System Check_H2450

Frequency: 2450 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 2450 MHz; $\sigma = 1.832$ S/m; $\varepsilon_r = 39.895$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1289; Calibrated: 2022/5/31
- Probe: EX3DV4 SN7678; ConvF(8.16, 8.16, 8.16) @ 2450 MHz; Calibrated: 2021/8/26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2149

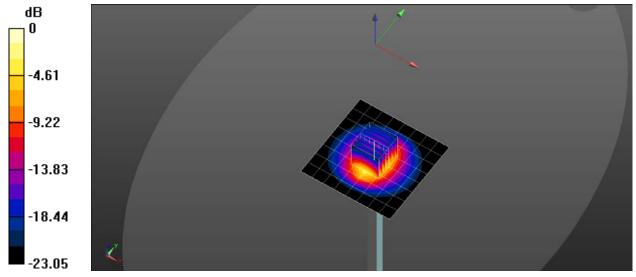
System Performance Check at Frequencies above 1 GHz/Pin=250mW

3/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 22.6 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250mW 3/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.4 V/m; Power Drift = -0.00 dB


Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.07 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 46.4%

Maximum value of SAR (measured) = 22.7 W/kg

0 dB = 22.7 W/kg = 13.56 dBW/kg

System Check_H5G

Frequency: 5200 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5200 MHz; σ = 4.644 S/m; ϵ_r = 35.729; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1289; Calibrated: 2022/5/31
- Probe: EX3DV4 SN7678; ConvF(5.66, 5.66, 5.66) @ 5200 MHz; Calibrated: 2021/8/26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2149

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

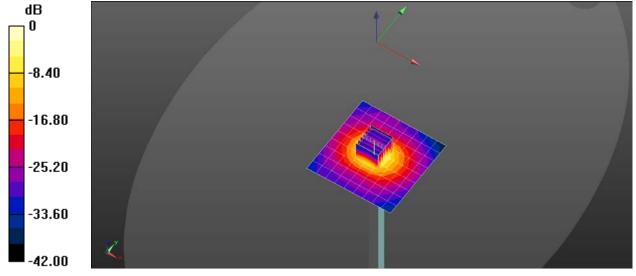
dy=10mm

Maximum value of SAR (measured) = 15.8 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.60 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 32.6 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 54.2%

Maximum value of SAR (measured) = 20.7 W/kg

0 dB = 20.7 W/kg = 13.16 dBW/kg

System Check_H5G

Frequency: 5300 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5300 MHz; σ = 4.801 S/m; ϵ_r = 35.547; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1289; Calibrated: 2022/5/31
- Probe: EX3DV4 SN7678; ConvF(5.48, 5.48, 5.48) @ 5300 MHz; Calibrated: 2021/8/26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2149

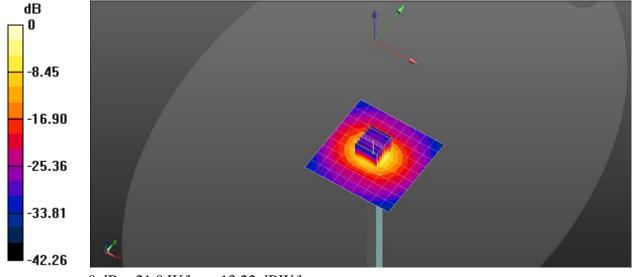
Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

Maximum value of SAR (measured) = 15.4 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.70 V/m; Power Drift = 0.10 dB


Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.35 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 54.1%

Maximum value of SAR (measured) = 21.0 W/kg

0 dB = 21.0 W/kg = 13.22 dBW/kg

Test Laboratory: BTL Date: 2022/8/12

System Check_H5G

Frequency: 5600 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5600 MHz; σ = 5.153 S/m; ϵ_r = 34.616; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1289; Calibrated: 2022/5/31
- Probe: EX3DV4 SN7678; ConvF(4.99, 4.99, 4.99) @ 5600 MHz; Calibrated: 2021/8/26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2149

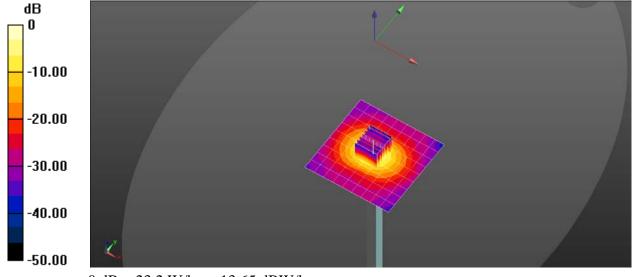
Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dv=10mm

Maximum value of SAR (measured) = 16.9 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 62.25 V/m; Power Drift = 0.14 dB


Peak SAR (extrapolated) = 38.5 W/kg

SAR(1 g) = 8.86 W/kg; SAR(10 g) = 2.51 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 23.2 W/kg

0 dB = 23.2 W/kg = 13.65 dBW/kg

System Check_H5G

Frequency: 5800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5800 MHz; σ = 5.4 S/m; ϵ_r = 34.356; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1289; Calibrated: 2022/5/31
- Probe: EX3DV4 SN7678; ConvF(5.05, 5.05, 5.05) @ 5800 MHz; Calibrated: 2021/8/26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2149

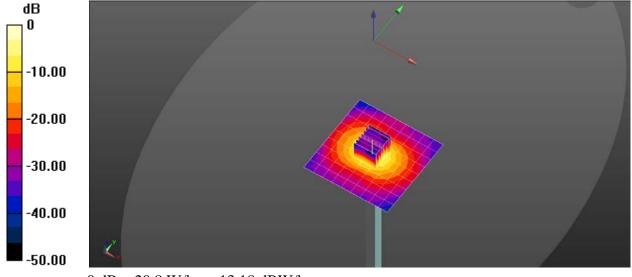
Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm, dv=10mm

Maximum value of SAR (measured) = 15.2 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 57.46 V/m; Power Drift = 0.13 dB


Peak SAR (extrapolated) = 35.5 W/kg

SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 49.9%

Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg