity (S/m)	0.85	0.83	0.91	0.95	1	1.07	1.42	1.52	1.88	1.95			

Tissue Simulating Liquid for 5GHz, MBBL3500-5800V5 Manufactured by SPEAG (proprietary mixture)

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

6.0 EVALUATION PROCEDURES

Prior to any testing, the appropriate fluid was used to fill the phantom to a depth of 15 cm \pm 0.2cm. The fluid parameters were verified and the dipole validation was performed as described in the previous sections.

Test Positions:

The Device was positioned against the SAM and flat phantom using the procedure described in KDB 447498 and RSS-102.

Reference Power Measurement:

The measurement probe was positioned at a fixed location above the reference point. A power measurement was made with the probe above this reference position so it could used for the assessing the power drift later in the test procedure.

Area Scan:

A coarse area scan was performed in order to find the approximate location of the peak SAR value. This scan was performed with the measurement probe at a constant height in the simulating fluid. A two dimensional spline interpolation algorithm was then used to determine the peaks and gradients within the scanned area. The area scan resolution conformed to the requirements of KDB 865664 as shown in Table 8.

Zoom Scan:

A zoom scan was performed around the approximate location of the peak SAR as determined from the area scan. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure. The zoom scan resolution conformed to the requirements of KDB 865664 as shown in Table 8.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

			≤3 GHz	> 3 GHz		
Maximum distance from			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm		
Maximum probe angle surface normal at the m			30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan s	patial resc	lution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm $3 - 4$ GHz: \leq 5 mm* $4 - 6$ GHz: \leq 4 mm*			
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Table 8: SAR Area and Zoom Scan Resolutions

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Interpolation, Extrapolation and Detection of Maxima:

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method.

Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- The spatial location of the quadratic with respect to the measurement values is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quadratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behavior of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters.

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non-physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume.

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the postprocessing engine.

Power Drift Measurement:

The probe was positioned at precisely the same reference point and the reference power measurement was repeated. The difference between the initial reference power and the final one is referred to as the power drift. The power drift measurement was used to assess the output power stability of the test sample throughout the SAR scan.

RF Ambient Activity:

During the entire SAR evaluation, the RF ambient activity was monitored using a spectrum analyzer with an antenna connected to it. The spectrum analyzer was tuned to the frequency of measurement and with one trace set to max hold mode. In this way, it was possible to determine if at any point during the SAR measurement there was an interfering ambient signal. If an ambient signal was detected, then the SAR measurement was repeated.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

7.0 TEST CONFIGURATION

For the purpose of this evaluation, the 363, 366, & 369 was considered to be a device that could be operated when held against the body. All SAR scans were performed with a freshly charged battery installed.

The test channels and operating modes were selected using software based test commands for the evaluation of the Bluetooth radio. The device was positioned against the bottom of the phantom with zero clearance during the evaluation.

A photograph showing the sides of the devices tested is included in the Test Photographs Exhibit.

Side	Comment
A	Right Side
В	Left Side
С	Inside of Band
D	Outside of Band

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

8.0 CRITERIA

The following FCC limits for SAR apply to portable devices operating in the General Population/Uncontrolled Exposure environment:

Exposure	SAR		
(General Population/Uncontrolled Exposure environment)	(W/kg)		
Average over the whole body	0.08		
Spatial Peak (1g)	1.60		
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00		

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

9.0 TABULAR TEST RESULTS

The results on the following page(s) were obtained when the device was transmitting at maximum output power. Detailed measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are referenced under APPENDIX A – SAR Plots.

Conducted Power Measurements

The conducted power measurements for the 363, 366, & 369 were performed in accordance to ANSI C63.19:2009 and KDBs 558074 for DTS devices.

	Frequency,	Conducted Power (peak),	Conducted Power (peak),
Model	MHz	dBm	W
	2402	6.0	0.004
366 - M/L	2442	6.0	0.004
	2480	6.0	0.004
	2402	6.0	0.004
363 - S	2442	6.0	0.004
	2480	5.8	0.004
	2402	6.1	0.004
369 - XL	2442	6.0	0.004
	2480	6.1	0.004

Table 9: Conducted Output Power – Bluetooth

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Body Mode SAR Test Results

The device was evaluated according to the specific requirements found in FCC KDB 447498[9]. The worst case 1-g SAR value was less than the 1.6mW/g limit.

Exclusions:

- Repeatability measurements were not required since the Reported SAR was <0.8W/kg.
- 10g SAR was not addressed for the inside of the wristband for extremity SAR since the output power was well below the exclusion threshold of section 4.3 of kdb 447498. The 1g SAR was measured for the inside of the wristband for comparison of the limits due to the close proximity to the body.

Notes:

The inside of the wrist band was tested against the curvature in the in the SAM phantom left side. This was necessary so that inside of the band wrap around the cheek without spacing from the phantom to the band. The area of the SAM phantom head that was used allowed probe access to all points requiring measurement.

				SA	R Measurement R	esults at the	Body					
Band	Channel	Frequency (MHz)	Mode	Test Position	Seperation Distance (mm)	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Scaled Reported SAR for Power Drift (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)	Notes
2.4GHz	20	2442.00	Bluetooth	Side A	0	0.09	0.03	0.08	***	6.00	10.00	Plot A1
2.4GHz	20	2442.00	Bluetooth	Side B	0	-0.32	0.16	0.40	0.43	6.00	10.00	Plot A2
2.4GHz	20	2442.00	Bluetooth	Side C	0	-0.42	0.06	0.14	0.16	6.00	10.00	Plot A3
2.4GHz	20	2442.00	Bluetooth	Side D	0	0.06	0.06	0.15	***	6.00	10.00	Plot A4
Medium Ban	nd											
				SA	R Measurement R	esults at the	Body					
Band	Channel	Frequency (MHz)	Mode	Test Position	Seperation Distance (mm)	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Scaled Reported SAR for Power Drift (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)	Notes
2.4GHz	20	2442.00	Bluetooth	Side A	0	0.10	0.02	0.06	***	6.00	10.00	Plot A5
2.4GHz	20	2442.00										
		2442.00	Bluetooth	Side B	0	0.27	0.11	0.28	***	6.00	10.00	Plot A6
2.4GHz	20	2442.00	Bluetooth Bluetooth	Side B Side C	0	0.27	0.11	0.28	***	6.00	10.00	Plot A6 Plot A7
2.4GHz 2.4GHz												
	20	2442.00	Bluetooth	Side C	0	0.35	0.13	0.34	***	6.00	10.00	Plot A7
	20	2442.00	Bluetooth	Side C	0	0.35	0.13	0.34	***	6.00	10.00	Plot A7
2.4GHz	20	2442.00	Bluetooth	Side C Side D	0	0.35 0.01	0.13 0.15	0.34	***	6.00	10.00	Plot A7
2.4GHz	20	2442.00	Bluetooth	Side C Side D	0	0.35 0.01	0.13 0.15	0.34	***	6.00	10.00	Plot A7
2.4GHz Large Band	20 20	2442.00 2442.00 Frequency	Bluetooth Bluetooth	Side C Side D	0 0 R Measurement R	0.35 0.01 cesults at the	0.13 0.15 Body Measured SAR 1g	0.34 0.37 Reported SAR 1g	*** *** Scaled Reported SAR for Power Drift	Measured Conducted Output Power	Maximum Conducted Output Power	Plot A7 Plot A8
2.4GHz Large Band Band	20 20 Channel	2442.00 2442.00 Frequency (MHz)	Bluetooth Bluetooth Mode	Side C Side D SA Test Position	0 0 R Measurement R Seperation Distance (mm)	0.35 0.01 esults at the	0.13 0.15 Body Measured SAR 1g (W/kg)	0.34 0.37 Reported SAR 1g (W/kg)	*** Scaled Reported SAR for Power Drift (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)	Plot A7 Plot A8 Notes
2.4GHz Large Band Band 2.4GHz	20 20 Channel 20	2442.00 2442.00 Frequency (MHz) 2442.00	Bluetooth Bluetooth Mode Bluetooth	Side C Side D SA SA Test Position Side A	0 0 8 R Measurement R Seperation Distance (mm)	0.35 0.01 esults at the Power Drift (dB)	0.13 0.15 Body Measured SAR 1g (W/kg) 0.03	0.34 0.37 Reported SAR 1g (W/kg) 0.07	Scaled Reported SAR for Power Drift (W/kg)	Measured Conducted Output Power (dBm) 6.00	Maximum Conducted Output Power (dBm)	Plot A7 Plot A8 Notes Plot A9

Table 10: Body Mode SAR Results

Simultaneous Transmission Test Results

The device does not have multiple transmitters and therefore simultaneous transmission SAR measurements are not required.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

10.0 REFERENCES

- [1] ANSI, ANSI/IEEE C95.1-1991: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), FCC, Washington, D.C. 20554, 1997
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", *IEEE Transaction on Microwave Theory and Techniques*, vol. 44, pp. 105-113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetic evaluation of mobile communications equipment with know precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp.645-652, May 1997.
- [5] NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddinton, Middlesex, England, 1994.
- [6] Barry N. Tayor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.
- [7] Federal Communications Commission, KDG 248227 "SAR Measurement Procedures for 802.11 a/b/g Transmitters"
- [8] Federal Communications Commission, KDB 648474 "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas".
- [9] Federal Communications Commission, KDB 447498 "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies".
- [10] Federal Communications Commission, KDB 616217 "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens".
- [11] Federal Communications Commission, KDB 450824 "SAR Probe Calibration and System Verification Considerations for Measurements at 150MHz 3GHz".
- [12] Federal Communications Commission, KDB 865664 "SAR Measurement Requirements for 3-6GHz".
- [13] Federal Communications Commission, KDB 941225 "SAR Measurement Procedures for 3G Devices".
- [14] ANSI, ANSI/IEEE C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices.

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

11.0 APPENDIX A - SAR PLOTS

Plot A 1

Date/Time: 6/27/2013 10:13:15 AM

Test Laboratory: Intertek

File Name: Nike Fuel Band Small.da52:4

Nike Fuel Band Small

Procedure Notes: Ambient Temp = deg; Fluid Temp = deg

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96$ S/m; $\varepsilon_r = 50.684$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

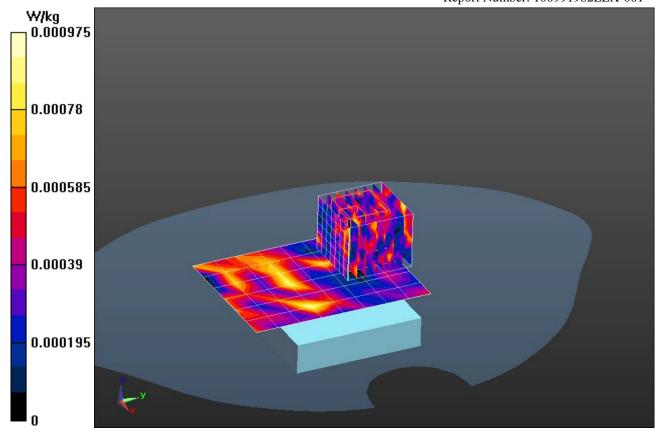
Wifi Flat-Section MSL Testing/Side A Against Phantom/Area Scan (7x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.000975 W/kg

Wifi Flat-Section MSL Testing/Side A Against Phantom/Zoom Scan (8x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.250 V/m; Power Drift = 3.28 dB


Peak SAR (extrapolated) = 0.00287 W/kg

SAR(1 g) = 0.000132 W/kg; SAR(10 g) = 2.83e-005 W/kg

Maximum value of SAR (measured) = 0.00138 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 2

Date/Time: 6/28/2013 10:41:50 AM

Test Laboratory: Intertek

File Name: Nike Fuel Band Small.da52:4

Nike Fuel Band Small

Procedure Notes: Ambient Temp = deg; Fluid Temp = deg

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Wifi Flat-Section MSL Testing/Side B Against Phantom/Area Scan (7x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.228 W/kg

Wifi Flat-Section MSL Testing/Side B Against Phantom/Zoom Scan (8x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.040 V/m; Power Drift = -0.32 dB

Peak SAR (extrapolated) = 0.382 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.064 W/kg

Maximum value of SAR (measured) = 0.267 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 3

Date/Time: 6/28/2013 2:21:03 PM

Test Laboratory: Intertek

File Name: Nike Fuel Band Small.da52:3

Nike Fuel Band Small

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

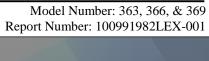
Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

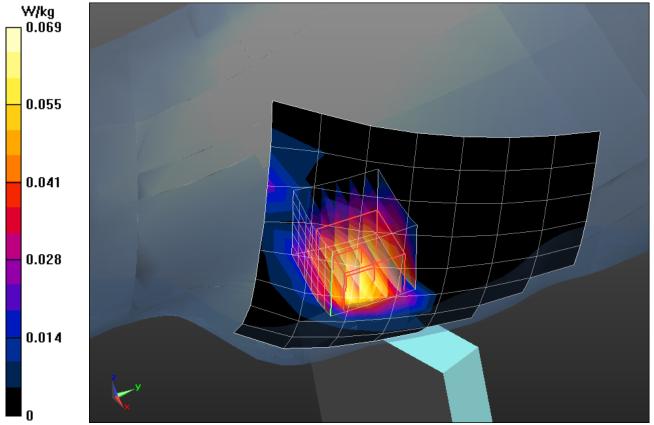
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 9/11/2012
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Left-Hand-Side HSL/Touch Position - Mid/Area Scan (9x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0690 W/kg

Left-Hand-Side HSL/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Reference Value = 4.862 V/m; Power Drift = -0.42 dB


Peak SAR (extrapolated) = 0.119 W/kg

SAR(1 g) = 0.057 W/kg; SAR(10 g) = 0.027 W/kg

Maximum value of SAR (measured) = 0.0657 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 4

Date/Time: 6/28/2013 11:09:19 AM

Test Laboratory: Intertek

File Name: Nike Fuel Band Small.da52:4

Nike Fuel Band Small

Procedure Notes: Ambient Temp = deg; Fluid Temp = deg

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

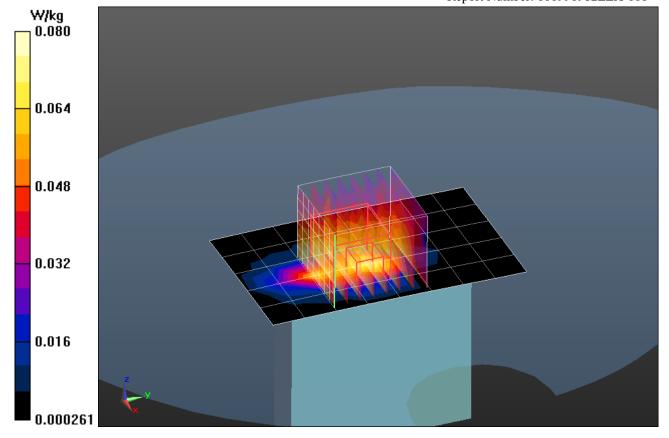
Wifi Flat-Section MSL Testing/Front Face Against Phantom/Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0802 W/kg

Wifi Flat-Section MSL Testing/Front Face Against Phantom/Zoom Scan (8x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.356 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 0.166 W/kg

SAR(1 g) = 0.058 W/kg; SAR(10 g) = 0.023 W/kg

Maximum value of SAR (measured) = 0.0998 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 5

Date/Time: 6/26/2013 2:01:58 PM

Test Laboratory: Intertek

File Name: Nike Fuel Band Medium.da52:4

Nike Fuel Band Medium

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

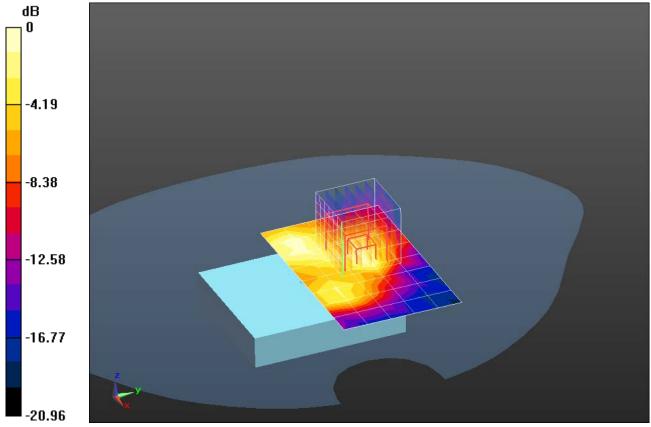
Wifi Flat-Section MSL Testing/Side A Against Phantom/Area Scan (9x6x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0318 W/kg

Wifi Flat-Section MSL Testing/Side A Against Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.512 V/m; Power Drift = 0.10 dB


Peak SAR (extrapolated) = 0.0460 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.010 W/kg

Maximum value of SAR (measured) = 0.0320 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

0 dB = 0.0320 W/kg = -14.95 dBW/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 6

Date/Time: 6/27/2013 10:59:29 AM

Test Laboratory: Intertek

File Name: Nike Fuel Band Medium.da52:4

Nike Fuel Band Medium

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

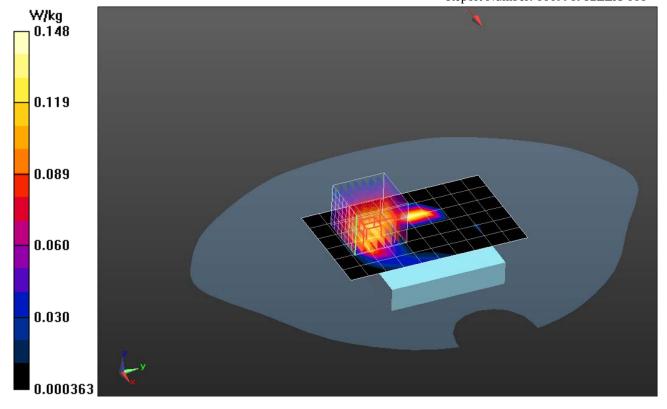
Wifi Flat-Section MSL Testing/Side B Against Phantom 2/Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.148 W/kg

Wifi Flat-Section MSL Testing/Side B Against Phantom 2/Zoom Scan (8x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.321 V/m; Power Drift = 0.27 dB


Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.110 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.185 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 7

Date/Time: 6/28/2013 3:31:09 PM

Test Laboratory: Intertek

File Name: Nike Fuel Band Medium.da52:3

Nike Fuel Band Medium

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Left-Hand-Side HSL/Touch Position - Mid/Area Scan (9x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.149 W/kg

Left-Hand-Side HSL/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

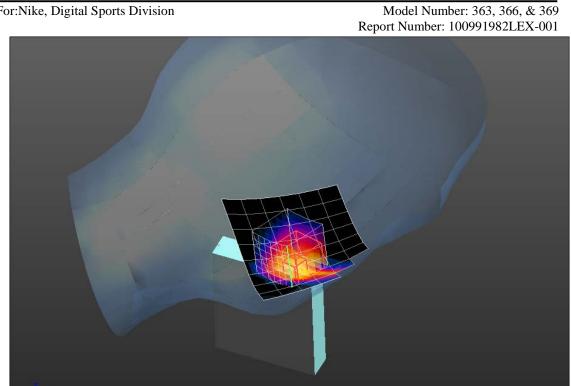
Reference Value = 6.408 V/m; Power Drift = 0.35 dB

Peak SAR (extrapolated) = 0.296 W/kg

SAR(1 g) = 0.134 W/kg; SAR(10 g) = 0.055 W/kg

Maximum value of SAR (measured) = 0.215 W/kg

W/kg 0.149


0.119

0.089

0.060

0.030

Evaluation For:Nike, Digital Sports Division

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 8

Date/Time: 6/27/2013 10:59:29 AM

Test Laboratory: Intertek

File Name: Nike Fuel Band Medium.da52:4

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96$ S/m; $\varepsilon_r = 50.684$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Wifi Flat-Section MSL Testing/Side B Against Phantom 2/Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm

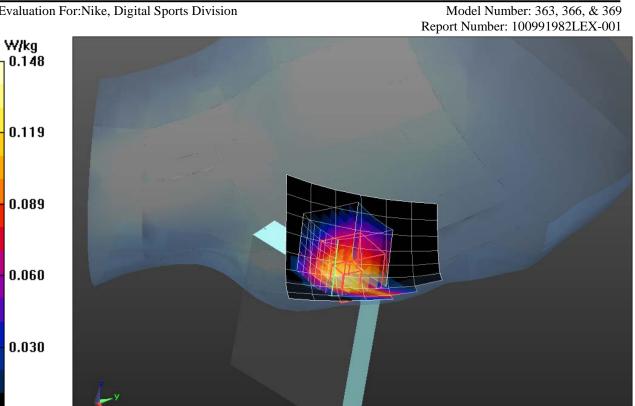
Maximum value of SAR (measured) = 0.148 W/kg

Wifi Flat-Section MSL Testing/Side B Against Phantom 2/Zoom Scan (8x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.321 V/m; Power Drift = 0.27 dB

Peak SAR (extrapolated) = 0.285 W/kg


SAR(1 g) = 0.110 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.185 W/kg

0.000363

Evaluation For:Nike, Digital Sports Division

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 9

Date/Time: 6/28/2013 4:21:16 PM

Test Laboratory: Intertek

File Name: Nike Fuel Band Medium.da52:4

Nike Fuel Band Medium

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

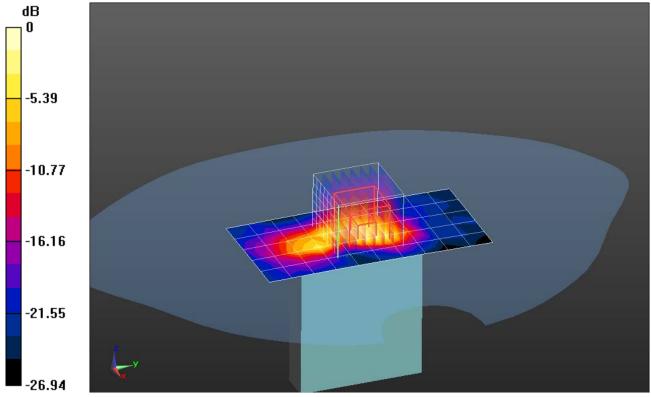
Wifi Flat-Section MSL Testing/Front Face Against Phantom/Area Scan (6x11x1): Measurement grid:

dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.216 W/kg

Wifi Flat-Section MSL Testing/Front Face Against Phantom/Zoom Scan (8x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm


Reference Value = 7.943 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.374 W/kg

SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.241 W/kg

0 dB = 0.216 W/kg = -6.65 dBW/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 10

Date/Time: 6/26/2013 3:58:40 PM

Test Laboratory: Intertek

File Name: Nike Fuel Band Large.da52:4

Nike Fuel Band Large

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

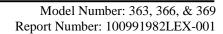
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

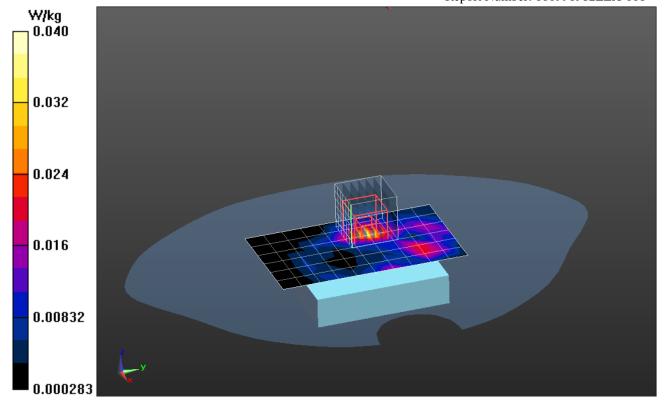
Wifi Flat-Section MSL Testing/Side A Against Phantom/Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0356 W/kg

Wifi Flat-Section MSL Testing/Side A Against Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm


Reference Value = 1.958 V/m; Power Drift = -0.11 dB


Peak SAR (extrapolated) = 0.0590 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.012 W/kg

Maximum value of SAR (measured) = 0.0405 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 11

Date/Time: 6/26/2013 4:41:45 PM

Test Laboratory: Intertek

File Name: Nike Fuel Band Large.da52:4

Nike Fuel Band Large

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

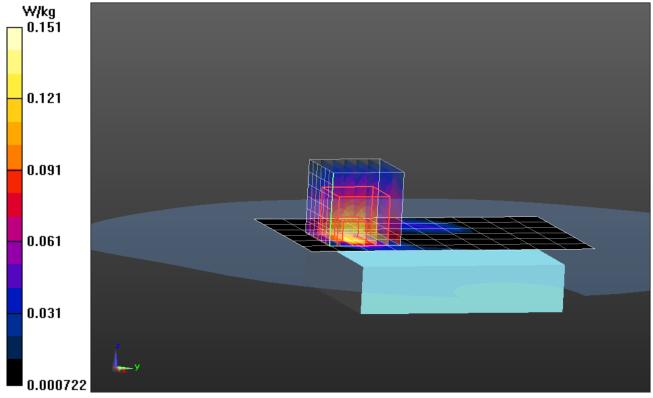
• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Wifi Flat-Section MSL Testing/Side B Against Phantom 2/Area Scan (7x11x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.142 W/kg

Wifi Flat-Section MSL Testing/Side B Against Phantom 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm


Reference Value = 5.819 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.151 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 12

Date/Time: 6/27/2013 2:19:01 PM

Test Laboratory: The name of your organization File Name: Nike Fuel Band Large.da52:3

Nike Fuel Band Large

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

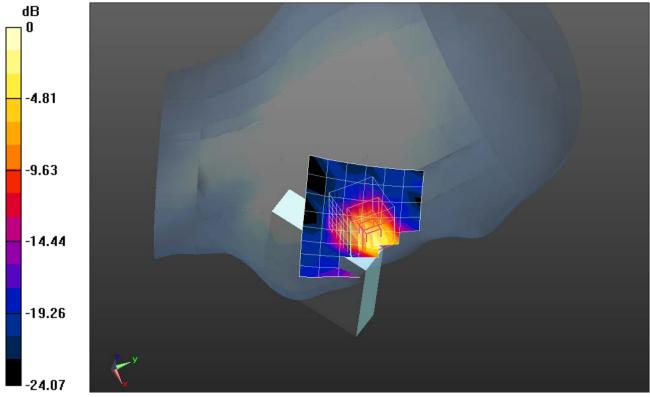
Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Left-Hand-Side HSL/Touch Position - Mid/Area Scan (9x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0795 W/kg

Left-Hand-Side HSL/Touch Position - Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 0.556 V/m; Power Drift = -2.02 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.060 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.0887 W/kg

0 dB = 0.0887 W/kg = -10.52 dBW/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

Plot A 13

Date/Time: 6/27/2013 3:30:57 PM

Test Laboratory: Intertek

File Name: Nike Fuel Band Large.da52:4

Nike Fuel Band Large

Procedure Notes:

DUT: Nike+ Fuel Band; Serial: Not Specified

Communication System: Generic Bluetooth; Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 1.96 \text{ S/m}$; $\varepsilon_r = 50.684$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn358; Calibrated: 9/11/2012

• Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

• DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

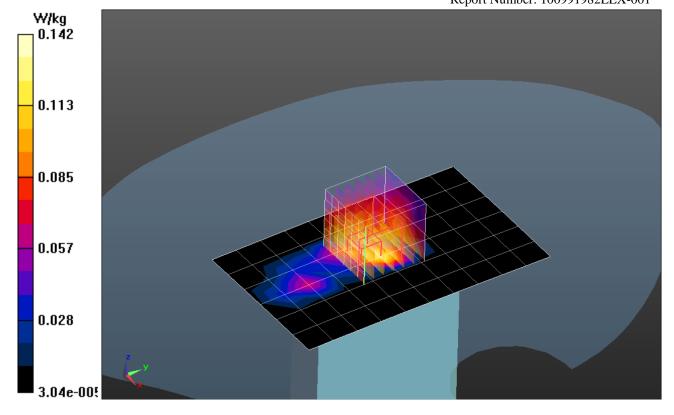
Wifi Flat-Section MSL Testing/Front Face Against Phantom/Area Scan (7x11x1): Measurement grid:

dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.142 W/kg

Wifi Flat-Section MSL Testing/Front Face Against Phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm


Reference Value = 7.424 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.038 W/kg

Maximum value of SAR (measured) = 0.166 W/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

12.0 APPENDIX B – SYSTEM VERIFICATION PLOTS

Date/Time: 6/26/2013 9:36:41 AM

Test Laboratory: Intertek

File Name: 2.4GHz Dipole Validation 6_26_13.da52:1

2.4GHz Dipole Validation 6_26_13

Procedure Notes:

DUT: Dipole 2450 MHz D2450V2; Serial: D2450V2 - SN:xxx

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Duty

Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.972 \text{ S/m}$; $\varepsilon_r = 50.651$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

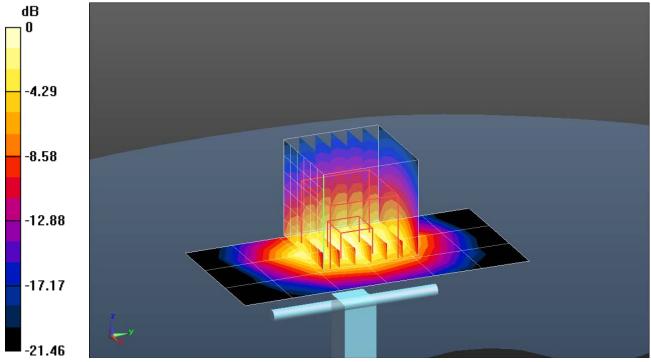
DASY5 Configuration:

• Probe: EX3DV3 - SN3516; ConvF(7.92, 7.92, 7.92); Calibrated: 12/10/2012;

- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn358; Calibrated: 9/11/2012
- Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=100 mW with 10db attenuator at dipole, dist=2.0mm (EX-Probe)/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 8.06 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=100 mW with 10db attenuator at dipole, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 63.017 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 11.0 W/kg

SAR(1 g) = 5.41 W/kg; SAR(10 g) = 2.5 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 6.19 W/kg

0 dB = 6.19 W/kg = 7.92 dBW/kg

Model Number: 363, 366, & 369 Report Number: 100991982LEX-001

13.0 APPENDIX C – SYSTEM VALIDATION SUMMARY

Per FCC KDB 865664, a tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters have been included in the summary table below. The validation was performed with reference dipoles using the required tissue equivalent media for system validation according to KDB 865664. Each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point. All measurements were performed using probes calibrated for CW signals. Modulations in the table above represent test configurations for which the SAR system has been validated. The SAR system was also validated with modulated signals per KDB 865664.

				Probe Calibr	ation Point	Dielectric Properties		CW Validation			Modulation Validation		
Frequency (MHz)	Date	Probe (SN#)	Probe (Model#)	Frequency (MHz)	Fluid Type	σ	€r	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR
2450	1/7/2013	3516	EX3DV3	2450	Body	50.65	2.02	Pass	Pass	Pass	OFDM	N/A	Pass
5200	1/8/2013	3516	EX3DV3	5200	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass
5500	1/8/2013	3516	EX3DV3	5500	Body	47.68	6.29	Pass	Pass	Pass	OFDM	N/A	Pass
5800	1/8/2013	3516	EX3DV3	5800	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass

Table 11: SAR System Validation Summary