

NVLAP Lab Code 100426-0 This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory. Test Report issued under the responsibility of:

TEST REPORT					
FCC Part 15 Radio Frequency Device Subpart C – Intentional Radi	RSS 210, Issue 8 Licence-exempt Radio Apparatus: Category I Equipment				
FCC ID.: QYUESP11		Not certified			
Report Reference No:	trf_195592_F	OL_IC			
Compiled by (+ signature):	David Light		Dauel	al Cartuill	
Approved by (+ signature):	Mike Cantwell		Mich	ail Cartuill	
Date of issue:	6-Jun-12				
Report Revision:	0				
Total number of pages:	50				
Testing Laboratory: Address	802 N. Kealy Lewisville, TX	Ave.		Tel: +1 972 436 9600 Fax: +1 972 436 2667	
	USA Nika Inc				
Applicant's name: Address		n Drive ED-3	Beaverton (OR 07005	
Model(s) Tested:				011 01000	
Test specification:					
Standard:	FCC Part 15,	Subpart C & R	SS 210, Issu	le 8	
Test procedure:	ANSI C63.4:2003 and "Measurement of Digital Transmission Systems Operating under Section 15.247" - March 23, 2005			Digital Transmission 7" - March 23, 2005	
Non-standard test method:	N/A				
TRF Revision	18-Nov-11				

Re	Revision History			
#	Description	Date		
0	Original Report Release	6-Jun-12		

Notices:

Γ

- 1. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.
- 2. The test results presented in this report relate only to the object tested.
- 3. The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.
- 4. "(see Enclosure #)" refers to additional information appended to the report.
- 5. Throughout this report a point is used as the decimal separator.
- 6. Dimensions in English units for convenience only, metric units prevail.

Table of Contents

Revision History	2
Normative References	
RSS 210, Issue 8 Test Report Cover Sheet	5
FCC Technical Specifications	6
Equipment Under Test (EUT)	
Details:	
EUT Configuration	8
EUT Photo(s)	
Summary of Testing	. 13
Testing Location	. 14
Procedural Requirements	. 14
United States	. 14
Canada	
Information to the User and Labeling Requirements	. 14
United States	. 14
Labelling	. 14
Information to User	. 15
Canada	
Labelling	
Notices to the User	
Technical Requirements	
Conducted Emissions	
Mains	
Radiated Emissions	
Restricted Bands	
Radiated Emission Limit	
6 dB Occupied Bandwidth	
RF Peak Output Power	
Spurious Emissions	
Band edge spurious emissions	
Measurement Uncertainty	
List of Test Equipment	
Test Results – Antenna Requirement	
Test Results – Radiated Emissions – Restricted Bands	
Test Results - 6 dB Occupied Bandwidth	
Test Results - Peak RF Output Power	
Test Results – RF Peak Power Density	
Test Results - Spurious Emissions	
Test Results - RF Exposure	. 49

Normative References

The following document(s) have been appropriately considered in the performance of the test results detailed in this report.

CFR Title 47, Part 15

Radio Frequency Devices

ANSI C63.4:2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

ANSI C63.10:2009 Testing Unlicensed Wireless Devices

FCC Guidance Document "Measurement of Digital Transmission Systems Operating under Section 15.247" - March 23, 2005RSS 210, Issue 8 License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

RSS-Gen, Issue 3:2010 General Requirements and Information for the Certification of Radio Apparatus

RSP 100, Issue 9 Radio Equipment Certification Procedure

RSS 210, Issue 8 Test Report Cover Sheet

This document provides supplemental information relating to the technical specifications of the product to be certified. This shall be completed in full and signed by the personnel responsible for the testing of the product. This form or the original from RSP-100 Appendix B may be used.

1. **PRODUCT DETAILS**

Equipment Model Number	NA0018
Manufacturer	Nike, Inc.
Tested to Radio Standards	RSS 210, Issue 8
Open Area Test Site Industry Canada	2040C
Frequency Range:	2402 – 2480 MHz
RF Power in Watts:	.00078
Field Strength (and at what distance):	N/A
Occupied Bandwidth (99% BW):	1.09 MHz
Type of Modulation:	GFSK
Emission Designator (TRC-43):	1M09G7W
Transmitter Spurious (worst case):	180 μV/m @ 3m
Receiver Spurious (worst case):	N/A

2. ATTESTATION

DECLARATION OF COMPLIANCE: I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Signature:

Date: 10 Feb 2012

NAME and TITLE (Please print or type): David Light, Senior Radio Test Engineer

FCC Technical Specifications

	Frequency in MHz Power Output (watts)		Frequency Tolerance %, Hz, ppm		Emission Designator	FCC Rule Parts
2402	2480	0.00078	-	-	-	15.247

Equipment Under Test (EUT)

Details:
Test item description:
Model NA0018
Serial Number: None
Production Status Production 🗌 Pre-Production 🗌 Prototype
Other Status Info: Test sample provided
EUT Received Date: 15 December 2012
Ratings: 5VDC 🔲 1 φ 🖾 3 φ 🖾 Battery
General product description:
The device is a wireless data transmitter used to record personal activity
Modifications to the EUT required for compliance:
There have been no modifications to the EUT as a result of this evaluation.
Deviations from Test Methodology:
There have been no deviations, additions to, or exclusions from the specified test standard.
Engineering Judgements:
Engineering Judgements: No engineering judgments based on the results in this test report have been made.
No engineering judgments based on the results in this test report have been made.
Approved by (+ signature): Click here to enter text.

Table 1 – EUT Internal Operating Frequencies

Frequency (MHz)	Description	Frequency (MHz)	Description
32 MHz	Clock		

Table 2 – EUT Operating Modes

Mode #	Description
1	Transmit modulated carrier at low, mid, high channel
2	Receive at low, mid, high channel
3	

EUT Configuration

A minimum representative configuration, as defined by the manufacturer, has been used for the testing performed herein. The selection of hardware (including interface ports), software, and cables were chosen by the manufacturer as being representative of the product's intended use. The interconnection of various articles of equipment and the types of cables used has also been defined by the manufacturer.

The placement of the equipment under test has been, to the extent practical, arranged to maximize emissions.

Cables, of the type and length specified by the manufacturer, were connected to at least one of each type of interface port provided by the EUT and if practical, were terminated by a device typical of actual usage. For multiple ports of the same type, the addition of cables did not significantly affect the emission level (i.e. < 2dB variation).

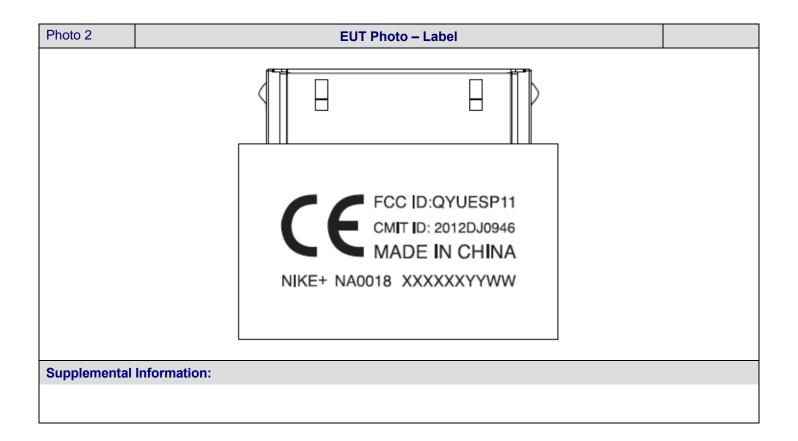
The arrangement of external power supply units was as follows:

- a) If the mains input cable of the external power supply unit is greater than 0,8 m, the external power supply unit shall be placed on the tabletop, with a nominal 0,1 m separation from the host unit.
- b) If the external power supply unit has a mains input cable that is less than 0,8 m, the external power supply unit shall be placed at a height above the ground plane such that its power cable is fully extended in the vertical direction.
- c) If the external power supply unit is incorporated into the mains power plug, it shall be placed on the tabletop. An extension cable shall be used between the external power supply unit and the source of power. The extension cable should be connected in a manner such that it takes the most direct path between the external power supply unit and the source of power.

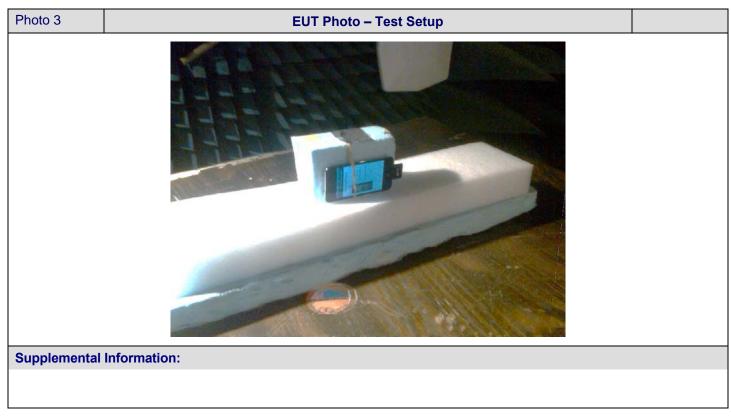
Table 3 – EUT & Auxiliary Equipment List

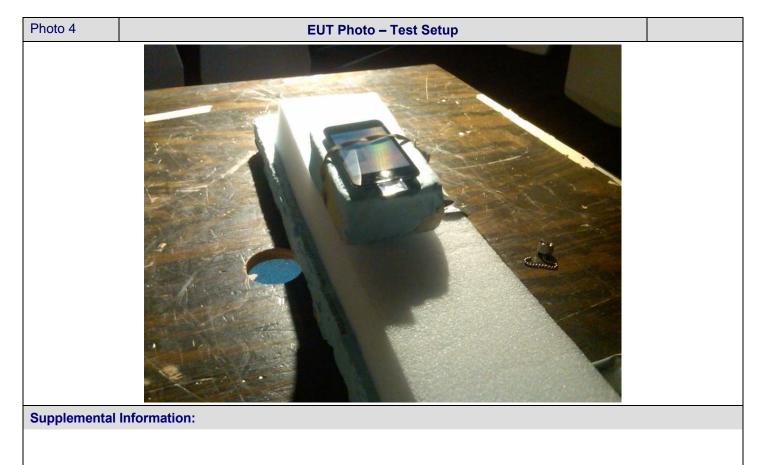
ltem	Use*	Product Type	Manufacturer	Model	Serial No.
Α	EUT	Adapter	Nike	NA0018	None
В	Host	iPOD	Apple	Touch	None
С					
Note: * Use = EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or SIM - Simulator (Not Subjected to Test)					

Table 4 - Interconnecting Cables List

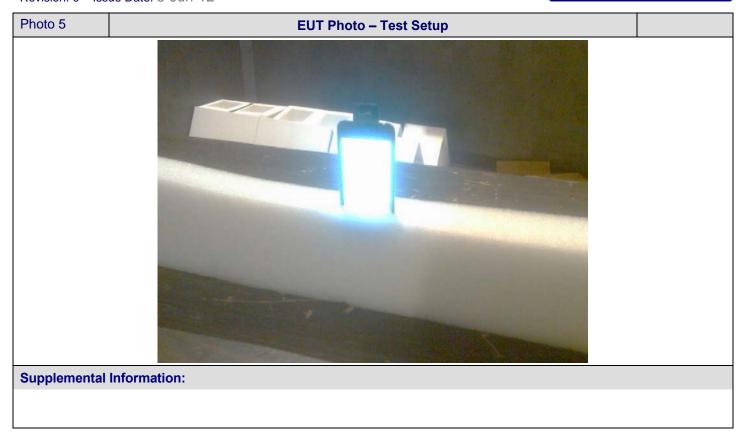

Item	Use*	Cable Type
1		
2		
3		

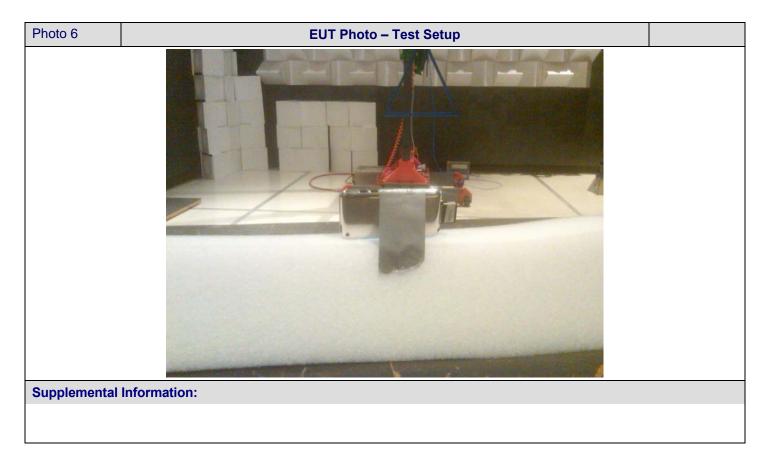
FCC Part 15, Subpart C & RSS 210, Issue 8 Report Number: trf_195592_FCC_IC Revision: 0 Issue Date: 6-Jun-12


EUT Photo(s)


Photo 1	EUT Photo Bottom/Top View	
Supplemental	Information:	

Revision: 0 Issue Date: 6-Jun-12





FCC Part 15, Subpart C & RSS 210, Issue 8 Report Number: trf_195592_FCC_IC Revision: 0 Issue Date: 6-Jun-12

Summary of Testing

Possible test of	ase verdicts:			
- test case does	not apply to the test object :	N/A		
- test object doe	es meet the requirement:	P (Pass)		
- test object doe	es not meet the requirement :	F (Fail)		
- not tested (not	part of this evaluation):	NT		
Date(s) of performance of tests		14-Dec-11 & 10-Fe	eb-12	
Clause Test Description		on	Verdict	Comment

Clause	Test Description	Verdict	Comment
United States: 4	United States: 47 CFR		
15.203	Antenna Requirement	Р	
15.205	Radiated Emissions – Restricted Bands	Р	
15.247(a)(2)	6 dB Occupied Bandwidth	Р	
15.247(b)(3)	Peak RF Output Power	Р	
15.247(d)	Spurious Emissions	Р	
15.247(e)(3)	Peak RF Power Spectral Density	Р	
15.247(i)	RF Exposure	Р	
Canada: RSS 2	10		
RSS GEN 7.2.2	Radiated Emissions – Restricted Bands	Р	
A8.2(a)	6 dB Occupied Bandwidth	Р	
A8.2(b)	Peak RF Power Spectral Density	Р	
A8.4(4)	Peak RF Output Power	Р	
A8.5	Spurious Emissions	Р	
RSS GEN 5.6	RF Exposure	Р	
Mataas	·	· · ·	

Notes:

General remarks:

Summary of compliance with national requirements:

Compliance with these standards provides a means of conformity to be used for United States Federal Communication Commission (FCC) and Industry Canada (IC) certification. Submissions required.

Testing Location	
Testing Laboratory:	Nemko USA, Inc. (Dallas)
Testing location/ address:	802 N. Kealy Ave. Lewisville, TX 75057 USA
Testing procedure: TMP	
Tested by (name + signature) :	
Approved by (+ signature) :	
Testing location/ address:	
Supplemental Information:	
Testing results contained herein were perfo	ormed at the location(s) listed above.

Procedural Requirements

The following requirements are taken from the appropriate rules, other rules may apply and the manufacturer should consult the full text of the appropriate laws prior to marketing any device.

United States

Mandated procedures for digital devices are defined in 47 CFR 15.201, *Equipment authorization requirement*. Details of the authorization procedures (verification, declaration of conformity, and certification) can be found in 47 CFR, Part 2, Subpart J, *Equipment Authorization Procedures*.

Canada

Industry Canada standard RSS-GEN and RSP 100 contain the procedural requirements.

Information to the User and Labeling Requirements

The following requirements are taken from the appropriate rules, other rules may apply and the manufacturer should consult the full text of the appropriate laws prior to marketing any device.

United States

Labelling

47 CFR 2.925(a) (1) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following: FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

FCC ID XXX123

Where XXX = Grantee Code

and 123 = Equipment Product Code (up to 14 characters)

47 CFR 15.19 (a) (3) In addition to the requirements in part 2 of this chapter, a device subject to certification, or verification shall be labeled as follows: All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

47 CFR 15.19(b)(2) Label text and information should be in a size of type large enough to be readily legible, consistent with the dimensions of the equipment and the label. However, the type size for the text is not required to be larger than eight point.

47 CFR 15.19(b)(3): When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (b)(1) of this section on it, such as for a CPU board or a plug-in circuit board peripheral device, the text associated with the logo may be placed in a prominent location in the instruction manual or pamphlet supplied to the user. However, the unique identification (trade name and model number) and the logo must be displayed on the device.

47 CFR 15.19(b)(4): The label shall not be a stick-on, paper label. The label on these products shall be permanently affixed to the product and shall be readily visible to the purchaser at the time of purchase, as described in §2.925(d) of this chapter. "Permanently affixed" means that the label is etched, engraved, stamped, silkscreened, indelibly printed, or otherwise permanently marked on a permanently attached part of the equipment or on a nameplate of metal, plastic, or other material fastened to the equipment by welding, riveting, or a permanent adhesive. The label must be designed to last the expected lifetime of the equipment in the environment in which the equipment may be operated and must not be readily detachable.

Information to User

47 CFR 15.21: The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that:

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form.

Canada

Labelling

<u>RSS</u> –GEN 5.2: Every unit of Category I radio apparatus certified for marketing and use in Canada shall bear a permanent label on which is indelibly displayed the model number and Industry Canada certification number of the equipment model (transmitter, receiver, or inseparable combination thereof). Each model shall be identified by a unique combination of a model number and a certification number, which are assigned as described

FCC Part 15, Subpart C & RSS 210, Issue 8 Report Number: trf_195592_FCC_IC Revision: 0 Issue Date: 6-Jun-12

below in this section. The label shall be securely affixed to a permanently attached part of the device, in a location where it is visible or easily accessible to the user, and shall not be readily detachable. The label shall be sufficiently durable to remain fully legible and intact on the device in all normal conditions of use throughout the device's expected lifetime. These requirements may be met either by a separate label or nameplate permanently attached to the device or by permanently imprinting or impressing the label directly onto the device.

The label text shall be legible without the aid of magnification, but is not required to be larger than 8-point font size. If the device is too small to meet this condition, the label information may be included in the user manual upon agreement with Industry Canada.

The model number is assigned by the applicant and shall be unique to each model of radio apparatus under that applicant's responsibility. The model number shall be displayed on the label preceded by the text: "Model:", so it appears as follows:

Model: model number assigned by applicant

The certification number is made up of a Company Number (CN) assigned by Industry Canada's Certification and Engineering Bureau followed by the Unique Product Number (UPN), assigned by the applicant.

The certification number shall appear as follows:

IC: XXXXXX-YYYYYYYYYYY

where:

- XXXXXX-YYYYYYYYYY is the certification number;
- XXXXXX is the Company Number (CN) assigned by Industry Canada, made of at most 6 alphanumeric characters (A-Z, 0-9), including a letter at the end of the CN to distinguish between different company addresses;
- YYYYYYYYYY is the Unique Product Number (UPN) assigned by the applicant, made of at most 11 alphanumeric characters (A-Z, 0-9); and the letters "IC" (Industry Canada) are to indicate the Industry Canada certification number, but are not part of the certification number.

Permitted alphanumerical characters used in the CN and UPN are limited to capital letters (A-Z) and numerals (0-9). Example: A company has been assigned a CN of "21A" and wishes to use a UPN of "WILAN3" for one of its products. The full Industry Canada certification number of this product would thus be: IC: 21A-WILAN3.

Category I equipment that is not labeled with the model number and the certification number as described above is not considered certified in Canada.

Notices to the User

<u>RSS-GEN 5.3</u>: Radio apparatus shall comply with the requirements to include required notices or statements to the user of equipment with each unit of equipment model offered for sale.

The required notices are specified in the RSS documents (including RSS-Gen) applicable to the equipment model. These notices are required to be shown in a conspicuous location in the user manual for the equipment, or to be displayed on the equipment model. If more than one notice is required, the equipment model(s) to which each notice pertains should be identified. Suppliers of radio apparatus shall provide notices and user information in both English and French.

<u>RSS-GEN 7.1.3:</u> User manuals for licence-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

User manuals for transmitters shall display the following notice in a conspicuous location:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (*identify the device by certification number, or model number if Category II*) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi) and required impedance for each.

Technical Requirements

The testing requirements, as appropriate, were derived from ANSI C63.4; 47 CFR, Subpart A; RSS 210; and RSS GEN.

Conducted Emissions

The mains cable of the EUT or EUT host unit was connected to the LISN defined in this standard and is bonded to the reference plane. Where applicable, remaining auxiliary equipment was powered through an additional LISN (also bonded to the reference plane), using a multi-socket outlet strip if necessary. The LISNs were at least 0.8m away from the EUT. A vertical ground plane was used while the table-top EUTs were placed on a wooden table 0.8m high. Floor-standing EUTs were insulated from the ground plane and grounded according to the manufacturer's instructions.

Signal cables were positioned for their entire lengths, as far as possible, at a nominal distance of 0.4 m from the ground reference plane. Where the mains cable supplied by the manufacturer was longer than 1 m, the excess was folded at the center into a bundle no longer than 0.4 m, so that its length is shortened to 1 m. If the 1 m cable length cannot be achieved owing to physical limitations of the EUT arrangement, the cable length shall be as near to 1 m as possible.

All telecommunication and signal ports were correctly terminated using either appropriate associated equipment or a representative termination during the measurement of the conducted disturbances at the

mains. If an ISN is connected to a telecommunications port during the measurement of conducted disturbances at the mains port, then the ISN receiver port was terminated in 50Ω . The ISNs were at least 0.8m away from the EUT.

Mains

Any power cable(s) from the equipment under test that were directly connected to the AC Mains have been tested. In the event that the equipment under test had no direct connection to the Mains, that is, it was connected to a Host unit (example: USB powered); then conducted emissions was performed on the Mains of the Host unit. Battery powered equipment was not tested for conducted emissions; however, if the equipment makes provisions for connections to a battery charger that is connected to the Mains, then conducted emissions were performed on the battery charger.

	Limits (dBµV)	
Frequency	Quasi-peak	Average
150 kHz – 500 kHz	66 - 56	5-46
500 kHz – 5 MHz	56	46
5 MHz – 30 MHz 60 50		
NOTE 1: The lower limit shall apply at the transition frequency. NOTE 2: The limit decreases linearly with the logarithm of the frequency in the range 150 kHz to 500 kHz.		

Table 5 – Class B Conducted Emissions Limits - Mains
--

Radiated Emissions

Restricted Bands

The arrangement of the equipment is typical of a normal installation practice and as was practical, the arrangement was varied and emissions investigated for maximum amplitude. Final measurements were performed in a semi-anechoic chamber or on an open area test site (OATS). The equipment was rotated 360° and the antenna height has been varied between 1m and 4m. Measurements were taken at both horizontal and vertical antenna polarities. The receiver bandwidth was set to 120 kHz for measurements below 1 GHz, and 1 MHz for measurements above 1 GHz. A peak detector is used to detect an emission; a quasi-peak detector may be used to record a final measurement below 1 GHz and an average detector may be used above 1 GHz. An inverse proportionality factor of 20 dB/decade (10 dB) was used, as noted in 15.31(f)(1), to normalize the measured data to the specified test distance for determining compliance.

Operating frequency of intentional radiator	Lowest frequency searched	Highest frequency searched
Below 10 GHz	9 kHz or lowest operating frequency generated in the device, whichever is highest	10 th harmonic of highest fundamental frequency or 40 GHz, whichever is lower
10 – 30 GHz	9 kHz or lowest operating frequency generated in the device, whichever is highest	5 th harmonic of highest fundamental frequency or 100 GHz, whichever is lower
At or above 30 GHz	9 kHz or lowest operating frequency generated in the device, whichever is highest	5 th harmonic of highest fundamental frequency or 200 GHz, whichever is lower

 Table 6 - Frequency range of radiated measurements (15.33(a))

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322–335.4	3600–4400	
13.36–13.41			

Table 7 – Restricted Bands (47 CFR 15.205)

Table 8 – Restricted Bands (RSS-GEN)

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	960-1427	9.0-9.2
2.1735-2.1905	13.36-13.41	1435-1626.5	9.3-9.5
3.020-3.026	16.42-16.423	1645.5-1646.5	10.6-12.7
4.125-4.128	16.69475-16.69525	1660-1710	13.25-13.4
4.17725-4.17775	16.80425-16.80475	1718.8-1722.2	14.47-14.5
4.20725-4.20775	25.5-25.67	2200-2300	15.35-16.2
5.677-5.683	37.5-38.25	2310-2390	17.7-21.4
6.125-6.218	73-74.6	2655-2900	22.01-23.12
6.6775-6.26825	74.8-75.2	3260-3267	23.6-24.0
6.31175-6.31225	108-138	3332-3339	31.2-31.8
8.291-8.294	156.52475-156.52525	3345.8-3358	36.43-36.5
8.362-8.366	156.7-156.9	3500-4400	Above 38.6
8.37625-8.38675	240-285	4500-5150	
8.41425-8.41475	322-335.4	5350-5460	
12.29-12.293	399.9-410	7250-7750	
12.51975-12.52025	608-614	8025-8500	

Radiated Emission Limit

Reading on the measuring receiver showing fluctuations close to the limit, were observed for at least 15 s at each measurement frequency; the highest reading was recorded.

Frequency Range	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (m)
9 kHz – 490 kHz	2400/F(kHz)	48.5 – 13.8	300
490 kHz – 1.705 MHz	24000/F(kHz)	33.6 - 23.0	30
1.705 MHz – 30 MHz	30	29.5	30
30 MHz – 88 MHz	100	40.0	3
88 MHz – 216 MHz	150	43.5	3
216 MHz – 960 MHz	200	46.0	3
Above 960 MHz	500	54.0	3

Table 9 – Radiated Emissions Limits	per 47 CFR 15.209(a) & RSS-GEN 7.2.5

6 dB Occupied Bandwidth

15.247(a)(2) and RSS 210 A8.2(a) Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

The 6 dB Occupied Bandwidth is measured at low, mid, and high channels and with each modulation mode.

Spectrum analyzer settings:	
Span:	~ 2 to 3 times the 6 dB bandwidth
Resolution (or IF) Bandwidth (RBW):	100 kHz
Video (or Average) Bandwidth (VBW):	100 kHz
Sweep:	Auto
Detector Function:	Peak
Trace:	Max Hold

RF Peak Output Power

15.247(b)(3) and RSS 210 A4(4) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

EUT test mode: The peak rf output power shall be measured at low, mid, and high channels and for each modulation mode.

EUT configuration:	Transmit at low, middle, and high channel with each modulation
Spectrum analyzer settings:	
Span	~5 times the 6 dB bandwidth
Resolution (or IF) Bandwidth (RBW):	> the 6 dB bandwidth of the emission being measured
Video (or Average) Bandwidth (VBW):	≥RBW
Sweep:	Auto
Detector Function:	Peak
Trace:	Max Hold

Alternative configuration: Alternatively the Channel Power measurement function of the spectrum analyzer may be used.

Spurious Emissions

15.247(d) and RSS 210 A8.5: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits is not required. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits specified.

EUT configuration:	Operate continuous transmit at maximum power
Spectrum analyzer settings:	
Span	Wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10^{th} harmonic. Typically, several plots are required to cover this entire span.
Resolution (or IF) Bandwidth (RBW):	100 kHz
Video (or Average) Bandwidth (VBW):	≥RBW
Sweep:	Auto
Detector Function:	Peak
Trace:	Max Hold

Band edge spurious emissions

EUT configuration:	Operate continuous transmit at maximum power
Measurement shall be made in these bands .:	2310 – 2390 MHz
	2483.5 – 2500 MHz
Span	Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
Resolution (or IF) Bandwidth (RBW):	\geq 1% of the span
Video (or Average) Bandwidth (VBW):	≥ RBW
Sweep:	Auto
Detector Function:	Peak
Trace:	Max Hold

Measurement Uncertainty

Determining compliance with the limits in these standards was based on the results of the measurement, and does not take into account the measurement instrumentation uncertainty.

Measurement	Expanded Uncertainty
Conducted Emissions – AC Mains	± 3.46 dB
Radiated Emissions	± 4.90 dB
RF Power – Antenna Conducted	± 1.34 dB
RF Spurious Emissions – Antenna Conducted	± 1.34 dB
Occupied Bandwidth	± 1.15 kHz

List of Test Equipment

The following test equipment was used in the performance of the testing herein.

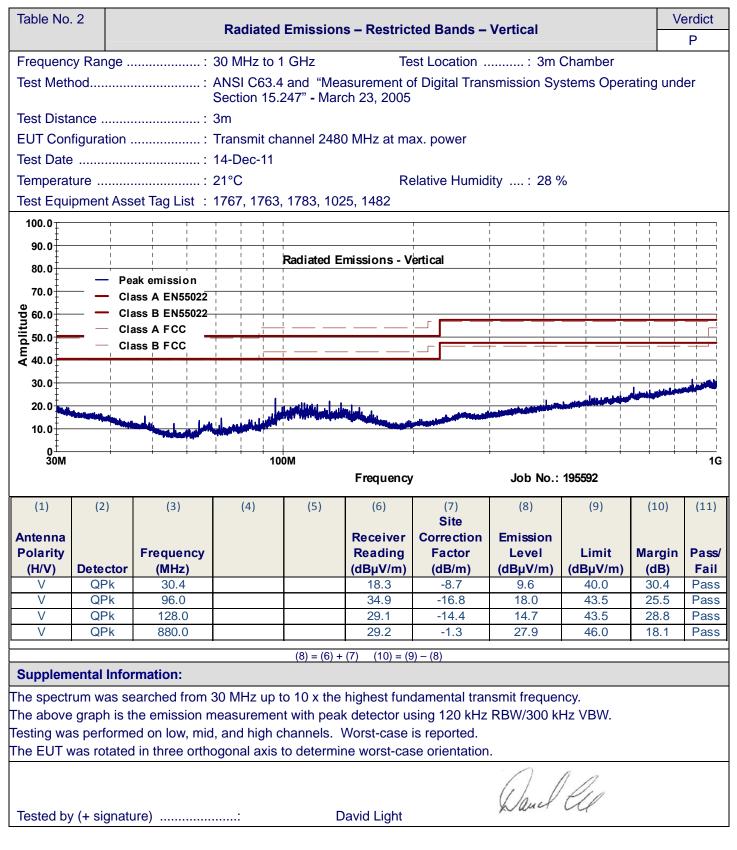
Asset Tag	Description	Manufacturer	Model	Serial Number	Cal. Date	Cal. Due
674	Limiter	Hewlett Packard	11947A	3107A02200	01-Nov-2011	01-Nov-2012
749	Cable, 4.8m	Nemko USA, Inc.	RG223	None	25-Feb-2011	25-Feb-2012
1025	Preamplifier, 25dB	Nemko USA, Inc.	LNA25	399	23-Feb-2011	23-Feb-2012
1763	Antenna, Bilog	Schaffner	CBL 6111D	22926	11-Feb-2011	11-Feb-2012
1036	Spectrum Analyzer	Rohde & Schwartz	FSEK30	830844/006	23-Dec-2011	23-Dec-2013
1783	Cable Assy, 3m Chamber	Nemko	Chamber	None	26-Sep-2011	26-Sep-2012
1482	High Pass Filter	K&L Microwave	11SH10- 4000/T12000- 0	2	N/R	N/R
1767	Receiver, EMI Test 20Hz - 26.5 GHz - 150 - +30 dBm LCD	Rohde & Schwartz	ESIB26	837491/0002	09-Dec-2011	09-Dec-2012
1016	Preamplifier	Hewlett Packard	8449A	2749A00159	20-Jul-2011	20-Jul-2012
1480	Antenna, Bilog	Schaffner-Chase	CBL6111C	2572	07-Feb-2012	07-Feb-2013
1558	Digital Multimeter	Fluke	79-II	67591192	29-Sep-2011	29-Sep-2012
1839	Environmental Chamber (Temperature only)	Tenney	T-14	14	N/R	
619	Digital Thermometer	Fluke	51	4520028	29-Sep-2011	29-Sep-2012

Table 10 – Test Equipment Used

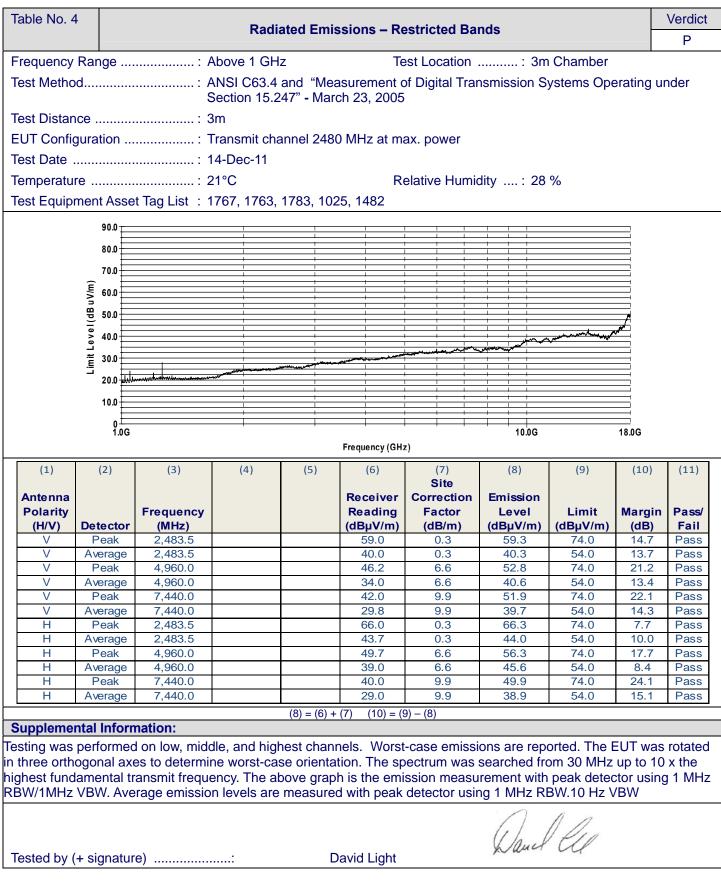
Test Results – Antenna Requirement

Revision: 0 Issue Date: 6-Jun-12

Table No. 1		Ant	oppo requirement		Verdict			
	Antenna requirement							
Type of antenn	a connection	🛛 Integral ante	enna 🗌 Permanently attached	🗌 Unique cor	inector			
Type of unique	connector	No rf connecto	r (only for testing)					
Method of perr	manent connection	PCB chip anter	nna					
Antenna gain		1.54 dBi						
Supplemental	Information:							
Antenna	a Parameters:							
	Quantit	y	Value	Units				
Ma	ix U		0.12078	W/sr				
Pe	ak Directivity		4.4251					
Pe	ak Gain		1.5423					
Pe	ak Realized Gai	n	1.5178					
Ra	diated Power		0.343	W W				
Ac	cepted Power		0.98408					
Inc	ident Power		1	W				
Ra	diation Efficienc	У	0.34855					
Fro	ont to Back Ratio	, ,	-N/A-					
De	cay Factor		0					
			1		-			
			1	1 1				
			(1/2 . L	1/1/				
Tested by (+ si	gnature)	:	David Light	U.J.				


Nemko USA, Inc. 802 N. Kealy Ave. Lewisville, TX USA Tel: +1 972-436-9600 Fax: +1 972-436-2667

Test Results – Radiated Emissions – Restricted Bands


Nemko

Revision: 0 Issue Date: 6-Jun-12

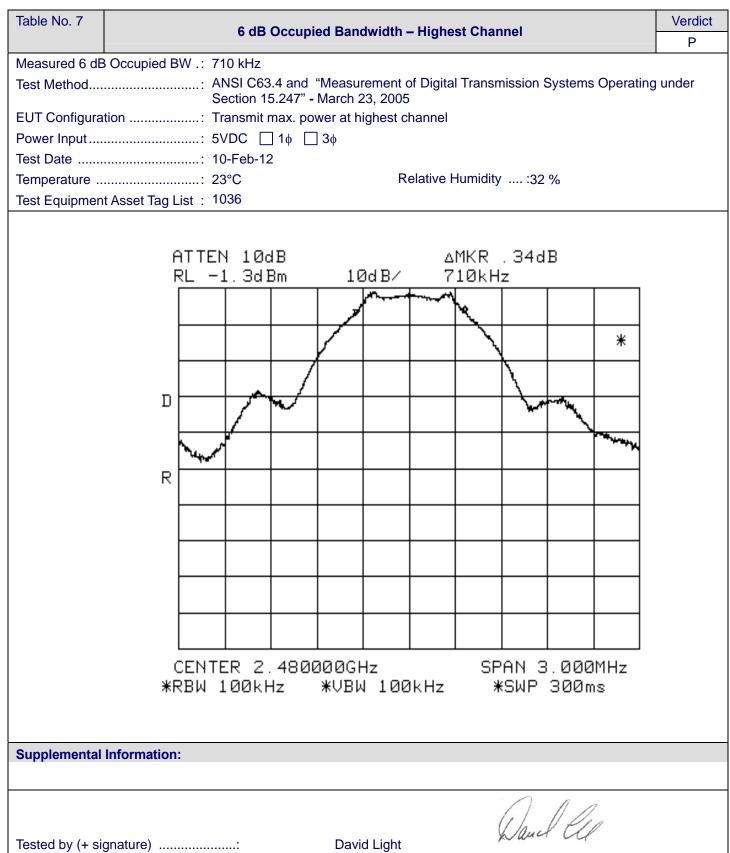
Table No.	. 3	3 Padiated Emissions – Restricted Panda – Herizontal										
		Radiated Emissions – Restricted Bands – Horizontal										
Frequenc	y Range	age: 30 MHz to 1 GHz Test Location: 3m Chamber										
Test Meth	est Method : ANSI C63.4 and "Measurement of Digital Transmission Systems Operating u Section 15.247" - March 23, 2005											
Test Dista	tance: 3m											
EUT Configuration: Transmit channel 2480 MHz at max. power												
Test Date: 14-Dec-11												
Temperature: 21°C Relative Humidity: 28 %												
Test Equipment Asset Tag List : 1767, 1763, 1783, 1025, 1482												
100.0				1								
90.0				 								
Ê 80.0 ₽	1			adiated Em	issions - Ho	rizontal	 					
(E 80.0 ₩70.0 ₩ 60.0		eak emission		 		 						
		ass A EN55022 ass B EN55022		 								
B C C C		ass A FCC		<u> </u>								
MBD 50.0 Pp 40.0 MBD 30.0 V 20.0	ci	ass B FCC		I								
				1								
E 30.0	 			 					الالبللمول المسل			
₹ 20.0				i Valetjaleta sesse	malific at a		-		<u>- 1 1</u>			
10.0		Markel and a second	- hereige withelt				 					
о <u>+</u> Зом			10	OM						 1G		
			10		Frequency	,	Job No.:	195592		10		
(1)							(0)	(-)		(11)		
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(++)		
	(2)	(3)	(4)	(5)		Site		(9)	(10)	(++)		
Antenna Bolarity	(2)		(4)	(5)	Receiver	Site Correction	Emission					
Polarity	(2) Detector	Frequency	(4)	(5)	Receiver Reading	Site	Emission Level	Limit	Margin	Pass/ Fail		
Polarity (H/V)	Detector QPk	Frequency (MHz) 96.0	(4)	(5)	Receiver Reading (dBµV/m) 31.7	Site Correction Factor (dB/m) -16.8	Emission Level (dBµV/m) 14.9	Limit (dBµV/m) 43.5	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V)	Detector	Frequency (MHz)	(4)	(5)	Receiver Reading (dBµV/m)	Site Correction Factor (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pass/ Fail		
Polarity (H/V)	Detector QPk	Frequency (MHz) 96.0	(4)		Receiver Reading (dBµV/m) 31.7 18.2	Site Correction Factor (dB/m) -16.8 0.4	Emission Level (dBµV/m) 14.9	Limit (dBµV/m) 43.5	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H	Detector QPk QPk	Frequency (MHz) 96.0 955.3	(4)	(5)	Receiver Reading (dBµV/m) 31.7 18.2	Site Correction Factor (dB/m) -16.8 0.4	Emission Level (dBµV/m) 14.9	Limit (dBµV/m) 43.5	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H Supplem	Detector QPk QPk ental Info	Frequency (MHz) 96.0 955.3 rmation:		(8) = (6) +	Receiver Reading (dBµV/m) 31.7 18.2 (7) (10) = (9)	Site Correction Factor (dB/m) -16.8 0.4	Emission Level (dBµV/m) 14.9 18.7	Limit (dBµV/m) 43.5 46.0	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H Supplem	Detector QPk QPk ental Info	Frequency (MHz) 96.0 955.3 rmation: earched from	30 MHz up t	(8) = (6) + o 10 x the	Receiver Reading (dBµV/m) 31.7 18.2 (7) (10) = (9) highest fund	Site Correction Factor (dB/m) -16.8 0.4) - (8) damental tran	Emission Level (dBµV/m) 14.9 18.7	Limit (dBµV/m) 43.5 46.0	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H Supplem The spectr The above	Detector QPk QPk ental Info rum was s	Frequency (MHz) 96.0 955.3 rmation: earched from the emission r	30 MHz up t neasuremen	(8) = (6) + 0 10 x the t with peal	Receiver Reading (dB μ V/m) 31.7 18.2 (7) (10) = (9) highest function	Site Correction Factor (dB/m) -16.8 0.4) - (8) damental transing 120 kHz	Emission Level (dBµV/m) 14.9 18.7	Limit (dBµV/m) 43.5 46.0	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H Supplem The spectr The above Testing wa	Detector QPk QPk ental Info rum was s graph is t s perform	Frequency (MHz) 96.0 955.3 rmation: earched from	30 MHz up t neasuremen d, and high c	(8) = (6) + o 10 x the it with peal channels.	Receiver Reading (dB μ V/m) 31.7 18.2 (7) (10) = (9) highest function detector us Norst-case	Site Correction Factor (dB/m) -16.8 0.4) - (8) damental transing 120 kHz is reported.	Emission Level (dBµV/m) 14.9 18.7 nsmit frequer RBW/300 kl	Limit (dBµV/m) 43.5 46.0	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H Supplem The spectr The above Testing wa	Detector QPk QPk ental Info rum was s graph is t s perform	Frequency (MHz) 96.0 955.3 rmation: earched from the emission r ed on low, mice	30 MHz up t neasuremen d, and high c	(8) = (6) + o 10 x the it with peal channels.	Receiver Reading (dB μ V/m) 31.7 18.2 (7) (10) = (9) highest function detector us Norst-case	Site Correction Factor (dB/m) -16.8 0.4) - (8) damental transing 120 kHz is reported.	Emission Level (dBµV/m) 14.9 18.7	Limit (dBµV/m) 43.5 46.0	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H Supplem The spectr The above Testing wa	Detector QPk QPk ental Info rum was s graph is t s perform	Frequency (MHz) 96.0 955.3 rmation: earched from the emission r ed on low, mice	30 MHz up t neasuremen d, and high c	(8) = (6) + o 10 x the it with peal channels.	Receiver Reading (dB μ V/m) 31.7 18.2 (7) (10) = (9) highest function detector us Norst-case	Site Correction Factor (dB/m) -16.8 0.4) - (8) damental transing 120 kHz is reported.	Emission Level (dBµV/m) 14.9 18.7	Limit (dBµV/m) 43.5 46.0	Margin (dB) 28.6	Pass/ Fail Pass		
Polarity (H/V) H H Supplem The spectr The above Testing wa The EUT w	Detector QPk QPk ental Info rum was s graph is t is perform vas rotate	Frequency (MHz) 96.0 955.3 rmation: earched from the emission r ed on low, mice	30 MHz up t neasuremen d, and high c ogonal axis t	(8) = (6) + o 10 x the it with peal hannels. N to determin	Receiver Reading (dB μ V/m) 31.7 18.2 (7) (10) = (9) highest function detector us Norst-case	Site Correction Factor (dB/m) -16.8 0.4) - (8) damental transing 120 kHz is reported.	Emission Level (dBµV/m) 14.9 18.7 nsmit frequer RBW/300 kl	Limit (dBµV/m) 43.5 46.0	Margin (dB) 28.6	Pass/ Fail Pass		

Revision: 0 Issue Date: 6-Jun-12

Test Results - 6 dB Occupied Bandwidth

Revision: 0 Issue Date: 6-Jun-12

Table No. 5			6 dB	Occupie	d Bandw	idth – I c	west Ch	annel			Verdict
	6 dB Occupied Bandwidth – Lowest Channel										
Measured 6 dB Occupied BW: 715 kHz											
Test Method: ANSI C63.4 and "Measurement of Digital Transmission Systems Operating under Section 15.247" - March 23, 2005											
EUT Configura	EUT Configuration: Transmit maximum power at lowest channel										
-	Power Input 5VDC 1 4 3 4										
Test Date				2							
Temperature						Relati	ve Humic	dity :3	2 %		
Test Equipmen	t Asset Tag	g List : 1	036								
	13TTA			4.6	T		MKR		dB		
	RL -	1.3ai T	3M 		3dB∕ I as —	۲ هم مع	<u>15kH</u>	Z		1 1	
				حر ا			Ne.				
				/				h			
			/					1			
Г)		m.t					$ \rightarrow $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		J.							<u>`</u>		
	A. S.	ľ							1		
_											
⊼											
	CENT	ER 2.	4020	300GH	Ηz		SF	AN S	. 00e	MHz	
*	RBW :	100kH	łz	¥∩Bh	100	≬kHz	*	€SWP	300m	າຣ	
Supplemental	Informatio	on:									
								0	11	7	
								(1/2	I U	1	
Tested by (+ si	anature).		:		David L	iaht		Nuu	- cq	57 2	



Revision: 0 Issue Date: 6-Jun-12

Table No. 6	6 dP Occupied Pendwidth Mid Channel									Verdict		
		6 dB Occupied Bandwidth – Mid Channel										Р
Measured 6 dE												
Test Method		Sec	tion 15	5.247" -	March	23, 2009	5	al Trans	mission	Systen	ns Operatin	g under
EUT Configura				-		nid char	nel					
Power Input] 3 ø							
Test Date						_						
Temperature						R	elative	Humidit	iy :3	2%		
Test Equipmen	t Asset Tag Li	st : 103	6									
						י תורב		MKR				
	I	RL -1	. 3a.	BM T	T T	2d B∕ Imaan		95kH	z I			
					هر ا	1		Ser.				
					\checkmark			× 1				
				7	ſ				\land			
	D			$ \downarrow $					\vdash	\sim		
			\swarrow	_						<u>``</u>		
		aler and the second	-									
	R											
				<u> </u>								
				<u> </u>								
		CENTE								.000		
	1*	RBM 1	OOKI	٦Z	₩VΒI	√ 100	IKHZ	7	SWP	300m	IS	
Supplemental	Information:											
									$\cdot \cap$	11	n	
									Van	I la	1	
Tested by (+ si	gnature)		.:		Dav	id Light						

Nemko

Revision: 0 Issue Date: 6-Jun-12

) Nemko

Revision: 0 Issue Date: 6-Jun-12

Table No. 8										Verdict	
	99% Occupied Bandwidth										Р
Measured 6 dE	3 Occup	ied BW .	: 1.085 N	ЛНz							
Test Method: ANSI C63.4 and "Measurement of Digital Transmission Systems Operating under Section 15.247" - March 23, 2005											
EUT Configuration: Transmit max. power at lowest channel											
Power Input	Power Input: 5VDC 1 4 3 4										
Test Date			: 10-Feb	-12							
Temperature			: 23°C			Re	lative Hu	midity	. :32 %		
Test Equipmen	nt Asset	Tag List	1036								
		13TTE 2L -1			10	3d B∕		MKR 8.71			
					1			X	Į		
		locci		₽_₽₩	ŕ –				Λ		
		8000	JPIEI (99.	1007					\		
	Π		85MH2						\		
			<u></u>								
		فمعميهمه									
	_									N	Less.
	R										
	(CENTE	IR 2.	. 4400	300G	Ηz		SF	AN S).000MH	łz
	¥F	RBW 1	.00kH	Ηz	₩VBΝ	V 100	IkHz	×	SWP	300ms	
Supplemental	Inform	ation:									
								1.	7 1	11.	
Tootod by (+ -:	anot	A			Devi	id Linkt		K	and	U	
Tested by (+ si	ynature	·)			Dav	id Light					

Nemko

Test Results - Peak RF Output Power

Revision: 0 Issue Date: 6-Jun-12

Table No. 9	Peak RF Output Power – Lowest Channel	Verdict									
	Peak RF Output Power – Lowest Channel										
Measured Peak Power at Antenna Connector.: -1.3 dBm											
Test Method : ANSI C63.4 and "Measurement of Digital Transmission Systems Operating under Section 15.247" - March 23, 2005											
EUT Configurat	nfiguration : Transmit maximum power at lowest channel										
Power Input	$ \qquad \qquad$										
Test Date	:: 10-Feb-12										
Temperature: 23°C Relative Humidity: 32 %											
Test Equipment	t Asset Tag List: 1036										
Suplemental	ATTEN 10dB RL -1. 3dBm 10dB 2.40233GHz 10dB 2.40233GHz 10dB 10dB 2.40233GHz 10dB 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB 2.40233GHz 10dB										
Supplemental	Information:										
Tested by (+ sid	gnature): David Light										

Table No. 10				Peak	RF Outpu	t Power -	- Channe	el 10			Verdict	
Management Data	. Davi	an at Arata			-						Р	
Measured Peal Test Method						δ4 and "Ν	leasurem	ent of Die	nital Trans	smission Svs	tems	
rest method					Operating	under Se	ection 15.	247" - Ma	rch 23, 20	005		
EUT Configurat						-		channel				
Power Input							3φ					
	Test Date 10-Feb-12 Temperature : 23°C Relative Humidity :::32 %											
Test Equipment Asset Tag List: 1036												
							ħd					
ATTEN 10dB MKR -1.13dBm RL -1.3dBm 10dB/, 2.43973GHz												
					<u> </u>			05				
						<u> </u>	` `	<u> </u>				
					/							
					\square							
	D				<u> </u>			1	\			
					V							
					1				No.			
	R	┯╢┝╄╼╝┝┙	and the selection of	and the second second							*****	
	• •											
		CENTE RBW 2					смгт			20.00M	Hz	
	*1	KBW 2	2.014F	Ξ	#VBM	1 J.E	IIIIZ	挿	SMP	300ms		
Supplemental	Inform	nation:										
								1.	7 1	1.		
Tested by (+ sig	onatu	.e)				David Lig	aht	VI	and t	U		

Table No. 11				Dook		- Dowor	Channa				Verdict
				Реак	RF Outpu	it Power -	- Channe	15			Р
Measured Peak Output at Antenna Connector : -1.8 dBm Test Method ANSI C63.4 and "Measurement of Digital Transmission Systems Operating under Section 15.247" - March 23, 2005 EUT Configuration Transmit maximum power at highest channel Power Input 5VDC □ 1φ □ 3φ Test Date 10-Feb-12 Temperature 23°C Relative Humidity:32 % Test Equipment Asset Tag List 1036											
ATTEN 10dB MKR -1.80dBm RL -1.3dBm 10dB/ 2.47960GHz											
					-/						
	п										
	D			مر مر	/						
	R	₽₩ ₽₽₽ ₩	Property and a second	•* 					<u> </u>		L^
CENTER 2.48000GHz SPAN 20.00MHz *RBW 2.0MHz *VBW 3.0MHz *SWP 300ms											
Supplemental Information:											
Tested by (+ signature): David Light											

Test Results – RF Peak Power Density

Table No. 12		RE Poak	Power Dens	ity – Lowes	t Channel		Verdict						
				nty – Lowes			Р						
		·:											
Test Method		:	ANSI C63.4 a Operating un	and "Measu	rement of Digital Tran 15.247" <mark>-</mark> March 23, 2	smission Syst 005	ems						
EUT Configura	ation	:	Transmit full	power at low	vest channel								
		:		φ 🗌 3φ									
		: 10-Feb-12 : 25°C Relative Humidity: 31 %											
		: 25°C Relative Humidity :31 %											
	Marker 1 [T1] RBW 3 kHz RF Att 40 dB												
•	fLvl -14.64 dBm VBW 3 kHz												
10	10 dBm												
	-D1 8 dBm					14.64 dBm	* <mark>A </mark>						
0					2.402	12124 GHz							
- 10				1									
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
-20	H. Alward	Man Market Ma											
	IMA												
-30	v ·												
-40													
50													
-50—													
-60													
-70-													
-80													
-90													
Center 2.402 GHz 100 kHz/ Span 1 MHz													
Supplemental	Information:												
					Danel t	1.							
Tested by (+ si	gnature)	:	Da	ivid Light	Wand C	U							

Table No. 13		RE Do	ak Power Den	sity – Mic	Idle Channel			Verdict					
				isity – with				Р					
	k Power Density.												
Test Method					asurement of on 15.247" - N			ems					
EUT Configura	tion												
Power Input			.: 5VDC 🗌 1	φ 🗌 3φ									
	Date												
				Relat	ive Humidity	:32 %							
Test Equipmen	t Asset Tag List .												
	ef Lvl	Marker 1 []	1] 15.38 dBm	RBW VBW	3 kHz 3 kHz	RF Att	40 dB						
•	10 dBm												
	Ð1 8 d <mark>Bm</mark>				• 1 • • • • •	1							
					▼1 [[1]	-15 2.44012	.38 dBm 124 GHz	A					
0—													
- 1 0					1								
	nontherent		nonumen	mount	Unimproman .	1							
-20—	1 m Mahanak	phil with the				profesting the	1	MA					
h	Numerola						- manufacture -						
-30													
(5)													
-40—													
-50-													
-30													
-60-													
- 70													
-80-													
-90													
C	enter 2.44 GH	Z	100 H	≺Hz∕		Spa	ın 1 MHz						
Supplemental	Information:												
					,	1	1						
					(Janel Ce	1						
Tested by (+ sig	gnature)	:	D	avid Light	X		1						

Table No. 14	RF Peak Power Density – Highest Channel											
	KF Feak Fower Dens	sity – Highest Channel		Р								
	Measured Peak Power Density15.3 dBm Test Method											
	Operating ur	nder Section 15.247" - Mar	rch 23, 2005	ems								
EUT Configuration			nannel									
Power Input		φ 🗌 3φ										
Test Date												
	:: 23°C Relative Humidity: 32 %											
Test Equipment Asset Tag List: 1036 Marker 1 [T1] RBW 3 kHz RF Att 40 dB												
Ref I vl	Marker 1 [T1] RBW 3 kHz RF Att 40 dB Ref Lvl -15.32 dBm VBW 3 kHz											
10 dBm												
10 		1 [[⊺1]	-15.32 dBm									
		1 []]	2.48012124 GHz	4								
0												
-10		1										
	water and the war have a service of the service of	in more when we have										
-20 . Automation	water the second and the second s		many h	1A								
a manuful and				н								
-30												
-40												
-50												
-60												
- 70												
-80												
-90 Letter 1 Letter 1 Letter 1 Letter 1 Mer Center 2.48 GHz 100 kHz/ Span 1 MHz												
Supplemental Information:												
			0									
		(, ,	mel la									
Tested by (+ signature)	: D	avid Light	uct Ul									

Test Results - Spurious Emissions

Nemko USA, Inc. 802 N. Kealy Ave. Lewisville, TX USA Tel: +1 972-436-9600 Fax: +1 972-436-2667

Table No. 15		Spurious Emissions – Lowest Channel											
EUT Configura Power Input Test Date Temperature	ANSI C63.4 and "Measurement of Digital Transmission Syste Operating under Section 15.247" - March 23, 2005 Transmit maximum power at lowest channel 5VDC □ 1φ □ 3φ 10-Feb-12 23°C Relative Humidity :32 % ent Asset Tag List												
ATTEN 10dB MKR -66.47dBm RL -1.3dBm 10dB/ 25.00GHz													
	_												
	R												
			[∼] ¶₩₩₩₩₽Å			مادروماني	la pine l Andrew	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	⋳ ⋷⋳⋳⋬⋎⋳ <mark>⋕</mark> ⋶⋴⋑	A			
START 30MHz STOP 25.00GHz *RBW 100kHz *VBW 100kHz SWP 6.30sec													
Supplemental Information:													
								1	7 1	Λ			
Tested by (+ sig	Tested by (+ signature): David Light												

Table No. 16		Spurious Emissions – Middle Channel											
				-							P	,	
Test Method					ANSI C63 Operating						Systems		
EUT Configura	tion												
Power Input				:	5VDC]1 🗧 🖂 🕄	Зф						
Test Date	Test Date												
Temperature: 23°C Relative Humidity: 32 %													
Test Equipment Asset Tag List 1036													
ATTEN 10dB MKR −65.80dBm RL −1.3dBm 10dB⁄ 20.30GHz													
	D												
	R												
	IN												
										Ģ			
		*********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Anna Part	***********	ang	_{↓₩} ₩₩	∊ _⋪ ⋽⋳⋍∊ <mark>⋏</mark> ⋖⋑∊⋳⋹⋽	^{يو} يد ۽ آمريد اسول	0 			
	ç	STAR'	r 301	1H7			ST	0P 2!	5 AA	GHz			
		2111(280 1			жUBЫ	1 100				6.30	sec		
Supplemental Information:													
								6	1 1	1.			
Tootod by (1. a)	Tastad by (Laispature)												
Tested by (+ signature): David Light													

Table No. 17		Spurious Emissions – Highest Channel											
											Р		
EUT Configura Power Input Test Date Temperature	od												
ATTEN 10dB MKR −65.80dBm RL −1.3dBm 10dB⁄ 20.30GHz													
	Į												
	_												
	R												
			Л		 		المدريل مير .	مار مار مار مار مار مار مار مار مار مار مار مار	hele all and	0 	appende		
		Partie	. Magazalawa	ala din karar			Anter e.						
	ſ	START		/⊔→			ст	0P 2		сц <u>–</u>			
		RBW 1			*UBL	1100				опи 6.30	sor		
		(DM I		16	AVDR	. 100	· · · · · · · · · · · · · · · · · · ·		UMI	0.00	360		
Supplemental Information:													
								61	1/2	1,0			
Tested by (+ si	Tested by (+ signature): David Light												

Table No. 18		Spu	rious E	mission		er band e	odao			Verdict		
		Shr	nous e		15 – LOW		euge			Р		
Test Method								ital Transr ch 23, 200		tems		
EUT Configurat	tion			-								
-												
Test Date			: 10-	-Feb-12								
Temperature: 23°CRelative Humidity:: 32 %Test Equipment Asset Tag List: 1036												
Test Equipment	t Asset Tag List .		: 10	36								
		Marker 1	[T1]		RBW	100 k	Hz RI	- Att	30 dB			
Re	f Lvl -50.47 dBm VBW 100 kHz											
	10 dBm											
	Ð1 8 d <mark>Bm</mark>					• 1	[[]]	-50	.47 dBm	A		
								2.40042				
0—												
10									num			
- 10								/	/			
-20								~				
	IVIEW								1	MA		
-30							d.M.I	/				
40							Jon of	W I				
-40							Ń					
50						1 mlml Mar						
-00		An	Ar.	LIN	A.M. L. M	Pap.						
En M	Karan Jangan	adden were	1 Mar	4 Allan								
	and the second s	0										
- 70												
- 10												
-80												
-00												
-90												
	enter 2.4 GHz			400 H	≺Hz∕			Spa	n 4 MHz			
Supplemental	Information:											
							1	1	7			
							(1/2	All	1			
Tested by (+ sig	gnature)	:		David	Light		× w	4 44				

Table No. 19	Spurious Emissions – Upper band edge										Verdict
			Ì	Spurious	Emissio	is – opp	er band e	eage			Р
Test Method				C	Operating	under Se	ction 15.2	47" - Ma	rch 23, 20		tems
Power Input								ingricot c			
Test Date						· · · · ·	т				
Temperature				: 2	23°C	Rela	ative Hum	idity	32 %		
Test Equipment	t Asset Ta	g List		: 1	036						
•	Marker 1 [T1] RBW 100 kHz RF Att 30 dB Ref Lvl -50.61 dBm VBW 100 kHz 10 dBm 2.48279158 GHz SWT 5 ms Unit dBm										
	D1 8 d <mark>B</mark> r	n			ļ		 _				
							▼1	[[]]	-51	9158 GHz	A
0—											
	mont										
- 10											
-20											
	VIEW	Ţ								1	MA
-30		\rightarrow									
		M									
-40			h								
-50			my		1						
			L N		r v						
-60				۳.	- Mant	MANA	A thank	MAUN	Minato		
							0 100			And the Maria A	
- 70											
-80											
-90											
Ce	enter 2.	.4835	GHz		800	kHz∕			Spi	an 8 MHz	
Supplemental	Informati	on:									
								1	1 1	1	
								(1)	ul C	1	
Tested by (+ sig	gnature)		:		David	Light		KV W		1	

Test Results - RF Exposure

FCC Part 15, Subpart C & RSS 210, Issue 8 Report Number: trf_195592_FCC_IC Revision: 0 Issue Date: 6-Jun-12

Table No. 20	Maximum Pormissible Exposure	Verdict
	Maximum Permissible Exposure	Р
Test Method	: ANSI C.95 and Safety Code 6	
EUT Exposure	Category Portable – Extremities	
Maximum rf out	put power(conducted): -1.1 dBm (0.776 mW)	
Evaluation Date	:: 10-Feb-12	
Antenna peak g	ain: 1.54 dBi	
Supplemental I	nformation:	
	SAR requirement is 60/f _{GHz} mW	
60/2.48 GHz = 24		
	output power is less than 24.2 mW. Therefore the transmitter does not require SAR evaluation	1.
EIRP = -1.1 dBm	+ 1.54 dBi = 0.44 dBm (1.1 mW)	
	rn in a sports shoe and therefore is operated at a distance closer than 5 cm from the body. Ac Mobile Portable RF Exposure v03r03:	cording to
Body SAR is req to the body and t	uired for hand-held and hand-operated or wrist, feet and ankle worn devices that operate close he output power is > $300 \cdot [f(GHz)]^{-0.5}$ mW. At 2.480 GHz this threshold value would be 190.5 mV	r than 5 cm N.
Conclusion: Har Exposure v03r03	d and Body SAR are not required for this device according to FCC Bulletin D01 Mobile Portabl .	e RF
Tested by (+ sic	nature): David Light	