

FCC RADIO TEST REPORT

FCC ID	: QYLPN7462F
Equipment	: NFC module
Brand Name	: Getac
Model Name	: NXP PN7462
Applicant	: Getac Technology Corporation.
	5F., Building A, No. 209, Sec.1, Nangang Rd.,Nangang Dist., Taipei City 11568, Taiwan, R.O.C.
Standard	: FCC Part 15 Subpart C §15.225

The product was received on Apr. 17, 2020 and testing was started from May 05, 2020 and completed on May 28, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History of this test report	3
History of this test report Summary of Test Result	4
1. General Description	
1.1 Product Feature of Equipment Under Test	5
1.2 Modification of EUT	5
1.3 Testing Location	6
1.4 Applicable Standards	6
2. Test Configuration of Equipment Under Test	7
2.1 Descriptions of Test Mode	7
2.2 Connection Diagram of Test System	8
2.3 Table for Supporting Units	8
2.4 EUT Operation Test Setup	8
3. Test Results	
3.1 AC Power Line Conducted Emissions Measurement	
3.2 20dB and 99% OBW Spectrum Bandwidth Measurement	11
3.3 Frequency Stability Measurement	12
3.4 Field Strength of Fundamental Emissions and Mask Measurement	13
3.5 Radiated Emissions Measurement	15
3.6 Antenna Requirements	18
4. List of Measuring Equipment	
5. Uncertainty of Evaluation	. 20
Appendix A. Test Results of Conducted Emission Test	
Appendix B. Test Results of Conducted Test Items	

- B1. Test Result of 20dB Spectrum Bandwidth
- B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

Appendix D. Setup Photographs

TEL : 886-3-327-3456	Page Number	: 2 of 20
FAX : 886-3-328-4978	Issued Date	: Jun. 03, 2020
Report Template No.: BU5-FR15CNFC Version 2.4	Report Version	: 01

History of this test report

Report No.	Version	Description	Issued Date
FR391803-68	01	Initial issue of report	Jun. 03, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)
3.1	15.207	AC Power Line Conducted Emissions	Pass
2.0	15.215(c)	20dB Spectrum Bandwidth	Pass
3.2	2.1049	99% OBW Spectrum Bandwidth	Reporting only
3.3	15.225(e)	Frequency Stability	Pass
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Pass
3.5	15.225(d) 15.209	Radiated Spurious Emissions	Pass
3.6	3.6 15.203 Antenna Requirements Pass		Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Ruby Zou

1. General Description

1.1 Product Feature of Equipment Under Test

NFC

Product Specification subjective to this standard			
Antenna Type	Loop Antenna		

The product was installed into Tablet (Brand Name: Getac, Model Name: F110, F110G5, F110-Ex) during test:

<Sample Information>

-	
F110 SKU	SKU
СРИ	i7-8565U
DDR	16G
SSD	512GB
Panel	FHD,KD116N11-30NP-A9
Digitizer	Getac
Option Bay	BCR
Expansion Bay	NXP
WLAN/BT	Support(9260NGW)
WWAN	Support(EM7455)
GPS	GPS(MC-1010-G)
Webcam FHD	not Support
Rear 8M Camera	Support
IR Webcam	Support
RFID	Support
Default IO(USB 3.0 port)	Support
Default IO(HDMI)	Support
Default IO(Audio)	Support
Default IO(USB3.1 Type-C Gen 1)	not Support
Explosion-proof cover	not Support

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
Test Site NO.	TH03-HY	CO05-HY	
Test Engineer	Louis Chung Tom Lee		
Temperature	22-24 ℃ 21-25 ℃		
Relative Humidity	53-55% 42-50%		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site LocationNo.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.		
Test Site No.	03CH11-HY		
Test Engineer	Cookie Ku		
Temperature	19.8-27.3 ℃		
Relative Humidity	53.2-67.4%		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.225
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

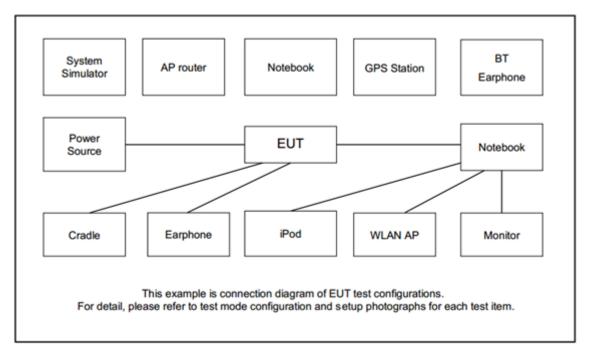
Remark: The TAF code is not including all the FCC KDB listed without accreditation.

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.


Test Items			
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions		
20dB Spectrum Bandwidth	Frequency Stability		
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz		

The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

Test Cases			
AC Conducted Emission	Mode 1: WCDMA Band V Idle + Bluetooth Idle + WLAN (2.4GHz) Idle + TF + TC + Adapter + NFC Tx		
Remark:			
1. TF stands for test function, and consists of Front Camera, Rear Camera, MPEG4, Digitizer, GPS			
Rx and Barcode Scan			
2. TC stands for test function, and consists of Earphone with MIC, USB3.0 HD and Monitor (HDMI			
Out)			
3. HDMI Cable means media application transferred between EUT and external display			

2.2 Connection Diagram of Test System

2.3 Table for Supporting Units

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
5.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
6.	LCD Monitor	ASUS	PB27UQ	FCC DoC	Shielded, 1.6m	Unshielded,1.8m
7.	USB HD	ADATA	HV620S	FCC DoC	Shielded, 0.5m	N/A
8.	NFC Card	N/A	N/A	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 0 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

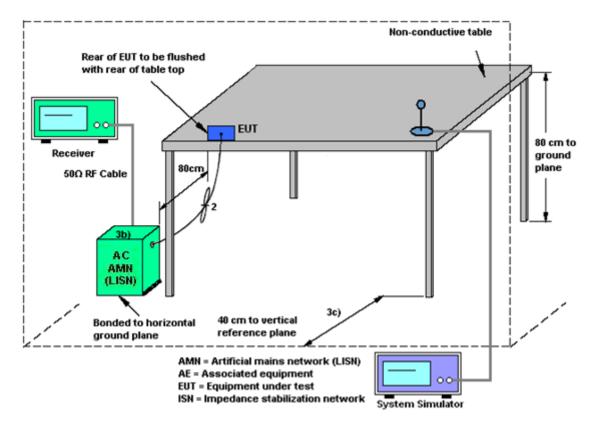
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

TEL : 886-3-327-3456	Page Number	: 10 of 20
FAX : 886-3-328-4978	Issued Date	: Jun. 03, 2020
Report Template No.: BU5-FR15CNFC Version 2.4	Report Version	: 01

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

Spectrum Analyzer

3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

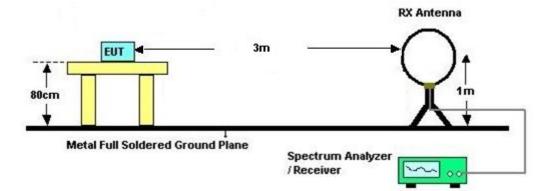
Please refer to Appendix B.

3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225				
Description	Compliance with th	e spectrum mask is t	ested with RBW set t	o 9kHz.	
Frequet Emission (MHz)	Field Strength	Field Strength	Field Strength	Field Strength	
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m	
1.705~13.110	30	29.5	48.58	69.5	
13.110~13.410	106	40.5	59.58	80.5	
13.410~13.553	334	50.5	69.58	90.5	
13.553~13.567	15848	84.0	103.08	124.0	
13.567~13.710	334	50.5	69.58	90.5	
13.710~14.010	106	40.5	59.58	80.5	
14.010~30.000	30	29.5	48.58	69.5	

3.4.2 Measuring Instruments


See list of measuring instruments of this test report.

3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

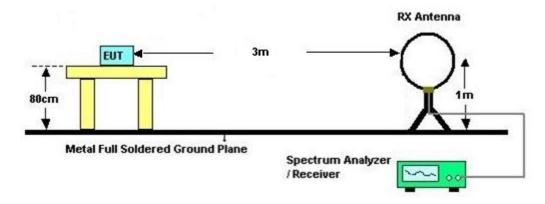
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

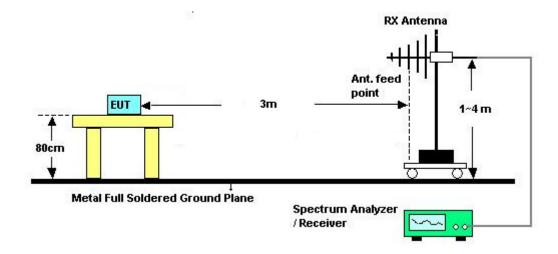
The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	AC POWER	AFC-500W	F10407001 1	50Hz~60Hz	Apr. 09, 2020	May 05, 2020~ May 06, 2020	Apr. 08, 2021	Conducted (TH03-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 26, 2020	May 05, 2020~ May 06, 2020	Mar. 25, 2021	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101329	9kHz~30GHz	Sep. 04, 2019	May 05, 2020~ May 06, 2020	Sep. 03, 2020	Conducted (TH03-HY)
Temperature Chamber	ESPEC	SU-641	92013721	-30°C ~70°C	Nov. 26, 2019	May 05, 2020~ May 06, 2020	Nov. 25, 2020	Conducted (TH03-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 05, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	May 05, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 07, 2019	May 05, 2020	Nov. 06, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 20, 2019	May 05, 2020	Nov. 19, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	May 05, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 05, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	May 05, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	May 05, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Software	Audix	E3 6.2009-8-24	RK-00105 3	N/A	N/A	May 28, 2020	N/A	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 03, 2019	May 28, 2020	Dec. 02, 2020	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz~1GHz	Oct. 12, 2019	May 28, 2020	Oct. 11, 2020	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 09, 2020	May 28, 2020	Jan. 08, 2021	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	May 28, 2020	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	May 28, 2020	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	May 28, 2020	N/A	Radiation (03CH11-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY532900 45	20MHz~8.4GHz	Jan. 18, 2020	May 28, 2020	Jan. 17, 2021	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz~44GHz	Oct. 28, 2019	May 28, 2020	Oct. 27, 2020	Radiation (03CH11-HY)
Filter	Wainwright	WHK20/1000C 7/40SS	SN2	20M High Pass	Sep. 15, 2019	May 28, 2020	Sep. 14, 2020	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz-30MHz	Mar. 12, 2020	May 28, 2020	Mar. 11, 2021	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	30M-18G	Mar. 12, 2020	May 28, 2020	Mar. 11, 2021	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 12, 2020	May 28, 2020	Mar. 11, 2021	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTN-303B	TP140325	N/A	Nov. 07, 2019	May 28, 2020	Nov. 06, 2020	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTN-303B	TP161237	N/A	Oct. 25, 2019	May 28, 2020	Oct. 24, 2020	Radiation (03CH11-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

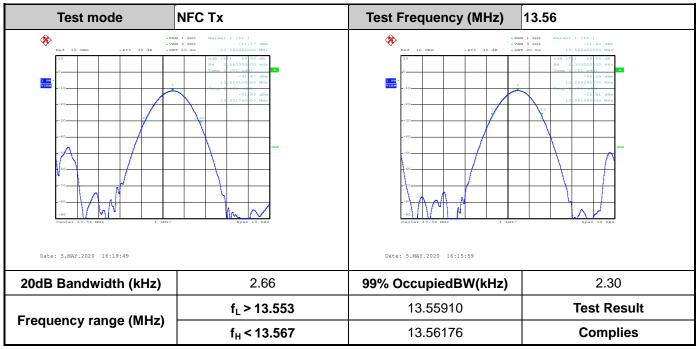
Measuring Uncertainty for a Level of Confidence	2.30
of 95% (U = 2Uc(y))	2.30

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.12
of 95% (U = 2Uc(y))	3.12

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20



Appendix A. Test Results of Conducted Emission Test

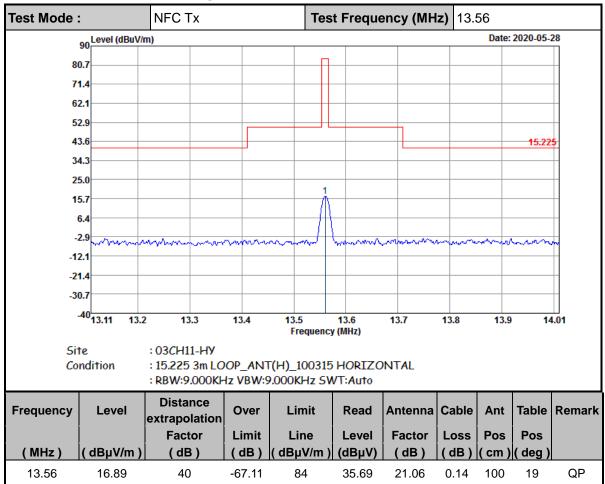
Test Engineer : Tom Lee	Temperature :	21~25 ℃	
rest Engineer.		Relative Humidity :	42~50%

Appendix B. Test Results of Conducted Test Items

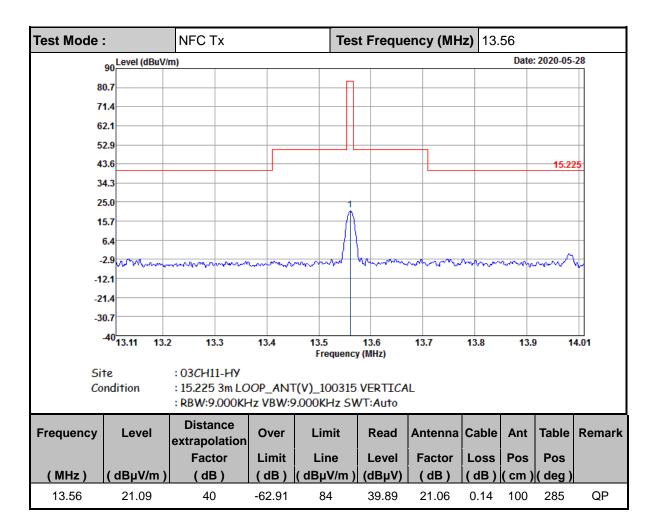
B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

B2. Test Result of Frequency Stability


Voltage vs. Freq	Voltage vs. Frequency Stability		ature vs. Freque	ency Stability
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (°C)	Time	Measurement Frequency (MHz)
120	13.560430	-20	0	13.560420
102	13.560420		2	13.560420
138	13.560420		5	13.560420
			10	13.560410
		-10	0	13.560420
			2	13.560420
			5	13.560420
			10	13.560420
		0	0	13.560420
			2	13.560430
			5	13.560430
			10	13.560430
		10	0	13.560440
			2	13.560430
			5	13.560440
			10	13.560440
		20	0	13.560430
			2	13.560430
			5	13.560420
			10	13.560430
		30	0	13.560440
			2	13.560430
			5	13.560430
			10	13.560420
		40	0	13.560450
			2	13.560440
			5	13.560440
			10	13.560440

Voltage vs. Frequ	ency Stability	cy Stability Temperature vs. Frequency Stability		ency Stability
	Measurement	Temperature (°C)		Measurement
Voltage (Vac)	Frequency (MHz)	remperature (C)	Time	Frequency (MHz)
		50	0	13.560440
			2	13.560440
			5	13.560440
			10	13.560460
Max.Deviation (MHz)	0.000430	Max.Deviation (MHz)		0.000460
Max.Deviation (ppm)	31.7109	Max.Deviation (ppm)		33.9233
Limit	FS < ±100 ppm	Limit		FS < ±100 ppm
Test Result	PASS	Test Result		PASS



Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

Test Mode :	: NF	FC Tx		Polariz	Polarization :			Horizontal			
								Data	. 2020.00	- 20	
!	90 Level (dB	uV/m)						Date	: 2020-05	D-28	
79).3										
68											
57											
36											
25	5.7							15.209) LIMIT L		
15	5.0 6			8		_		_			
	.3		7					9		10	
-6 -17	j.4										
-38	3.6							_			
-49								_			
-	60 <mark>0.009</mark>	3. 5. 7.	9. 11		5. 17.	19. 21.	23.	25.	27. 2	9. 30	
				Frequen	cy (MHz)						
_		Distance			cy (MHz)					[
Frequency	Level	Distance extrapolatio	on Over	Limit	cy (MHz) Read	Antenna		Ant	Table	Remark	
		extrapolatio Factor	Limit	Limit Line	Read Level	Factor	Loss	Pos	Pos	Remark	
(MHz)	(dBµV/r	extrapolatio Factor n) (dB)	n Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Factor (dB)	Loss (dB)		Pos		
(MHz) 0.01925	<u>(dΒμV/r</u> -1.6	extrapolatio Factor n) (dB) -80	Limit (dB) -43.52	Limit Line (dBµV/m) 41.92	Read Level (dBµV) 59.32	Factor (dB) 19.07	Loss (dB) 0.01	Pos (cm)	Pos (deg)	Average	
(MHz)	(dBµV/r	extrapolatio Factor n) (dB) -80 -80	n Limit (dB)	Limit Line (dBµV/m) 41.92	Read Level (dBµV)	Factor (dB)	Loss (dB)	Pos (cm)	Pos (deg) -		
(MHz) 0.01925 0.06912	<u>(dBµV/r</u> -1.6 -35.64	extrapolatio Factor n) (dB) -80 -80 -80 5 -80	Limit (dB) -43.52 -66.45	Limit Line (dBµV/m) 41.92 30.81 28.15	Read Level (dBμV) 59.32 25.23	Factor (dB) 19.07 19.12	Loss (dB) 0.01 0.01	Pos (cm)	Pos (deg) - -	Average Average	
(MHz) 0.01925 0.06912 0.09396	(dBµV/r -1.6 -35.64 -42.25	extrapolatio Factor n) (dB) -80 -80 5 -80 5 -80 2 -80	n Limit (dB) -43.52 -66.45 -70.4	Limit Line (dBµV/m) 41.92 30.81 28.15 26.77	Read Level (dBμV) 59.32 25.23 19.12	Factor (dB) 19.07 19.12 18.62	Loss (dB) 0.01 0.01 0.01	Pos (cm)	Pos (deg) - - -	Average Average QP	
(MHz) 0.01925 0.06912 0.09396 0.11012	(dBµV/r -1.6 -35.64 -42.25 -31.72	extrapolatio Factor n) (dB) -80 -80 5 -80 5 -80 2 -80	n Limit (dB) -43.52 -66.45 -70.4 -58.49	Limit Line (dBµV/m) 41.92 30.81 28.15 26.77 24.06	Read Level (dBμV) 59.32 25.23 19.12 29.74	Factor (dB) 19.07 19.12 18.62 18.53	Loss (dB) 0.01 0.01 0.01 0.01	Pos (cm)	Pos (deg) - - -	Average Average QP Average	
(MHz) 0.01925 0.06912 0.09396 0.11012 0.15034	(dBµV/r -1.6 -35.64 -42.25 -31.72 -34.71	extrapolatio Factor n) (dB) -80 -80 -80 -80 -80 -80 -80	n Limit (dB) -43.52 -66.45 -70.4 -58.49 -58.77	Limit Line (dBµV/m) 41.92 30.81 28.15 26.77 24.06 31.58	Read Level (dBµV) 59.32 25.23 19.12 29.74 26.63	Factor (dB) 19.07 19.12 18.62 18.53 18.65	Loss (dB) 0.01 0.01 0.01 0.01 0.01	Pos (cm) - - -	Pos (deg) - - - -	Average Average QP Average Average	
(MHz) 0.01925 0.06912 0.09396 0.11012 0.15034 0.63269	(dBµV/r -1.6 -35.64 -42.25 -31.72 -34.71 5.66	extrapolatio Factor -80 -80 -80 -80 2 -80 -80 -80 -80 -40	n Limit (dB) -43.52 -66.45 -70.4 -58.49 -58.77 -25.92	Limit Line (dBµV/m) 41.92 30.81 28.15 26.77 24.06 31.58	Read Level (dBμV) 59.32 25.23 19.12 29.74 26.63 26.5	Factor (dB) 19.07 19.12 18.62 18.53 18.65 19.15	Loss (dB) 0.01 0.01 0.01 0.01 0.01 0.01	Pos (cm) - - -	Pos (deg) - - - -	Average Average QP Average Average QP	
(MHz) 0.01925 0.06912 0.09396 0.11012 0.15034 0.63269 8.296	(dBµV/r -1.6 -35.64 -42.25 -31.72 -34.71 5.66 -2.75	extrapolation Factor (dB) -80 -80 -80 2 -80 -80 -80 -80 -40 -40	n Limit (dB) -43.52 -66.45 -70.4 -58.49 -58.77 -25.92 -32.25	Limit Line (dBµV/m) 41.92 30.81 28.15 26.77 24.06 31.58 29.5 29.5	Read Level (dBμV) 59.32 25.23 19.12 29.74 26.63 26.5 16.77	Factor (dB) 19.07 19.12 18.62 18.53 18.65 19.15 20.36	Loss (dB) 0.01 0.01 0.01 0.01 0.01 0.01 0.12	Pos (cm) - - -	Pos (deg) - - - - - - - 0 -	Average Average QP Average Average QP QP	

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

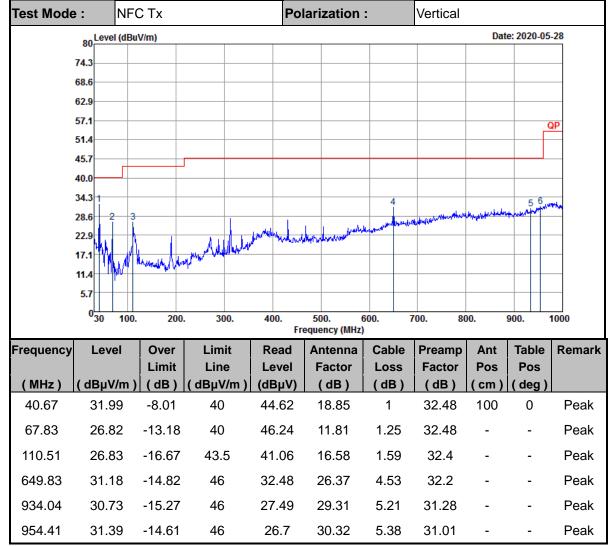
Test Mode :	le: NFC Tx				Polarization :			Vertical			
90_Level (dBuV/m) Date: 2020-05-28											
	9.3 8.6										
	7.9										
47	7.1										
	5.4							15.20)9 LIMIT L	INE	
	5.7			9							
	4.3 7					10			11		
	6.4	8							+		
-17	7.1		_						_		
	7.9 6										
	9.3										
	.60 _{0.009} 3.	5. 7.	9. 1	1. 13. 1	5. 17.	19.	21. 23.	25.	27. 2	9. 30	
				Frequen				20.			
Frequency	Level	Distance extrapolation	Over	Limit	Read	Anten	na Cable	Ant	Table	Remark	
		Factor	Limit	Line	Level	Facto		Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dB)	(dBµV/m)		(dB		(cm)	(deg)	•	
0.01925	-9.75	-80	-51.67		51.17	19.0		-	-	Average	
0.06915	-41.99	-80	-72.8	30.81	18.88	19.12		-	-	Average	
0.11	-41.37	-80	-68.15	26.78	20.09	18.5	3 0.01	-	-	QP	
0.11	-41.37	-80	-68.15	26.78	20.09	18.5	3 0.01	-	-	QP	
0.11008	-40.74	-80	-67.51	26.77	20.72	18.5	3 0.01	-	-	Average	
0.15374	-36.48	-80	-60.35	23.87	24.85	18.6	6 0.01	-	-	Average	
0.59514	0.46	-40	-31.65	32.11	21.29	19.1	6 0.01	-	-	QP	
8.28	-2.19	-40	-31.69	29.5	17.33	20.3	6 0.12	-	-	QP	
13.56	20.99	-40	-8.51	29.5	39.79	21.0	6 0.14	-	-	QP	
20.212	-1.89	-40	-31.39	29.5	16.22	21.7	2 0.17	-	-	QP	
28.295	-1.42	-40	-30.92	29.5	16.02	22.3	6 0.2	100	0	QP	

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)

3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor


4. 13.56 MHz is fundamental signal which can be ignored

Test Mode	e :	NFC	СТх		Po	larization	:	Horizont	al		
	80	el (dBu\	//m)						Dat	e: 2020-05	-28
	74.3						_				_
	68.6									_	_
	62.9										_
	57.1										χP
	51.4										<u> </u>
	45.7										
	40.0										
	34.3		3	4						6	Ante
	28.6					under the start of	. Martin we	- Malakel Mund	halgerstown	haverburn	
	22.9	,		walnut wat	Municipality	under all ad with the start	defense.				
	17.1	h. Junh	Hornada / W								
	11.4	r vr					_				
	5.7										
	0 ₃₀	100.	200.	300.	400. Fr	500. (equency (MHz)		700. 8	00.	900.	1000
	- I	-						I_	-		[
requency	Lev	el	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµ\	//m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
40.67	22.4		-17.53	40	35.1	18.85	1	32.48	-	-	Peak
67.83	17.7	73	-22.27	40	37.15	11.81	1.25	32.48	-	-	Peak
190.05	32.4	46	-11.04	43.5	48.47	14.51	2.05	32.57	100	0	Peak
312.27	34.4	19	-11.51	46	44.98	19.05	2.63	32.17	-	-	Peak
324.88	29.0	06	-16.94	46	39.38	19.15	2.67	32.14	-	-	Peak
957.32	31.	5	-14.5	46	26.54	30.51	5.42	30.97	-	-	Peak

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor= Level.