FCC RADIO TEST REPORT

According to

47 CFR FCC Part 15 Subpart C § 15.225

Equipment	: Tablet
Brand Name	: Getac
Model No.	: Z710
Marketing Name	: Z710
Filing Type	: New Application
Applicant	: Getac Technology Corporation. 5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang Dist., Taipei City 11568, Taiwan, R.O.C.
FCC ID	: QYLZ710R
Manufacturer	Getac Technology(Kunshan)Co., LTD. No. 269, No. 2 Avenue, Kunshan Comprehensive Free Trade Zone, Jiangsu Province, P.R.C
Received Date Final Test Date	: Aug. 13, 2012 : Aug. 18, 2012

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.4-2003** and **47 CFR FCC Part 15 Subpart C**. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1.	SUM	IMARY OF THE TEST RESULT	2
2.	GEN	IERAL INFORMATION	
	2.1	Product Details	
	2.2	Accessories	
	2.3	Table for Test Modes	
	2.4	Table for Testing Locations	
	2.5	Table for Supporting Units	
	2.6	Test Configurations	
3.	TES	T RESULT	6
	3.1	AC Power Line Conducted Emissions Measurement	6
	3.2	Field Strength of Fundamental Emissions and Mask Measurement	
	3.3	20dB Spectrum Bandwidth Measurement	
	3.4	Radiated Emissions Measurement	
	3.5	Frequency Stability Measurement	
	3.6	Antenna Requirements	
4.	LIST	OF MEASURING EQUIPMENTS	
5.	TES	T LOCATION	24
6.	TAF	CERTIFICATE OF ACCREDITATION	
		NDIX A. TEST PHOTOS	
A	PPEN	NDIX B. PHOTOGRAPHS OF EUT	B20

History of This Test Report

Original Issue Date: Aug. 28, 2012

Report No.: FR262032-02

■ No additional attachment.

Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

CERTIFICATE OF COMPLIANCE

According to

47 CFR FCC Part 15 Subpart C § 15.225

Equipment	: Tablet
Brand Name	: Getac
Model	: Z710
Applicant	: Getac Technology Corporation. 5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang Dist., Taipei City 11568, Taiwan, R.O.C.

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Aug. 13, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Wayne Hsu // Assistant Manager

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

1. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C			
Part	Rule Section	Description of Test	Result	Under Limit
3.1	15.207	AC Power Line Conducted Emissions	Complies	11.17 dB
3.2	15.225(a)	Field Strength of Fundamental Emissions	Complies	61.25 dB
3.3	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.4	15.225(d)	Radiated Emissions	Complies	7.26 dB
3.5	15.225(e)	Frequency Stability	Complies	-
3.6	15.203	Antenna Requirements	Complies	-

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±0.8dB	Confidence levels of 95%
20dB Spectrum Bandwidth / Frequency Stability	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated / Band Edge Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7 ℃	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

2. GENERAL INFORMATION

2.1 Product Details

Items	Description
Power Type	12Vdc from AC Adapter ; 3.7Vdc from LI-Polymer battery
Modulation	ASK
Channel Number	1
Max. Field Strength	41.83 dBuV/m at 10m (QP)
Test Freq. Range	13.553 ~ 13.567MHz
Carrier Frequencies	13.56 MHz (Ch. 1)
Antenna	Integrate Antenna (Without any antenna connector)

2.2 Accessories

Accessories Information				
AC Adapter	Brand Name	APD	Model Name	WA-24I12RU-AEAA
AC Adapter	Power Rating	I/P: 100-240Vac 0.70r	nA ; O/P: 12Vo	lc 2mA
Potton/	Brand Name	Getac	Model Name	BP1S2P3800-Y
Battery	Power Rating	3.7Vdc, 7.6mAh	Туре	LI-Polymer
USB Cable	Brand Name	Foxconn	Model Name	CU04C04U05-K66-EF
LCD Panel	Brand Name	BOE	Model Name	HV070WSA-100
Camera 1	Brand Name	Bison Electronics INC	Model Name	OV9726
Camera 2	Brand Name	Bison Electronics INC	Model Name	OV5640
2G/3G Module	Brand Name	Cinterion	Model Name	PHS8-P
WIFI/BT Module	Brand Name	Jorjin	Model Name	WG7310

2.3 Table for Test Modes

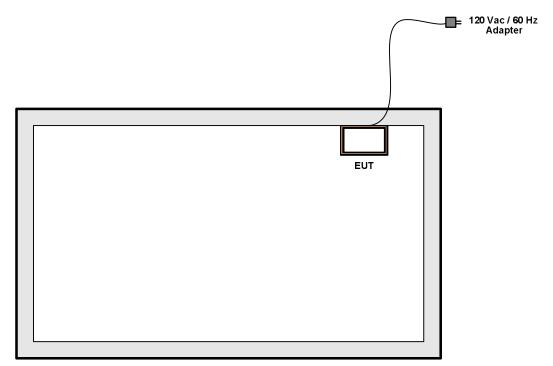
Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

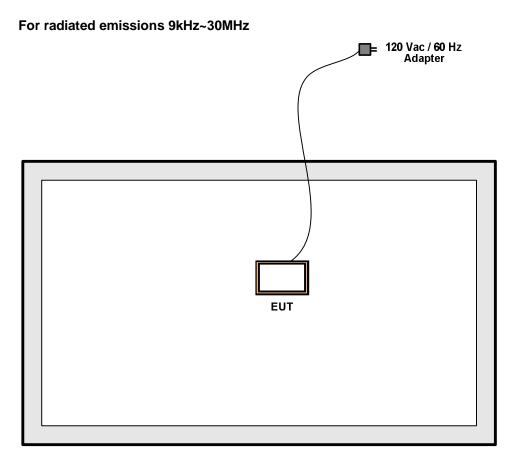
Test Items	Mode	Channel
AC Power Line Conducted Emissions	Transmitting mode	-
Radiated Emissions 30MHz~1GHz		
Field Strength of Fundamental Emissions	СТХ	1
20dB Spectrum Bandwidth	СТХ	1
Radiated Emissions 9kHz~30MHz	СТХ	1
Band Edge Emissions	СТХ	1
Frequency Stability	Un-modulation	1

Note: CTX=continuously transmitting.

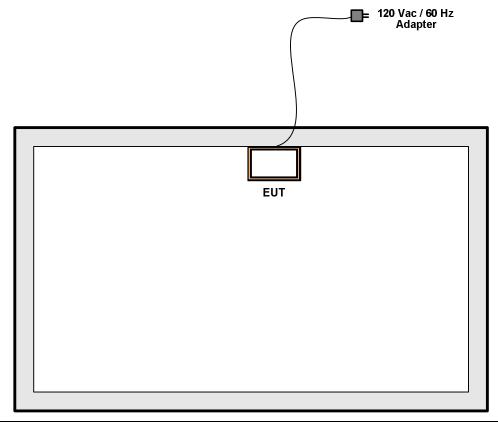
2.4 Table for Testing Locations

Site Category	Location
Conduction	Hwa Ya
OVEN Room	Hwa Ya
SAC	Hwa Ya
SAC	Hwa Ya
	Conduction OVEN Room SAC


Semi Anechoic Chamber (SAC).


2.5 Table for Supporting Units

The EUT was tested alone.


2.6 Test Configurations

For conducted emissions

For radiated emissions 30MHz~1GHz

SPORTON International Inc. TEL : 886-3-327-3456 FAX : 886-3-327-0973
 Page No.
 : 5 of 25

 Issued Date
 : Aug. 28, 2012

 FCC ID
 : QYLZ710R

3. TEST RESULT

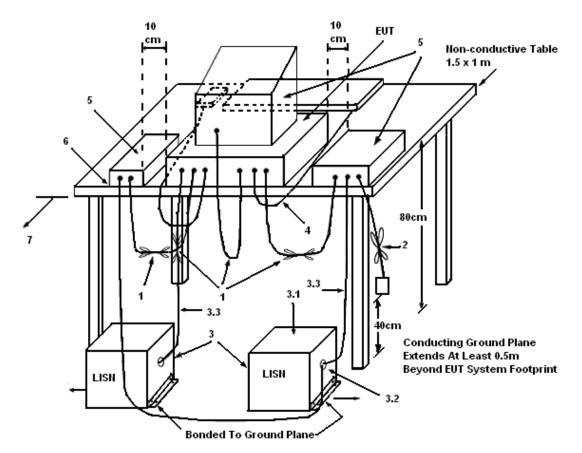
3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit

For a Low-power Radio-frequency device which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

3.1.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.3 Test Procedures

- 1. The EUT was warmed up for 15 minutes before testing started.
- 2. The EUT was placed on a desk 0.8 meters height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connect to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The CISPR states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 kHz to 30 MHz was searched.
- 9. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

3.1.4 Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

(3.1) All other equipment powered from additional LISN(s).

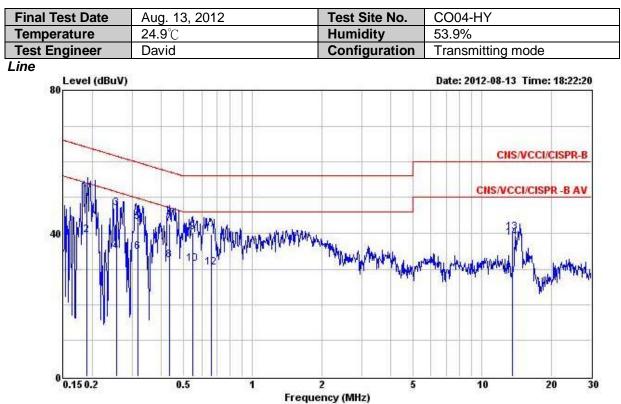
(3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.

(3.3) LISN at least 80 cm from nearest part of EUT chassis.

(4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.

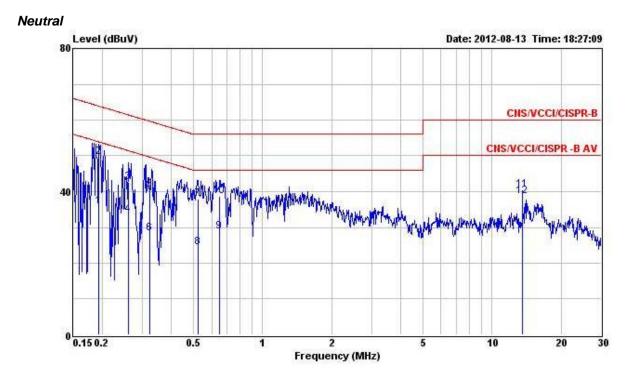
(5) Non-EUT components of EUT system being tested.

(6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.


(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

3.1.5 Test Deviation

There is no deviation with the original standard.


3.1.6 EUT Operation during Test

The EUT was placed on the test table and programmed in transmitting function.

3.1.7 Results of AC Power Line Conducted Emissions Measurement

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Remark
8	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.190	50.72	-13.32	64.04	50.54	0.08	0.10	QP
2	0.190	39.39	-14.65	54.04	39.21	0.08	0.10	Average
3	0.255	47.14	-14.45	61.59	46.96	0.08	0.10	QP
4	0.255	34.92	-16.67	51.59	34.74	0.08	0.10	Average
5	0.317	43.23	-16.56	59.79	43.04	0.09	0.10	QP
6	0.317	34.69	-15.10	49.79	34.50	0.09	0.10	Average
7	0.435	42.49	-14.67	57.16	42.30	0.09	0.10	QP
7 8	0.435	32.55	-14.61	47.16	32.36	0.09	0.10	Average
9	0.546	40.25	-15.75	56.00	40.05	0.10	0.10	QP
10	0.546	31.41	-14.59	46.00	31.21	0.10	0.10	Average
11	0.658	39.72	-16.28	56.00	39.51	0.11	0.10	QP
12	0.658	30.29	-15.71	46.00	30.08	0.11	0.10	Average
13	13.560	40.24	-19.76	60.00	39.79	0.32	0.13	QP
14	13.560	38.83	-11.17	50.00	38.38	0.32	0.13	Average

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Remark
1	MHz	dBuV	dB	dBuV	dBuV	dB	dB	š <u> </u>
1	0.193	35.80	-18.11	53.91	35.58	0.12	0.10	Average
2	0.193	49.72	-14.19	63.91	49.50	0.12	0.10	QP
3	0.260	42.59	-18.84	61.43	42.37	0.12	0.10	QP
4	0.260	33.45	-17.98	51.43	33.23	0.12	0.10	Average
5	0.324	40.39	-19.23	59.62	40.17	0.12	0.10	QP
6	0.324	28.28	-21.34	49.62	28.06	0.12	0.10	Average
7	0.524	37.80	-18.20	56.00	37.57	0.13	0.10	QP
8	0.524	24.37	-21.63	46.00	24.14	0.13	0.10	Average
9	0.651	28.75	-17.25	46.00	28.51	0.14	0.10	Average
10	0.651	38.69	-17.31	56.00	38.45	0.14	0.10	QP
11	13.562	40.41	-19.59	60.00	39.90	0.38	0.13	QP
12	13.562	38.77	-11.23	50.00	38.26	0.38	0.13	Average

Note:

Level = Read Level + LISN Factor + Cable Loss.

3.2 Field Strength of Fundamental Emissions and Mask Measurement

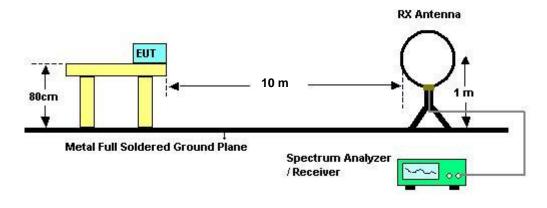
3.2.1 Limit

Field strength of fundamental emissions limit:

The field strength of fundamental emissions shall not exceed 15848 micorvolts/meter at 30 meters. The emissions limit in this paragraph is based on measurement instrumentation employing a QP detector.

Frequencies	Field Strer	ngth	I	Field Strength	Field	Field Strength			
(MHz)	(micorvolts/meter)		(d	BµV/m) at 10m	(dBµV	(dBµV/m) at 3m			
13.553 ~ 13.567MHz	15848 at 3	0m		103.08 (QP)	124	4 (QP)			
Mask limit:									
Rules and specifications	RSS-210 A2.6								
Description				mask is tested u		analyzer with			
Description	RB set to a 1kHz for the band 13.553~13.567MHz								
	Freq. of	Field Stre	nath	Field Strength	Field Strength	Field Strength			
	Emission	(uV/m) at		(dBuV/m) at	(dBuV/m) at	(dBuV/m) at			
	(MHz)	(uv/m) at	3011	30m	10m	3m			
	1.705~13.110	30		29.5	48.58	69.5			
Limit	13.110~13.410	106		40.5	59.58	80.5			
Linin	13.410~13.553	334		50.5	69.58	90.5			
	13.553~13.567	15848	3	84.0	103.08	124.0			
	13.567~13.710	334		50.5	69.58	90.5			
	13.710~14.010	106		40.5	59.58	80.5			
	14.010~30.000	30		29.5	48.58	69.5			

3.2.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting		
Attenuation	Auto		
Center Frequency Fundamental Frequency			
RB	10 kHz		
Detector	QP		

3.2.3 Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested using a spectrum analyzer with RB set to a 10kHz for the band 13.553~13.567MHz.

3.2.4 Test Setup Layout

3.2.5 Test Deviation

There is no deviation with the original standard.

3.2.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Final Test Date

10CH02-HY

Temperature **21**°C Humidity 43% **Test Engineer** Teddy Configurations Ch. 1 **Limit Line** Freq. **Over Limit** Remark Level (dBuV/m) (dBuV/m) at 10m (MHz) (dB) 13.56 MHz 41.83 -61.25 103.08 QP Marker 1 [T1] RBW 10 kHz RF Att 0 dB Ref Lvl 41.83 dB****V/m VBW 10 kHz 107 dB* 13.56320641 MHz SWT 23 ms Unit dB**u**V/m 107 0.9 dB Offset Α 100 90 80 IN1 1VIEW **1MA** 70 60 50 40 smal All manu m. Man M 1~1~1 Ann 30 20 10 Start 13.1 MHz 91 kHz/ Stop 14.01 MHz 13.AUG.2012 17:09:39 Date:

Test Site No.

3.2.7 Test Result of Field Strength of Fundamental Emissions Aug. 13, 2012

Note:

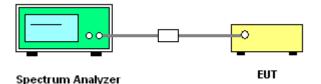
Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

3.3 20dB Spectrum Bandwidth Measurement

3.3.1 Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 ~ 13.567MHz).

3.3.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	1 kHz
VB	1 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

3.3.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. 20dB Bandwidth the resolution bandwidth of 1 kHz and the video bandwidth of 1 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

3.3.4 Test Setup Layout

3.3.5 Test Deviation

There is no deviation with the original standard.

3.3.6 EUT Operation during Test

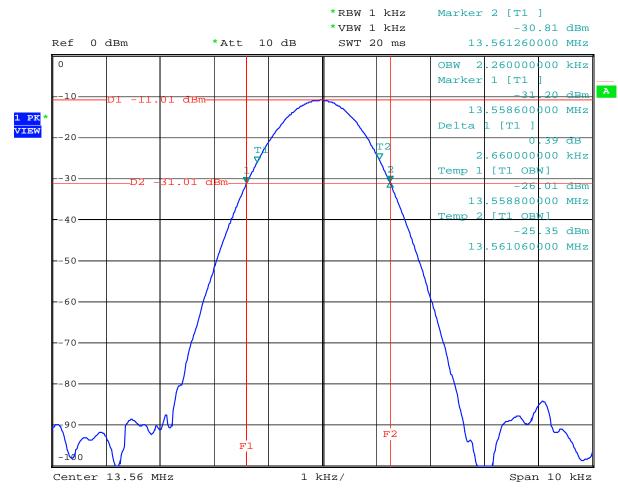
The EUT was programmed to be in continuously transmitting mode.

13.56 MHz

13.5613

Complies

3.3.7 Test Result of 20dB Spectrum Bandwidth


Final Test Date Aug. 18, 2012			est Site No.				
Temperature 23.4°C			Humidity 43%				
Test Engineer Bear			Configurations	Ch. 1	Ch. 1		
Frequency	20dB BW (kHz)	99% OBW (kHz)	Frequency range (MHz) f _L > 13.553MHz	Frequency range (MHz) f _H < 13.567MHz	Test Result		

13.5586

2.26

20 dB Bandwidth Plot on 13.56 MHz

2.66

Date:

18.AUG.2012 14:30:45

3.4 Radiated Emissions Measurement

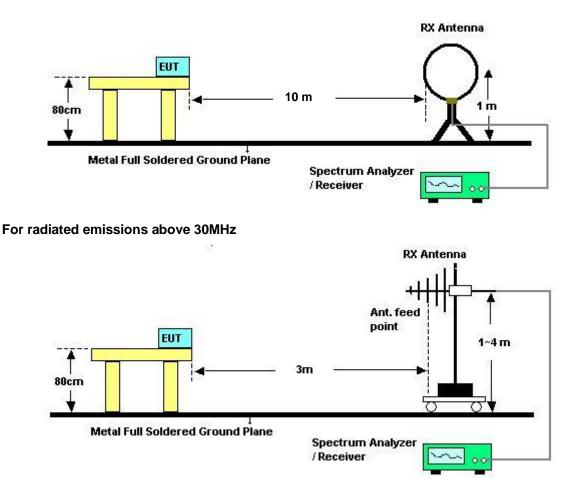
3.4.1 Limit

The field strength of any emissions which appear outside of 13.553 ~ 13.567MHz band shall not exceed the general radiated emissions limits in Section 15.209(a)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.4.2 Measuring Instruments and Setting

Please refer to section 4 of equipments list in this report. The following table is the setting of receiver.


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

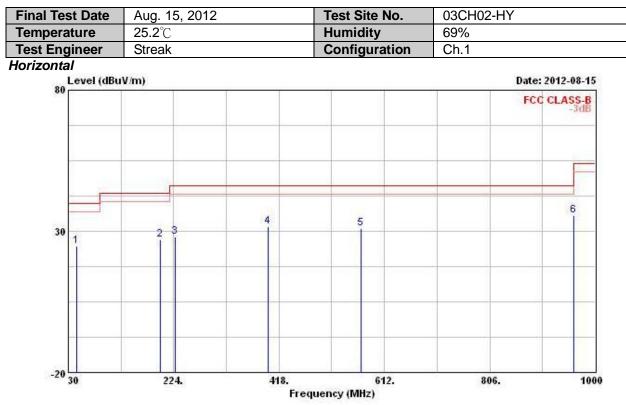
3.4.3 Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

3.4.4 Test Setup Layout

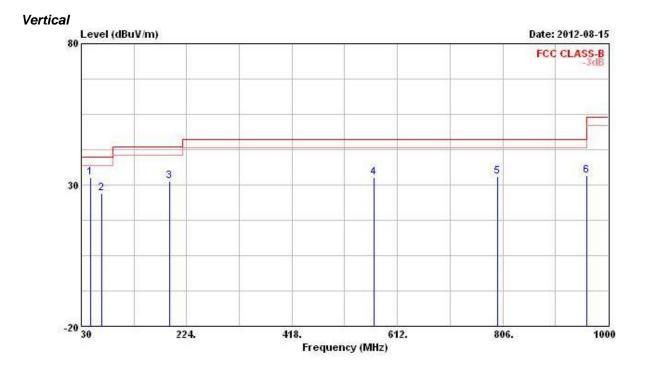
For radiated emissions below 30MHz

3.4.5 Test Deviation


There is no deviation with the original standard.

3.4.6 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


3.4.7 Results of Transmitter Spurious Emissions (9kHz~30MHz)

All spurious emissions (9kHz-30MHz) are below fundamental emissions field strength and the levels exceed the level of 20 dB below the applicable limit.

3.4.8 Results for Radiated Emissions (30MHz~1GHz)

			Over	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg
1	44.550	24.60	-15.40	40.00	39.36	12.02	1.10	27.88	Peak		
2	198.780	27.17	-16.33	43.50	40.89	11.28	2.42	27.42	Peak		
3	226.910	28.19	-17.81	46.00	40.67	12.24	2.62	27.34	Peak		
4	397.630	31.72	-14.28	46.00	40.96	15.22	3.39	27.85	Peak		
5	568.350	30.91	-15.09	46.00	35.98	19.25	4.11	28.43	Peak		
6	960.230	35.63	-18.37	54.00	35.92	21.52	5.56	27.37	Peak		

			Over	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB			deg
10	47.460	32.74	-7.26	40.00	48.63	10.82	1.15	27.86	Peak	222	222
2	67.830	26.97	-13.03	40.00	46.62	6.81	1.39	27.85	Peak		
3	191.990	31.17	-12.33	43.50	45.47	10.77	2.37	27.44	Peak		
4	568.350	32.78	-13.22	46.00	37.85	19.25	4.11	28.43	Peak		
5	796.300	33.12	-12.88	46.00	35.98	20.21	4.88	27.95	Peak	<u></u>	2223
6	960.230	33.24	-20.76	54.00	33.53	21.52	5.56	27.37	Peak		

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

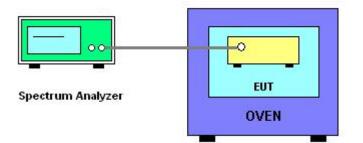
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.5 Frequency Stability Measurement

3.5.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

3.5.2 Measuring Instruments and Setting


Please refer to section 4 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RB	1 kHz
VB	1 kHz
Sweep Time	Auto

3.5.3 Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 1 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature rule is -20°C~50°C.

3.5.4 Test Setup Layout

3.5.5 Test Deviation

There is no deviation with the original standard.

3.5.6 EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

3.5.7 Test Result of Frequency Stability

Final Test Date	Aug. 18, 2012	Test Site No.	TH01-HY
Temperature	23.4 ℃	Humidity	43%
Test Engineer	Bear	Configurations	Ch. 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	13.56 MHz
4.255	13.560000
3.7	13.559960
3.145	13.559940
Max. Deviation (MHz)	0.000060
Max. Deviation (ppm)	4.4248

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(℃)	13.56 MHz
-20	13.560020
-10	13.560020
0	13.560000
10	13.559980
20	13.559960
30	13.559960
40	13.559980
50	13.560040
Max. Deviation (MHz)	0.000040
Max. Deviation (ppm)	2.9499

3.6 Antenna Requirements

3.6.1 Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

3.6.2 Antenna Connector Construction

Please refer to section 2.1 in this test report; antenna connector complied with the requirements.

4. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Feb. 08, 2012	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz ~ 30MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9kHz ~ 30MHz	Apr. 25, 2012	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9KHz~40GHz	Feb. 21, 2012	Conducted (TH01-HY)
Spectrum Analyzer	R&S	FSV 40	15195-01-00	9KHz~40GHz	Jan. 06, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20 ~ 100 ℃	Dec. 07, 2011	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100302	10MHz ~ 40GHz	Nov. 22, 2011	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345672/4	1GHz ~ 26.5GHz	Dec. 03, 2011	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHNER	SUCOFLEX_104	SN 345668/4	1GHz ~ 26.5GHz	GHz ~ 26.5GHz Dec. 03, 2011	

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer Model No. Serial No. Characteristics		Calibration Date	Remark		
10m Semi Anechoic Chamber	ТDК	SAC-10M	10CH02-HY	30 MHz ~ 1 GHz 10m,3m	Nov. 05, 2011	Radiation (10CH02-HY)
Amplifier	AGILENT	8447D	2944A10827	100 KHz ~ 1.3 GHz	May 03, 2012	Radiation (10CH02-HY)
Amplifier	AGILENT	8447D	2944A10828	100 KHz ~ 1.3 GHz	Apr. 23, 2012	Radiation (10CH02-HY)
Receiver	R&S	ESI	838496/008	20 Hz ~ 7 GHz	May 14, 2012	Radiation (10CH02-HY)
Spectrum Analyzer	R&S	FSP7	100645	9 KHz ~ 7 GHz	Apr. 25, 2012	Radiation (10CH02-HY)
Biconical Antenna	Schwarzbeck	VHBB 9124	287	30 MHz ~ 200 MHz	Dec. 17, 2011	Radiation (10CH02-HY)
Log Antenna	Schwarzbeck	VUSLP 9111	207	200 MHz ~ 1 GHz	Dec. 17, 2011	Radiation (10CH02-HY)
Turn Table	HD	DS 430	430/360	0 -360 degree	N/A	Radiation (10CH02-HY)
Antenna Mast	HD	MA240	240/664	1 m - 4 m	N/A	Radiation (10CH02-HY)
Antenna Mast	HD	MA240	240/667	1 m - 4 m	N/A	Radiation (10CH02-HY)
RF Cable-R10m	Jye Bao	RG142	CB027-INSIDE	30 MHz ~ 1 GHz	Feb. 11, 2012	Radiation (10CH02-HY)
RF Cable-R10m	Suhner Switzerland + BELDEN	RG223/U + RG8/U	CB026-DOOR	R 30 MHz ~ 1 GHz Feb. 11, 2012		Radiation (10CH02-HY)

For radiated emissions 9kHz~30MHz

Note: Calibration Interval of instruments listed above is one year.

For radiated emissions 30MHz~1GHz

Instrument	Manufacturer Model No. Serial No. Characteristics		Calibration Date	Remark		
Spectrum Analyzer	R&S	FSP40 100593 9 kHz ~ 40 GHz Sep. 01, 20		Sep. 01, 2011	Radiation (03CH02-HY)	
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100kHz ~ 1.3GHz	Jul. 23, 2012	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz ~ 1 GHz	Nov. 11, 2011	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30 MHz ~ 2 GHz	Oct. 22, 2011	Radiation (03CH02-HY)
Turn Table	Irn Table HD DS 420 420/649/00 0 - 360 degree N/A		N/A	Radiation (03CH02-HY)		
Antenna Mast	Antenna Mast HD MA 240 240/559/00 1 m - 4 m N/A		N/A	Radiation (03CH02-HY)		

Note: Calibration Interval of instruments listed above is one year.


Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz ~ 30 MHz	Jul. 03, 2012*	Radiation (10CH02-HY) (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

5. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei 221, Taiwan, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-327-0973
LINKOU	ADD	:	No. 30-2, Dingfu Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C.
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei 235, Taiwan, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085

6. TAF CERTIFICATE OF ACCREDITATION

