Exhibit M: Technical Report

FCC ID: QYUELITEHRM

Nike

Triax Elite - Heart Rate Monitor

March 11, 2003

Report No. NIKE004

Report Prepared By:

1-888-EMI-CERT

Certificate of Test

Issue Date: March 11, 2003

Nike Model : Triax Elite - Heart Rate Monitor Report No: NIKE0004

Emissions		
Description	Pass	Fail
FCC 15.249, Field Strength of Fundamental	\square	
FCC 15.249, Field Strength of Spurious Emissions	\square	

The equipment was tested in the configuration and mode(s) of operation provided by the client. The specific tests and test levels were specified by the client. Any additional tests, or product configurations that should be tested are the responsibility of the client. Product compliance is the responsibility of the client.

List of Modifications to equipment under test required to meet the requirements:

• No EMI suppression devices were added or modified. The EUT was tested as delivered.

Deviations to the test standard

• No deviations were made to the test standard

Test Facility

 The measurement facility used to collect the data is located at: Northwest EMC, Inc.; 22975 NW Evergreen Parkway, Suite 400; Hillsboro, OR 97124 Phone: (503) 844-4066 Fax: 844-3826 This site has been fully described in a report filed with the FCC (Federal Communications Commission), and accepted by the FCC in a letter maintained in our files.

Approved By:

Don Facteau, IS Manager

This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested, the specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Nike Triax Elite - Heart Rate Monitor Report No: NIKE0004

Revision Number	Description	Date	Page Number
00	None		

FCC: The Open Area Test Sites, and conducted measurement facilities, have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files.

TCB: Northwest EMC has been accredited by ANSI to ISO/IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

A2LA: Accreditation has been granted to Northwest EMC, Inc. to perform the Electromagnetic Compatibility (EMC) tests described in the Scope of Accreditation. Assessment performed to ISO/IEC 17025. Certificate Number: 1936-01, Certificate Number: 1936-02, Certificate Number 1936-03

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body. (A2LA)

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product catergories and/or standards shown in TUV's current Listing of CARAT Laboratories available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA070102

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Technology International: Assessed in accordance with ISO Guide 25 defining the general international requirements for the competence of calibration and testing laboratories and with ITI assessment criteria LACO196. Based upon that assessment Interference Technology International, Ltd., has granted approval for specifications implementing the EU Directive on EMC (89/336/EEC and amendments). The scope of the approval was provided on a Schedule of Assessment supplied with the certificate and is available upon request.

Industry Canada: Accredited by Industry Canada for performance of radiated measurements. Our open area test sites comply with RSP 100, Issue 7, section 3.3.

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. *(Registration Nos. - Evergreen: C-1071 and R-1025, Trails End: C-694 and R-677, Sultan: C-905, R-871 and R-1172, North Sioux City C-1246, R-1185 and R-1217)*

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

CE

Scope of Accreditations

	FCC	NIST	TUV PS	TUV Rheinland	Nemko	Technology International	Industry Canada	BSMI	VCCI	GOST
EN61000-4-2 & IEC 1000-4-2			\checkmark	~	\checkmark	\checkmark				
EN61000-4-3 & IEC 1000-4-3			\checkmark	 	\checkmark	\checkmark				
EN61000-4-4 & IEC 1000-4-4			\checkmark	\checkmark	\checkmark	\checkmark				
EN61000-4-5 & IEC 1000-4-5			\checkmark	~	\checkmark	\checkmark				
EN61000-4-6 & IEC 1000-4-6			\checkmark	\checkmark	\checkmark	\checkmark				
EN61000-4-8 & IEC 1000-4-8			\checkmark	\checkmark	\checkmark	\checkmark				
EN61000-4-11 & IEC 1000-4-11			\checkmark	\checkmark	\checkmark	\checkmark				
EN61000-3-2 & IEC 1000-3-2			\checkmark	\checkmark	\checkmark	\checkmark				
EN61000-3-3 & IEC 1000-3-3			\checkmark	\checkmark	\checkmark	\checkmark				
AS/NZS 3548										
CNS 13438										
ISO/IEC Guide 25			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		
ISO/IEC17025			\sim	\checkmark	\checkmark	\checkmark				
Radiated Emissions			\sim	\checkmark	\sim	\checkmark	\checkmark	\sim	\checkmark	\checkmark
Conducted Emissions			\sim	\checkmark	~	\sim	~	\checkmark	\checkmark	\checkmark
OATS Sites	\checkmark		\sim	~	~	\checkmark	\checkmark	\sim	\checkmark	\checkmark
TCB for Licensed Transmitters	\checkmark									
TCB for un-Licensed Transmitters	~									
Cab for R&TTE		~								
CAB for EMC		~								

When a measurement is made the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. The following statement of measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" value. In the case of transient tests (ESD, EFT, Surge, Voltage Dips and Interruptions), the test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements.

Radiated Emissions ≤ 1 GHz

	Probability Distribution		nical enna	Log Pe Ante			oole enna
Test Distance		3m	10m	3m	10m	3m	10m
Combined standard	normal	+ 1.86	+ 1.82	+ 2.23	+ 1.29	+ 1.31	+ 1.25
uncertainty <i>u_c(y)</i>		- 1.88	- 1.87	- 1.41	- 1.26	- 1.27	- 1.25
Expanded uncertainty U	normal (k=2)	+ 3.72	+ 3.64	+ 4.46	+ 2.59	+ 2.61	+ 2.49
(level of confidence \approx 95%)		- 3.77	- 3.73	-2.81	- 2.52	- 2.55	- 2.49

Radiated Emissions > 1 GHz

Value (dB)

Value (dB)

	Probability	Without High	With High
	Distribution	Pass Filter	Pass Filter
Combined standard uncertainty <i>u_c(y)</i>	normal	+ 1.29 - 1.25	+ 1.38 - 1.35
Expanded uncertainty U	normal (k=2)	+ 2.57	+ 2.76
(level of confidence ≈ 95%)		- 2.51	2.70

Conducted Emissions

	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.48
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.97

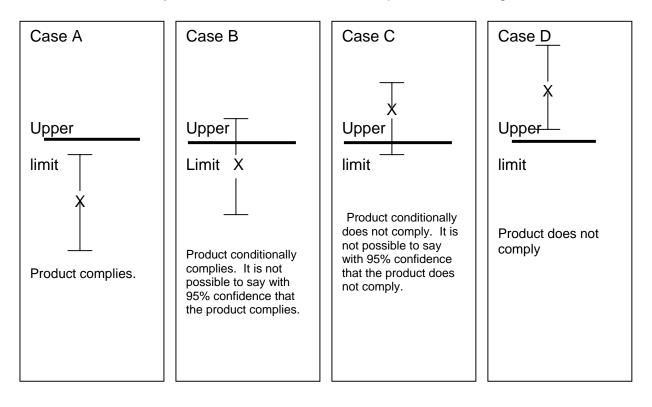
Radiated Immunity

	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y)</i>	normal	1.05
Expanded uncertainty U (level of confidence ≈ 95 %)	normal (k = 2)	2.11

Conducted Immunity

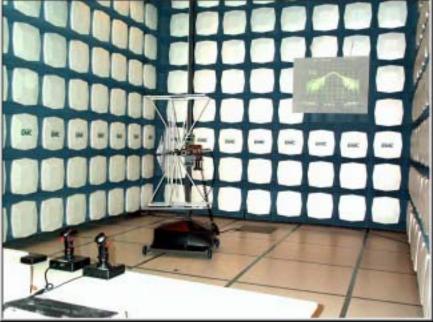
	Probability	Value
	Distribution	(+/- dB)
Combined standard uncertainty <i>uc(y</i>)	normal	1.05
Expanded uncertainty U	normal (k = 2)	2.10
(level of confidence \approx 95 %)	mormar(k = 2)	2.10

 $u_c(y)$ = square root of the sum of squares of the individual standard uncertainties


U = combined standard uncertainty multiplied by the coverage factor: **k**. This defines an interval about the measured result that will encompass the true value with a confidence level of approximately 95%. If a higher level of confidence is required, then k=3 (CL of 99.7%) can be used. Please note that with a coverage factor of one, uc(y) yields a confidence level of only 68%.

The following documents were the basis for determining the uncertainty levels of our measurements:

- □ "ISO Guide to the Expression of Uncertainty in Measurements", October 1993
- "NIS81: The Treatment of Uncertainty in EMC Measurements", May 1994
- "IEC CISPR 16-3 A1 f1 Ed.1: Radio-interference measurements and statistical techniques", December 2000


How do I apply measurement uncertainty to test results?

If 'X' marks the measured value for the test and the vertical bars bracket the range of + and – measurement uncertainty values, then test results can be interpreted from the diagram below.

Hillsboro - Evergreen Facility 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

(503) 844-4066 FAX (503) 844-3826

5 Meter Chamber

Trails End - Facility

30475 NE Trails End Lane Newberg, OR 97132 (503) 844-4066 FAX (503) 537-0735

Sultan - Facility

14128 339th Avenue SE Sultan, WA 98294 (360) 793-8675 FAX (360) 793-2536

North Sioux City - Facility 745 N. Derby Lane / P.O. Box 217 N. Sioux City, SD 57079

(605) 232-5267 FAX (605) 232-3873

Party Requesting the Test

Company Name:	Nike	
Address:	1 Bowerman Drive, Miam Hamm Building, Floor 2	
City, State, Zip:	Beaverton, OR, 97005	
Test Requested By:	Charlie Case	
Model:	Triax Elite - Heart Rate Monitor	
First Date of Test:	e of Test: 03-11-2003	
Last Date of Test: 03-11-03		
Receipt Date of Samples: 03-11-2003		
Equipment Design Stage: Production		
Equipment Condition:	No visual damage.	

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Heart rate monitor.

Client Justification for EUT Selection:

Typical production sample.

Client Justification for Test Selection

These tests satisfy the requirements for FCC CFR 47 Part 15.249. Battery operated unit, no provisions for connection to the AC mains; therefore, conducted emissions testing to 15.207 is not required.

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Single channel operation
Operating Modes Investigated:
Typical
Antennas Investigated:
Integral
Data Rates Investigated:
Typical
Power Input Settings Investigated:

Battery

Software\Firmware Applied During Test							
Exercise software	Triax Elite Firmware	Version	Elite_220.a43				
Description							
The system was tested using standard operating production firmware to exercise the functions of the device during the testing.							

Equipment Modifications

No EMI suppression devices were added or modified. The EUT was tested as delivered.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Nike	Triax Elite - Heart Rate Monitor	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Control Leads	No	0.5	No	BNC	EUT
Control Leads	No	0.5	No	BNC	EUT
BNC	No	1.0	No	Control leads	Function Generator

Remote Equipment

Description	Manufacturer	Model/Part Number	Serial Number
Function	Hewlett-Packard	33120A	TEA
Generator	Hewlett-Packard	33120A	IEA

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	01/07/2003	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo

Test Description

Requirement: The field strength of the fundamental emission shall comply with the limits, as defined in 47 CFR 15.249. Field strength limits are specified at a distance of 3 meters.

Configuration: The antenna to be used with the EUT was tested. The EUT was transmitting while set at the single channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.4:1992).

The square wave output of a function generator was used to simulate a 2 Hz heart beat.

Completed by: Rocky te Relays

				OA	TS C	ΟΑΤΑ	SHE	FT				REV df3.10
EMC												03/10/2003
		e - Heart Ra	e Monitor						· · · · ·	Work Order:		
Serial Number Customer									т	Date: emperature:	03/11/03	
	Charlie C	ase							10	emperature: Humidity:		
Cust. Ref. No.		u30							Baromet	ric Pressure		
	Rod Pelo	auin				Power	Battery		Daromet	Job Site:		
ST SPECIFICAT		·1····					y			00.0 01.0.		
Specification		15.249								Year:	2001	
Method	ANSI C63	.4								Year:	1992	
MPLE CALCUL	ATIONS											
Radiated Emissions									External Attenu	ation		
Conducted Emissions	: Adjusted Lev	el = Measured	Level + Transd	ucer Factor + 0	Cable Attenuat	tion Factor + Ex	ternal Attenua	tor				
DMMENTS nction generator use	d at 2Hz to si	mulato boart b	oat									
iction generator use	u al 202 lu 51	inulate neart b	eal.									
T OPERATING	MODES											
nsmitting with mod	ulation at 916.	5MHz.										
VIATIONS FRO	M TEST ST	ANDARD										
deviations.												
SULTS											Run #	
ss											L	2
her								10	10	0		
								Hortin	le Re	ling		
								0	1	0		
										ed By:		-
							8		10310	Dj.		
100.0												
											+	
90.0												
						•						
80.0												
70.0												
60.0												
50.0												
40.0												
20.0												
30.0												
20.0												
10.0												
10.0												
0.0												
900.000	ç	905.000	9	10.000	ç	915.000	9	920.000	ç	925.000	ę	930.000
			0				·				·	
	1	1	r	r	r	Extornal	r	1	Distance			Compared to
	Amplitude	Factor	Azimuth	Height	Distance	External Attenuation	Polarity	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.
Freq												0000.
Freq (MHz)												
Freq (MHz) 916.500	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)		PK	(dB) 0.0	dBuV/m	dBuV/m 94.0	(dB)

Harmonics and Spurious Radiated Emissions

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:
Single channel
Operating Modes Investigated:
Typical
Antennas Investigated:
Integral
Data Rates Investigated:
Typical
Output Power Setting(s) Investigated:
Maximum
Power Input Settings Investigated:
Battery

Software\Firmware Applied During Test						
Exercise software	Triax Elite Firmware	Version	Elite_220.a43			
Description						
The system was tested usi	ing standard operating proc	duction firmware to exercise	e the functions of the			
device during the testing.						

Equipment Modifications

No EMI suppression devices were added or modified. The EUT was tested as delivered.

Harmonics and Spurious Radiated Emissions

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT	Nike	Triax Elite - Heart Rate Monitor	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Control Leads	No	0.5	No	BNC	EUT
Control Leads	No	0.5	No	BNC	EUT
BNC	No	1.0	No	Control leads	Function Generator

Remote Equipment

Description	Manufacturer	Model/Part Number	Serial Number
Function Generator	Hewlett-Packard	33120A	TEA

Measurement Equipment

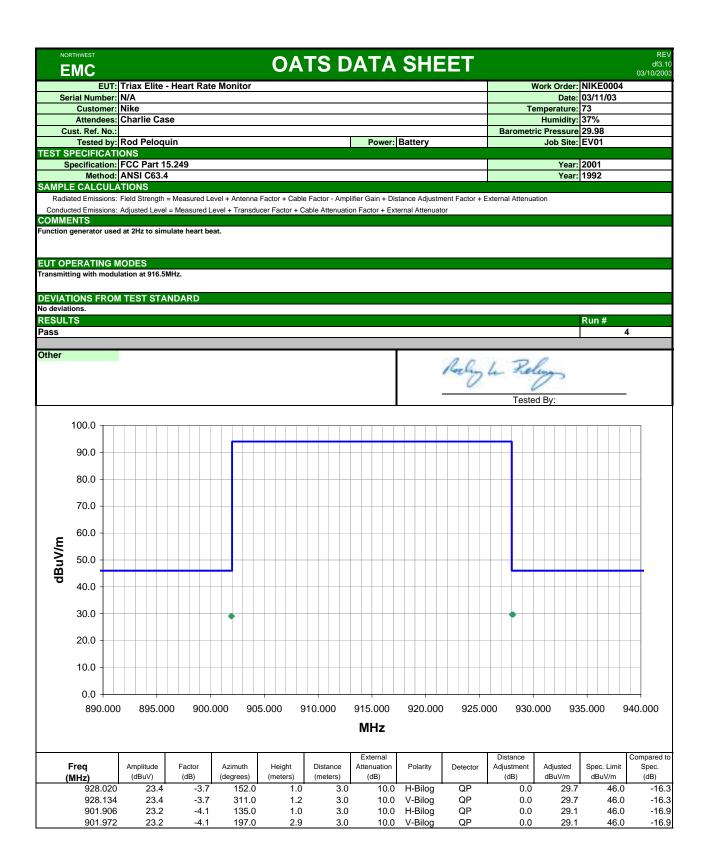
Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	01/07/2003	12 mo
Spectrum Analyzer Display	Hewlett Packard	85662A	AALD	01/07/2003	12 mo
Quasi-Peak Adapter	Hewlett-Packard	85650A	AQF	01/07/2003	12 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	01/06/2003	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo
Pre-Amplifier	Miteq	AMF-4D-005180-24- 10P	APJ	01/06/2003	12 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo
High Pass Filter	Hewlett-Packard	84300-80037	HFE	02/04/2002	12 mo

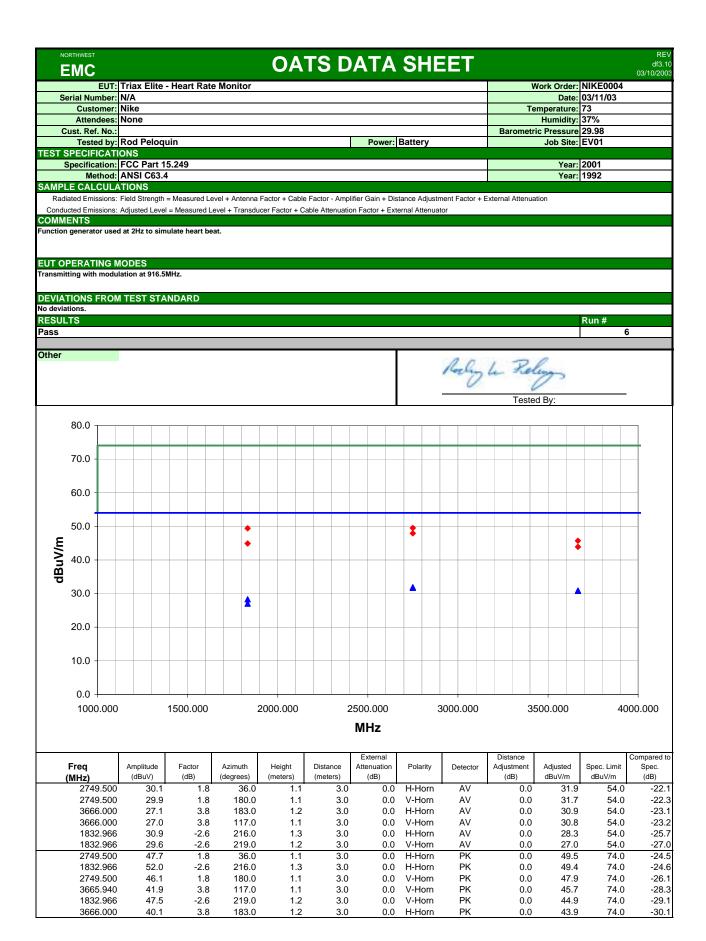
Test Description

Requirement: The field strength of harmonics and spurious radiated emissions shall comply with the limits as defined in 47 CFR 15.249. Field strength limits are specified at a distance of 3 meters. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Sec. 15.209, whichever is the lesser attenuation. As shown in Sec. 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified in Sec. 15.249 by more than 20 dB under any condition of modulation.

Configuration: The antenna to be used with the EUT was tested. The EUT was transmitting and receiving while set at it single channel. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.4:1992). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

The square wave output of a function generator was used to simulate a 2 Hz heart beat.


Bandwidths Used for Measurements


Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0
		and detectors specified. No v	

Measurements were made using the bandwidths and detectors specified. No video filter was used.

Completed by:

Completed by: Rocky to Relenge

