	BUREAU Veritas		
	FCC Test Report		
Report No.:	RFCDVB-WTW-P23100016		
FCC ID:	QYLZ11WD		
Contains FCC ID:	QYLPN7150Z11		
Test Model:	ZX10		
Series Model:	ZX10Y (Y= 10 characters, Y can be 0-9, a-z, A-Z, " - ", " _ ", " / ", " \ " or blank for marketing purpose and no impact safety related critical components and constructions.)		
Received Date:	Oct. 03, 2023		
Test Date:	Oct. 30, 2023		
Issued Date:	Nov. 08, 2023		
Applicant:	Getac Technology Corporation.		
Address:	5F., Building A, No. 209, Sec.1, Nangang Rd.,Nangang Dist., Taipei City 11568, Taiwan, R.O.C.		
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories		
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan		
Test Location:	No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan		
FCC Registration /	788550 / TW0003		
Designation Number:			
	IC-MRA		
	2021		
This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of the report contents.			

Table of Contents

Re	eleas	e Control Record	3
1	Cer	tificate of Conformity	4
2	Sur	nmary of Test Results	5
	2.1 2.2	Measurement Uncertainty Modification Record	5 5
3	Ger	neral Information	6
	3.1 3.2 3.3 3.4	General Description of EUT Description of Test Modes 3.2.1 Test Mode Applicability and Tested Channel Detail Description of Support Units 3.3.1 Configuration of System under Test General Description of Applied Standards.	6 7 8 9 9 9
4	Tes	t Types and Results	.11
	4.14.24.3	Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement 4.1.2 Test Instruments 4.1.3 Test Procedures. 4.1.4 Deviation from Test Standard 4.1.5 Test Setup. 4.1.6 EUT Operating Conditions. 4.1.7 Test Results Conducted Emission Measurement. 4.2.1 Limits of Conducted Emission Measurement. 4.2.2 Test Instruments 4.2.3 Test Procedures. 4.2.4 Deviation from Test Standard 4.2.5 Test Setup. 4.2.6 EUT Operating Conditions. 4.2.7 Test Results 20dB Bandwidth Measurement.	11 11 12 13 13 14 14 15 25 25 25 25 27 27 27 27 28 32
		 4.3.1 Test Setup 4.3.2 Test Instruments 4.3.3 Test Procedure 4.3.4 Deviation from Test Standard 4.3.5 EUT Operating Conditions. 4.3.6 Test Results 	32 32 32 32 32 32 32 33
5	Pict	tures of Test Arrangements	34
A	open	dix – Information of the Testing Laboratories	35

Release Control Record

Issue No.	Description	Date Issued
RFCDVB-WTW-P23100016	Original Release	Nov. 08, 2023

1	Certificate of Conformity				
	Product:	Tablet			
	Brand:	Getac			
	Test Model:	ZX10			
	Series Model:	ZX10Y (Y= 10 characters, Y can be 0-9, a-z, A-Z, " - ", " _ ", " / ", " \ " or blank for marketing purpose and no impact safety related critical components and constructions.)			
	Sample Status:	Engineering Sample			
	Applicant:	Getac Technology Corporation.			
	Test Date:	Oct. 30, 2023			
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.209) ANSI C63.10-2013			

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

 Prepared by :
 Fill Chien Specialist
 Date:
 Nov. 08, 2023

 Polly Chien Specialist
 Jerem J. Lin
 , Date:
 Nov. 08, 2023

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.209)						
FCC Clause Test Item Result Remarks						
15.207	Conducted emission test	Pass	Meet the requirement of limit. Minimum passing margin is -13.42 dB at 0.41000 MHz.			
15.209	Radiated emission test	Pass	Meet the requirement of limit. Minimum passing margin is -8.9 dB at 162.90 MHz.			
2.202	Bandwidth Measurement	Pass	Meet the requirement of limit.			

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.79 dB
	9kHz ~ 30MHz	2.44 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.93 dB
	200MHz ~1000MHz	2.95 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Tablet	
Brand	Getac	
Test Model	ZX10	
Series Model ZX10Y (Y= 10 characters, Y can be 0-9, a-z, A-Z, " - ", " _ ", " / " for marketing purpose and no impact safety related critical com constructions.)		
Status of EUT	Engineering Sample	
Power Supply Rating	19Vdc (from adapter) 3.84Vdc (from battery)	
Operating Frequency	511 kHz	
Antenna Type	Loop antenna	
Antenna Connector	NA	
Field Strength	4.5dBuV/m (30m)	
Accessory Device	Refer to Note as below	
Data Cable Supplied	Refer to Note as below	

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter FSP		FSP065-RBBN3	I/P: 100-240 Vac, 50-60Hz, 1.5 A O/P: 19.0 Vdc, 3.42 A 1.47m non-shielded cable with 1 core
Battery	Getac	BP1S2P4990B	Power Rating: 3.84 Vdc, 37.4 Wh, 9740 mAh
Power cord	I-SHENG ELECTRIC WIRE & CABLE CO., LTD.	SP-305B+IS-034	1.7M
Touch pen	Getac	GT-090S	N/A

2. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3. Only radiated measurements are used to show compliance with FCC limits for fundamental and spurious emissions.

Part	Brand	Model	Note
CPU	Qualcomm	SDA 660	-
Memory	Samsung	KM3V6001CM-B705	4GB
VIDEO CONTROLLER	Qaulcomm	Adreno GU 512	-
eMMC Storage	Samsung	-	64GB
DISPLAY	AUO	G101UAN2.0	-
Touch Screen	EETI	EXC80H60	-
Real Camera	Unison	MV21A6A1-TF5D	16M PLCC MIPI
Front Camera	Unison	MV2980A1-TF4R-P	8M PLCC MIPI
WLAN/BT	Qualcomm	WCN3990	-
HF-RFID	Getac	PN7150	-
Digitizer	EMRight	96-P28-20010	-
GPS	Locosys	MC-1010-V2B	-
Barcode Reader	Honeywell	N6703SR-W5-103	-
Smart Card Option Bay	Alcor	AU9560-GBS-GR	-
High capacity battery	Getac	BP1S2P4990B	-

4. EUT has following configuration.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

1 channel is provided to this EUT:

Channel	Frequency (kHz)		
1	511		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applicable To					
Mode	RE<1G	PLC	BW	Description		
-	\checkmark	\checkmark	\checkmark	-		
Where	here RE<1G: Radiated Emission below 1 GHz PLC: Power Line Conducted Emission BW: 20dB Bandwidth					
Radiated Em	ission Test (Be	low 1 GHz):				
🛛 Pre-Scan	has been condu	ucted to determ	ine the worst-ca	se mode fro	m all possible combinations	
between a	available modula	ations, data rate	es and antenna p	orts (if EUT	with antenna diversity architecture).	
Following	channel(s) was	(were) selected	d for the final tes	t as listed b	elow.	
EUT	Configure Mode		Available Chann	el	Tested Channel	
	-		1		1	
Power Line C	 Yower Line Conducted Emission Test: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following chappel(s) was (were) selected for the final test as listed below. 					
EUT	Configure Mode		Available Chann	el	Tested Channel	
	-		1		1	
 3andwidth Measurement: ➢ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). ➢ Following channel(s) was (were) selected for the final test as listed below. 						
EUT	Configure Mode		Available Chann	el	Tested Channel	
	-		1		1	

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE	23 deg. C, 66 % RH	120 Vac, 60 Hz	Vincent Chen
PLC	22 deg. C, 63 % RH	120 Vac, 60 Hz	Vincent Chen
BW	22 deg. C, 63 % RH	120 Vac, 60 Hz	Vincent Chen

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	USB-A	SanDisk	SDDDC3-032G	N/A	N/A	Provided by Lab
В.	USB-C	SanDisk	SDDDC3-032G	N/A	N/A	Provided by Lab
C.	Earphone	HTC	MAX320	N/A	N/A	Provided by Lab
D.	Touch pen	Getac	GT-090S	340122800018	N/A	Supplied by applicant

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Audio Cable	1	1.2	No	0	Provided by Lab
2.	Power Cable	1	1.7	No	0	Supplied by applicant

3.3.1 Configuration of System under Test

Operated Mode:

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.209)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

For Frequency below 30MHz

Frequency	Field Streng	gth (dBuV/m)	Measurement Distance		
(MHz)	uV/m	dBuV/m	(meters)		
0.009 - 0.490	2400 / F (kHz)	48.52-13.80	300		
0.490 – 1.705	24000 / F (kHz)	33.80-22.97	30		
1.705 – 30.0	30	29.54	30		

For Frequency between 30-1000MHz

Frequency	Class A	(at 10m)	Class B (at 3m)		
(MHz)	uV/m	dBuV/m	uV/m	dBuV/m	
30-88	90	39.1	100	40.0	
88-216	150	43.5	150	43.5	
216-960	210	46.4	200	46.0	
Above 960	300	49.5	500	54.0	

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Antenna Tower &Turn Max-Full	MFA-440H	AT93021705	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	7	N/A	N/A
EXA Signal Analyzer Agilent	N9010A	MY52220207	Jan. 03, 2023	Jan. 02, 2024
Loop Antenna Electro-Metrics	EM-6879	269	Sep. 23, 2023	Sep. 22, 2024
Loop Antenna TESEQ	HLA 6121	45745	Aug. 08, 2023	Aug. 07, 2024
Horn Antenna	BBHA 9120D	9120D-969	Nov. 13, 2022	Nov. 12, 2023
Schwarzbeck	BBHA 9170	148	Nov. 13, 2022	Nov. 12, 2023
MXE EMI Receiver Keysight	N9038A	MY55420137	May 03, 2023	May 02, 2024
Notch Filter	BRM17690	004	Jan. 11, 2023	Jan. 10, 2024
Micro-Tronics	BRM50716	060	Jan. 11, 2023	Jan. 10, 2024
Preamplifier	EMC 012645	980115	Sep. 27, 2023	Sep. 26, 2024
EMCI	EMC 184045	980116	Sep. 27, 2023	Sep. 26, 2024
	EMC102-KM-KM-600	150928	Jul. 8, 2023	Jul. 7, 2024
RF Coaxial Cable	EMC102-KM-KM- 3000	150929	Jul. 8, 2023	Jul. 7, 2024
	EMC104-SM-SM- 8000+3000	171005	Sep. 27, 2023	Sep. 26, 2024
RF Coaxial Cable HUBER+SUHNNER	SUCOFLEX 104	EMC104-SM-SM- 1000(140807)	Sep. 27, 2023	Sep. 26, 2024
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower Max-Full	MFA-440H	AT93021705	NA	NA
Turn Table Max-Full	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller Max-Full	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa 966 Chamber 5.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and Ground-Parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9kHz-90kHz, 110kHz-490kHz) set to average detect function and peak detect function.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency band (9 kHz~150 kHz) and 9 kHz or 10 kHz at frequency below 30MHz (except 9 kHz~150 kHz).
- 2. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Operated Mode

Channel	TX Channel 1	Detector Function	Quasi Dask (QD)
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance: Loop antenna Parallel at 3m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*0.511	4.5 QP	33.4	-28.9	1.00	135	24.9	-20.4	
2	1.022	-8.7 QP	27.4	-36.1	1.00	211	11.6	-20.3	
3	6.337	-8.0 QP	29.5	-37.5	1.00	211	10.8	-18.8	
4	10.506	-7.4 QP	29.5	-36.9	1.00	146	11.1	-18.5	
5	17.344	-6.2 QP	29.5	-35.7	1.00	203	11.8	-18.0	
6	24.992	-6.5 QP	29.5	-36.0	1.00	18	10.9	-17.4	
7	27.871	-8.0 QP	29.5	-37.5	1.00	321	9.9	-17.9	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. "* ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. 0.009 ~ 0.49MHz, the measured field strength was extrapolated to distance 300 meters Distance factor@3m = 40*log(3/300) = -80dB

For $0.49 \sim 30$ MHz, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = $40*\log(3/30) = -40$ dB

Channel	TX Channel 1	Data dan Function	
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance: Loop antenna Perpendicular at 3m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*0.511	2.7 QP	33.4	-30.7	1.00	256	23.1	-20.4	
2	1.022	-9.8 QP	27.4	-37.2	1.00	85	10.5	-20.3	
3	7.687	-6.8 QP	29.5	-36.3	1.00	316	12.1	-18.9	
4	10.566	-7.2 QP	29.5	-36.7	1.00	69	11.3	-18.5	
5	18.813	-7.3 QP	29.5	-36.8	1.00	199	10.5	-17.8	
6	22.802	-7.8 QP	29.5	-37.3	1.00	264	10.7	-18.5	
7	25.801	-7.8 QP	29.5	-37.3	1.00	2	10.1	-17.9	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) +Distance Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. "* ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. 0.009 ~ 0.49MHz, the measured field strength was extrapolated to distance 300 meters Distance factor@3m = 40*log(3/300) = -80dB

For $0.49 \sim 30$ MHz, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = $40^{\circ}\log(3/30) = -40$ dB

Channel	TX Channel 1	Data dan Function	
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance: Loop antenna Ground-Parallel at 3m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*0.511	1.1 QP	33.4	-32.3	1.00	125	21.5	-20.4	
2	1.022	-9.2 QP	27.4	-36.6	1.00	2	11.1	-20.3	
3	8.466	-8.1 QP	29.5	-37.6	1.00	40	10.8	-18.9	
4	10.566	-7.0 QP	29.5	-36.5	1.00	288	11.5	-18.5	
5	17.434	-6.8 QP	29.5	-36.3	1.00	222	11.2	-18.0	
6	23.612	-8.5 QP	29.5	-38.0	1.00	2	10.0	-18.5	
7	26.401	-7.7 QP	29.5	-37.2	1.00	48	10.2	-17.9	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) +Distance Factor

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. "* ": Fundamental frequency.
- 6. Loop antenna was used for all radiated emission below 30MHz.
- 7. 0.009 ~ 0.49MHz, the measured field strength was extrapolated to distance 300 meters Distance factor@3m = 40*log(3/300) = -80dB

For $0.49 \sim 30$ MHz, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = $40^{\circ}\log(3/30) = -40$ dB

Standby Mode

Channel	Channel 1	Detector Function	Outral Deak (OD)
Frequency Range	9 kHz ~ 30 MHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance: Loop antenna Parallel at 3m								
	Frog	Emission	Limit	Morgin	Antenna	Table	Raw	Correction	
No.	(MU-)	Level	(dRu)//m)	(dP)	Height	Angle	Value	Factor	
	(IVIHZ)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	3.668	-9.3 QP	29.5	-38.8	1.00	321	11.0	-20.3	
2	6.997	-7.5 QP	29.5	-37.0	1.00	344	11.3	-18.8	
3	10.476	-7.6 QP	29.5	-37.1	1.00	56	10.9	-18.5	
4	17.494	-7.6 QP	29.5	-37.1	1.00	290	10.4	-18.0	
5	22.952	-7.3 QP	29.5	-36.8	1.00	231	11.3	-18.6	
6	27.871	-8.3 QP	29.5	-37.8	1.00	47	9.6	-17.9	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. Loop antenna was used for all radiated emission below 30MHz.
- 6. For 0.49 ~ 30MHz, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = 40*log(3/30) = -40dB

Channel	Channel 1	Data dan Function	
Frequency Range	9 kHz ~ 30 MHz		Quasi-Peak (QP)

	Antenna Polarity & Test Distance: Loop antenna Perpendicular at 3m								
	Emission	Limit	Morgin	Antenna	Table	Raw	Correction		
No.	(MU-)	Level	(dRu)//m)	(dP)	Height	Angle	Value	Factor	
	(IVITIZ)	(dBuV/m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	
1	1.988	-9.2 QP	29.5	-38.7	1.00	272	11.2	-20.4	
2	7.207	-8.4 QP	29.5	-37.9	1.00	165	10.4	-18.8	
3	11.346	-5.9 QP	29.5	-35.4	1.00	183	12.5	-18.4	
4	17.494	-7.9 QP	29.5	-37.4	1.00	240	10.1	-18.0	
5	20.793	-7.3 QP	29.5	-36.8	1.00	239	10.8	-18.1	
6	26.851	-8.0 QP	29.5	-37.5	1.00	297	9.8	-17.8	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. Loop antenna was used for all radiated emission below 30MHz.

6. For 0.49 ~ 30MHz, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = 40*log(3/30) = -40dB

Channel	Channel 1	Data dan Function	
Frequency Range	9 kHz ~ 30 MHz		Quasi-Peak (QP)

	Antenna Polarity & Test Distance: Loop antenna Ground-Parallel at 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2.648	-9.5 QP	29.5	-39.0	1.00	125	11.0	-20.5	
2	7.327	-8.0 QP	29.5	-37.5	1.00	88	10.8	-18.8	
3	12.275	-6.7 QP	29.5	-36.2	1.00	278	11.7	-18.4	
4	18.813	-7.2 QP	29.5	-36.7	1.00	261	10.6	-17.8	
5	22.652	-7.7 QP	29.5	-37.2	1.00	223	10.8	-18.5	
6	26.611	-7.7 QP	29.5	-37.2	1.00	224	10.2	-17.9	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. Loop antenna was used for all radiated emission below 30MHz.

6. For 0.49 ~ 30MHz, the measured field strength was extrapolated to distance 30 meters Distance factor@3m = 40*log(3/30) = -40dB

Below 1GHz Data: Operated Mode

Channel	TX Channel 1	Data dan Funatian	
Frequency Range	30MHz ~ 1GHz		Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	40.67	19.0 QP	40.0	-21.0	1.00 H	111	31.7	-12.7	
2	162.90	34.6 QP	43.5	-8.9	2.00 H	279	47.4	-12.8	
3	400.58	20.8 QP	46.0	-25.2	1.00 H	36	30.4	-9.6	
4	551.91	25.4 QP	46.0	-20.6	1.50 H	103	31.6	-6.2	
5	789.59	29.2 QP	46.0	-16.8	1.00 H	94	30.2	-1.0	
6	940.92	30.7 QP	46.0	-15.3	1.50 H	331	31.0	-0.3	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

Channel	TX Channel 1		
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	40.67	26.4 QP	40.0	-13.6	1.00 V	18	39.1	-12.7
2	122.16	34.1 QP	43.5	-9.4	2.00 V	273	48.5	-14.4
3	376.33	19.0 QP	46.0	-27.0	1.00 V	2	29.2	-10.2
4	480.13	22.8 QP	46.0	-23.2	1.00 V	18	30.2	-7.4
5	581.02	24.6 QP	46.0	-21.4	2.00 V	173	30.1	-5.5
6	837.12	28.5 QP	46.0	-17.5	1.00 V	216	29.4	-0.9

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

Standby Mode

Channel	TX Channel 1	Detector Function	
Frequency Range	30MHz ~ 1GHz	Delector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	67.83	17.2 QP	40.0	-22.8	2.00 H	150	31.6	-14.4	
2	162.90	34.2 QP	43.5	-9.3	2.00 H	280	47.0	-12.8	
3	336.55	19.2 QP	46.0	-26.8	1.50 H	5	30.4	-11.2	
4	495.65	22.2 QP	46.0	-23.8	1.00 H	12	29.2	-7.0	
5	660.57	26.2 QP	46.0	-19.8	1.00 H	58	30.2	-4.0	
6	828.39	28.4 QP	46.0	-17.6	1.00 H	344	29.3	-0.9	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

Channel	TX Channel 1		
Frequency Range	30MHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	40.67	25.8 QP	40.0	-14.2	1.00 V	351	38.5	-12.7		
2	122.16	32.8 QP	43.5	-10.7	1.50 V	2	47.2	-14.4		
3	149.32	30.9 QP	43.5	-12.6	1.00 V	262	43.6	-12.7		
4	368.56	19.7 QP	46.0	-26.3	2.00 V	70	30.2	-10.5		
5	549.00	23.9 QP	46.0	-22.1	1.00 V	18	30.1	-6.2		
6	832.27	28.1 QP	46.0	-17.9	2.00 V	18	29.0	-0.9		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHZ)	Quasi-Peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESR3	102783	Dec. 21, 2022	Dec. 20, 2023
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 02, 2023	Sep. 01, 2024
LISN/AMN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Mar. 07, 2023	Mar. 06, 2024
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Sep. 12, 2023	Sep. 11, 2024
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

- Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in HwaYa Shielded Room 2 (Conduction 2).
 - 3. The VCCI Site Registration No. is C-12047.

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Operated Mode

(Weidge (W)	Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
-------------	-------	----------	-------------------	-----------------------------------

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Readin (dB	Reading Value (dBuV)		eading Value Emission Level (dBuV) (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15400	10.32	35.01	18.82	45.33	29.14	65.78	55.78	-20.45	-26.64	
2	0.41400	10.42	26.45	23.67	36.87	34.09	57.57	47.57	-20.70	-13.48	
3	1.12600	10.43	8.32	1.01	18.75	11.44	56.00	46.00	-37.25	-34.56	
4	3.75800	10.51	8.44	0.33	18.95	10.84	56.00	46.00	-37.05	-35.16	
5	12.45400	10.61	11.69	2.90	22.30	13.51	60.00	50.00	-37.70	-36.49	
6	15.35800	10.67	8.80	3.54	19.47	14.21	60.00	50.00	-40.53	-35.79	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)				De	Detector Function Quasi-Peak (QP) / Average (AV)					
	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor	Readin (dB	g Value suV)	Emissi (dB	on Level BuV)	Lir (dB	nit uV)	Maı (d	rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15800	10.33	32.23	17.48	42.56	27.81	65.57	55.57	-23.01	-27.76
2	0.17400	10.34	28.34	18.40	38.68	28.74	64.77	54.77	-26.09	-26.03
3	0.41000	10.44	26.66	23.79	37.10	34.23	57.65	47.65	-20.55	-13.42
4	1.08600	10.45	10.63	4.43	21.08	14.88	56.00	46.00	-34.92	-31.12
5	12.40200	10.72	12.87	3.97	23.59	14.69	60.00	50.00	-36.41	-35.31
6	17.69400	10.86	14.99	9.21	25.85	20.07	60.00	50.00	-34.15	-29.93

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Standby Mode

Phase			Line (L)			Detector Function		Quasi-Peak (QP) / Average (AV)			
F actor		Corr.	Readin	Reading Value		Emission Level		Limit		Margin	
No	Freq.	Facto	r [dB ((uV)]	[dB	(uV)]	[dB (uV)]	(d	B)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16600	10.33	30.97	17.35	41.30	27.68	65.16	55.16	-23.86	-27.48	
2	0.21800	10.35	5 23.64	8.73	33.99	19.08	62.89	52.89	-28.90	-33.81	
3	0.41000	10.42	2 25.85	21.09	36.27	31.51	57.65	47.65	-21.38	-16.14	
4	1.06600	10.43	8 8.14	2.02	18.57	12.45	56.00	46.00	-37.43	-33.55	
5	4.00600	10.52	6.80	2.61	17.32	13.13	56.00	46.00	-38.68	-32.87	
6	18.00200	10.71	11.88	6.45	22.59	17.16	60.00	50.00	-37.41	-32.84	

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.

Phase			Neutral (N)			etector Fur	Quasi-Peak (QP) / Average (AV)			
	_ Cor		rr. Reading Value E		Emiss	mission Level Lin		nit Margin		rgin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16600	10.34	30.13	15.77	40.47	26.11	65.16	55.16	-24.69	-29.05
2	0.41143	10.44	24.38	21.19	34.82	31.63	57.62	47.62	-22.80	-15.99
3	1.11800	10.45	8.58	2.96	19.03	13.41	56.00	46.00	-36.97	-32.59
4	3.53400	10.52	5.37	1.62	15.89	12.14	56.00	46.00	-40.11	-33.86
5	13.41800	10.75	8.57	1.58	19.32	12.33	60.00	50.00	-40.68	-37.67
6	18.04600	10.87	11.03	5.87	21.90	16.74	60.00	50.00	-38.10	-33.26

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 20dB Bandwidth Measurement

4.3.1 Test Setup

4.3.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.3 Test Procedure

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter Semianechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Then the Loop antenna was rotated 360 degrees to determine the position of the highest radiation.
- b. The antenna is a broadband loop antenna, which is fixed of a 1m height above the ground, and set away from 3m to the EUT to find the disturbance reading on each frequency.
- c. The test- spectrum system was set to Peak detect function and specified bandwidth.
- d. Measurement method refers to Section 6.9.2 of ANSI C63.10.

4.3.4 Deviation from Test Standard

No deviation.

4.3.5 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously.

4.3.6 Test Results

Frequency (kHz)	20dB Bandwidth (kHz)	Pass / Fail		
511	2.030	Pass		

Note: The signal look like CW signal, so RBW can't be match 1~5 % OBW.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> Web Site: <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ---