

FCC Test Report

Equipment	:	Tablet
Brand Name	:	Getac
Model No.	:	F110
FCC ID	:	QYLF110
Standard	:	47 CFR FCC Part 15.209
Operating Band	:	83 kHz (channel frequency 83kHz)
FCC Classification	:	DCD (for Part 15 Low Power Transmitter Below 1705 kHz)
Applicant	:	Getac Technology Corporation. 5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang Dist., Taipei City 11568, Taiwan, R.O.C.
Manufacturer	:	Getac Technology(Kunshan)Co., LTD. No. 269, No. 2 Avenue, Kunshan Comprehensive Free Trade Zone, Jiangsu Province, P.R.C

The product sample received on Nov. 5, 2013 and completely tested on Nov. 07, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

10 5

Wayne (Hsu

Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	.5
1.1	Information	.5
1.2	Accessories and Support Equipment	.6
1.3	Testing Applied Standards	
1.4	Testing Location Information	.6
1.5	Measurement Uncertainty	.7
2	TEST CONFIGURATION OF EUT	.8
2.1	The Worst Case Modulation Configuration	.8
2.2	Test Channel Frequencies Configuration	.8
2.3	The Worst Case Measurement Configuration	8
2.4	Test Setup Diagram	.9
3	TRANSMITTER TEST RESULT1	1
3.1	AC Power-line Conducted Emissions1	1
3.2	Transmitter Radiated Emissions1	5
4	TEST EQUIPMENT AND CALIBRATION DATA	26

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

	Conformance Test Specifications									
Report Clause	Ref. Std. Clause	Description	Description Measured		Result					
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied					
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]:0.192415MHz 34.75 (Margin 19.18dB) - AV 52.11 (Margin 11.82dB) - QP	FCC 15.207	Complied					
3.2	15.209	Transmitter Radiated Emissions	[dBuV/m at 3m]:385.990MHz 37.15 (Margin 8.85dB) - PK	FCC 15.209	Complied					

Revision History

Report No.	Version	Description	Issued Date
FR390613-04	Rev. 01	Initial issue of report	Nov 20, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information							
Frequency Range	Modulation	Ch. Frequency (kHz)	Channel Number	Field Strength (dBuV/m)			
83 kHz	OOK	83	1	81.30			
Note 1: Field strength p	erformed peak leve	l at 3m.					

1.1.2 Antenna Information

	Antenna Category					
	Equipment placed on the market without antennas					
\boxtimes	Integral antenna (antenna permanently attached)					
	External antenna (dedicated antennas)					

1.1.3 Type of EUT

	Identify EUT				
EUT Serial Number N/A					
Pre	sentation of Equipment	Production ; D Pre-Production ; Prototype			
		Type of EUT			
\square	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle					
Operated normally mode for worst duty cycle					
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)					
⊠ 100%					

1.1.5 EUT Operational Condition

Supply Voltage	\boxtimes	AC mains	\boxtimes	DC		
Type of DC Source		Internal DC supply	\boxtimes	External DC adapter	\boxtimes	Battery

1.2 Accessories and Support Equipment

Accessories Information						
AC Adapter 1	Brand Name	DELTA	Model Name	ADP-65WH BB		
	Power Rating	I/P: 100~240Vac, 1.5A ; 0	D/P: 19 Vdc, 3.	42A		
AC Adapter 2	Brand Name	Getac	Model Name	ADM-9019M		
AC Adapter 2	Power Rating	I/P: 100~240Vac, 1.5A ; 0	D/P: 19 Vdc, 4.	74A		
Li-ion Battery	Brand Name	Getac Technology Corp	Model Name	BP3S1P2160-S		
	Power Rating	11.4Vdc, 2160mAh				
Dock	Brand Name	Getac	Model Name	F110 office dock		
Digitizer	Brand Name	KYE	Model Name	T116 EMR Digitizer		

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009

1.4 Testing Location Information

	Testing Location						
\boxtimes	HWA YA	ADD) :	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.			
		TEL	:	886-3-327-3456	FAX : 886-3-318-0055		
Test Condition			Test Site No.	Test Engineer	Test Environment		
AC Conduction		CO04-HY	David	21°C / 48%			
Ra	diated Emiss	sion		03CH03-HY	Allen	24.9°C / 62%	

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Ν	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.26 dB
Emission bandwidth		±1.42 %
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB
	0.15 – 30 MHz	±0.42 dB
	30 – 1000 MHz	±0.51 dB
All emissions, radiated	9 – 150 kHz	±2.49 dB
	0.15 – 30 MHz	±2.28 dB
	30 – 1000 MHz	±2.56 dB
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.42 %
Duty Cycle		±1.42 %

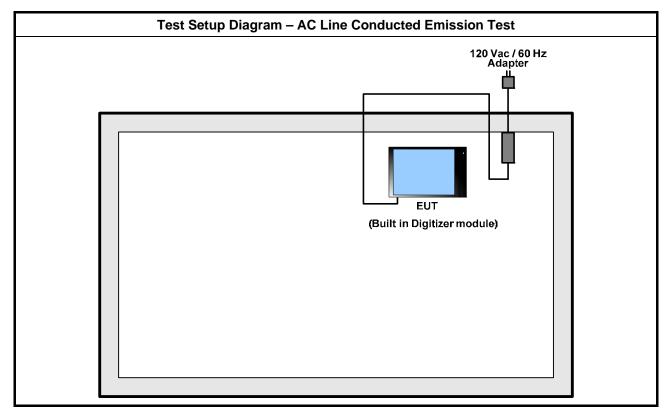
2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

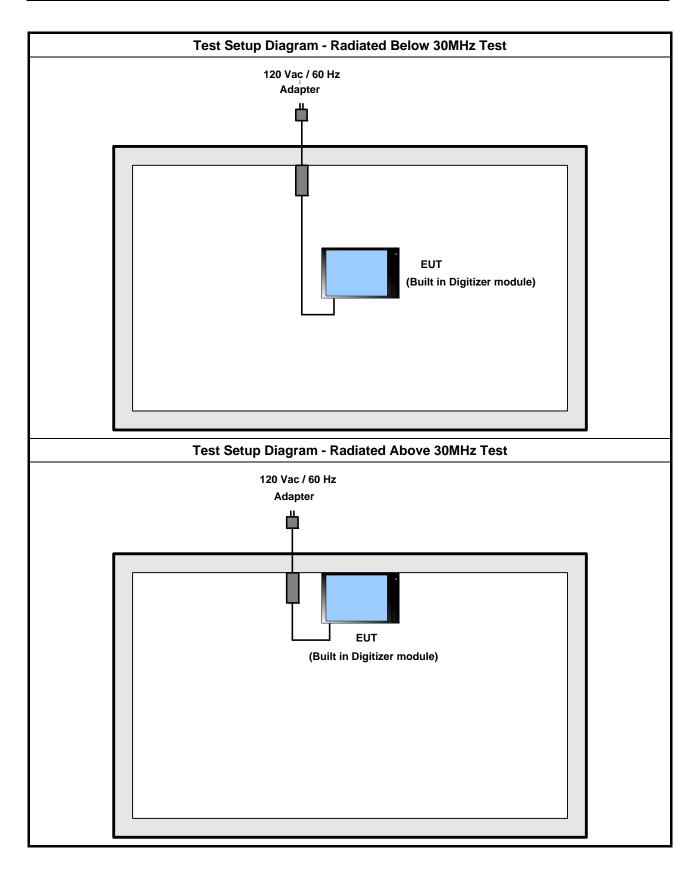
Mode	Field Strength (dBuV/m at 3m)
Touch-Panel	86.11

2.2 Test Channel Frequencies Configuration

Mode	Test Channel Frequencies (kHz)
Touch-Panel	83-(F1)


2.3 The Worst Case Measurement Configuration

Th	e Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	AC Power & Touch Panel


Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts			
Tests Item	Emission Bandwidth, Field Transmitter Radiated Unw	l Strength of Fundamental E anted Emissions	missions			
Test Condition	Radiated measurement					
	EUT will be placed in	fixed position.				
User Position		mobile position and operati ree orthogonal planes. The				
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.					
Operating Mode	1. AC Power & Touc	h Panel				
Mode	Touch-Panel					
	X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT						

2.4 Test Setup Diagram

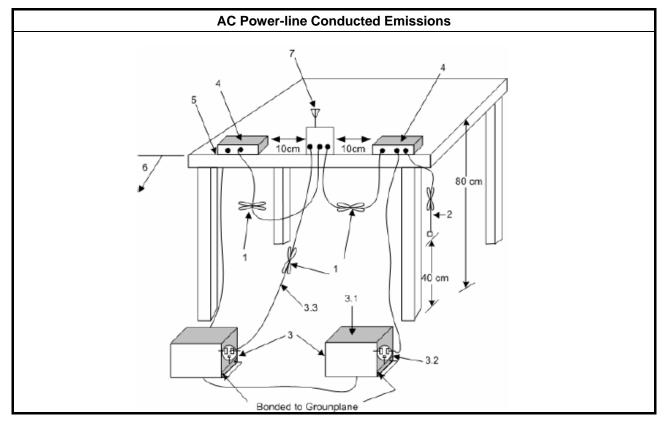
3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Po	wer-line Conducted Emissions I	_imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
5-30 Note 1: * Decreases with the logarithn		50

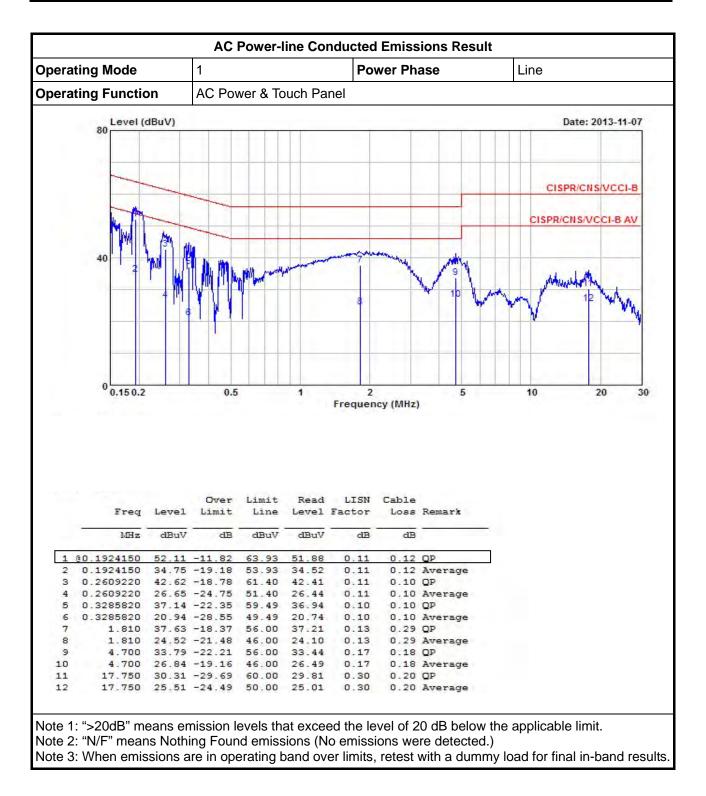
3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.
\boxtimes	If AC conducted emissions fall in operating band, then following below test method confirm final result.
	 Accept measurements done with a suitable dummy load replacing the antenna under the following conditions: (1) Perform the AC line conducted tests with the antenna connected to determine compliance with FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load to determine compliance with FCC 15.207 limits within the transmitter's fundamental emission band.
	 For a device with a permanent antenna operating at or below 30 MHz, accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) Perform the AC line conducted tests with the permanent antenna to determine compliance with the FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load in lieu of the permanent antenna to determine compliance with the FCC 15.207 limits within the transmitter's fundamental emission band;

3.1.4 Test Setup



g Functio	0.28	AC Pov	<u>а т</u>							
80 Level (c	dBuV)		ver & Ic	ouch Pa	nel					
80							Contraction and the second		Date: 20	013-11-07
1										
										1
-	-								CISPR/CNS	VCCLB
-						_			citi i citi	10010
	-								CISPR/CNS/VC	CLRAV
1. 1									ciar Nonave	CHUAV
- DBAUL	11									
40				a set	-	wynew				
		1 Cal	when	- marine		1 mg	1. Martin		had a standbar	
1 ⁹⁹			Martin				W. to Such		Mund Hall Lan	h
1	Y HAU, Y					4		APR.	1 1	WW
										1 N
										1
P				9	_					
		D C C								
0,150,2	_	0.5		1	2		5	1	0 2	20 3
Freq	Level	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss 	Remark			
	dBuV	Limit dB	Line dBuV	Level	Factor 	Loss				
MHz .1924380 .1924380	dBuV 51.20 34.48	Limit dB -12.73 -19.45	Line dBuV 63.93 53.93	Level dBuV	Bactor dB 0.23	Loss dB 0.12				
MHz .1924380 .1924380 .2558610	dBuV 51.20 34.48 41.97	Limit dB -12.73 -19.45 -19.59	Line dBuV 63.93 53.93 61.56	Level dBuV 50.85 34.13 41.64	Factor dB 0.23 0.23 0.23	Loss dB 0.12 0.12 0.10	OP Average OP			
MHz .1924380 .1924380 .2558610 .2558610	dBuV 51.20 34.48 41.97 24.74	Limit dB -12.73 -19.45 -19.59 -26.82	Line dBuV 63.93 53.93 61.56 51.56	Level dBuV 50.85 34.13 41.64 24.41	Factor dB 0.23 0.23 0.23 0.23 0.23	Loss dB 0.12 0.12 0.10 0.10	OP Average OP Average			
MHz .1924380 .1924380 .2558610 .2558610 .3285820	dBuV 51.20 34.48 41.97 24.74 36.88	Limit dB -12.73 -19.45 -19.59 -26.82 -22.61	Line dBuV 63.93 53.93 61.56 51.56 59.49	Level dBuV 50.85 34.13 41.64 24.41 36.56	Factor dB 0.23 0.23 0.23 0.23 0.23 0.22	Loss dB 0.12 0.12 0.10 0.10 0.10	OP Average OP Average OP			
MHz .1924380 .1924380 .2558610 .2558610 .3285820 .3285820	dBuV 51.20 34.48 41.97 24.74 36.88 20.80	Limit dB -12.73 -19.45 -19.59 -26.82 -22.61	Line dBuV 63.93 53.93 61.56 51.56 59.49 49.49	Level dBuV 50.85 34.13 41.64 24.41	Factor dB 0.23 0.23 0.23 0.23 0.23 0.22 0.22	Loss dB 0.12 0.10 0.10 0.10 0.10 0.10	OP Average OP Average OP Average			
MHz .1924380 .1924380 .2558610 .2558610 .3285820 .3285820 2.250 2.250	dBuV 51.20 34.48 41.97 24.74 36.88 20.80 36.76 25.76	Limit dB -12.73 -19.45 -19.59 -26.82 -22.61 -28.69 -19.24 -20.24	Line dBuV 63.93 53.93 61.56 51.56 59.49 49.49 56.00 46.00	Level dBuV 50.85 34.13 41.64 24.41 36.56 20.48 36.22 25.22	Factor dB 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.26 0.26	Loss dB 0.12 0.12 0.10 0.10 0.10 0.10 0.28 0.28	OP Average OP Average OP Average			
MHz .1924380 .1924380 .2558610 .2558610 .3285820 .3285820 2.250 2.250 4.570	dBuV 51.20 34.48 41.97 24.74 36.88 20.80 36.76 25.76 34.50	Limit dB -12.73 -19.45 -19.59 -26.82 -22.61 -28.69 -19.24 -20.24 -20.24 -21.50	Line dBuV 63.93 53.93 61.56 59.49 49.49 56.00 46.00 56.00	Level dBuV 50.85 34.13 41.64 24.41 36.56 20.48 36.22 25.22 34.00	Factor dB 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.26 0.26 0.31	Loss dB 0.12 0.12 0.10 0.10 0.10 0.10 0.28 0.28 0.19	OP Average OP Average OP Average OP Average OP			
MHz .1924380 .1924380 .2558610 .2558610 .3285820 2.250 2.250 4.570 4.570	dBuV 51.20 34.48 41.97 24.74 36.88 20.80 36.76 25.76 34.50 27.16	Limit dB -12.73 -19.45 -19.59 -26.82 -22.61 -28.69 -19.24 -20.24 -21.50 -18.84	Line dBuV 63.93 53.93 61.56 59.49 49.49 56.00 46.00 56.00 46.00	Level dBuV 50.85 34.13 41.64 24.41 36.56 20.48 36.22 25.22 34.00 26.66	Factor dB 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22	Loss dB 0.12 0.12 0.10 0.10 0.10 0.10 0.28 0.28 0.19 0.19	OP Average OP Average OP Average OP Average OP Average			
MHz .1924380 .1924380 .2558610 .2558610 .3285820 .3285820 2.250 2.250 4.570 4.570 17.940	dBuV 51.20 34.48 41.97 24.74 36.88 20.80 36.76 25.76 34.50 27.16 30.29	Limit dB -12.73 -19.45 -19.59 -26.82 -22.61 -28.69 -19.24 -20.24 -20.24 -21.50	Line dBuV 63.93 53.93 61.56 51.56 59.49 49.49 56.00 46.00 56.00 46.00	Level dBuV 50.85 34.13 41.64 24.41 36.56 20.48 36.22 25.22 34.00 26.66 29.55	Factor dB 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.26 0.26 0.31 0.31 0.54	Loss dB 0.12 0.10 0.10 0.10 0.10 0.28 0.28 0.19 0.19 0.20	OP Average OP Average OP Average OP Average OP Average			
	40 0 0.15 0.2	40 0 0.15 0.2	40 0 0 0.15 0.2 0.5	40 0 0 0.15 0.2 0.5	40 0 0 0.15 0.2 0.5 1			40 0 0 0.150.2 0.5 1 2 5 Frequency (MHz)		

3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Transmitter Radiated Emissions

3.2.1 Transmitter Radiated Emissions Limit

	Transmitter Radiat	ed Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

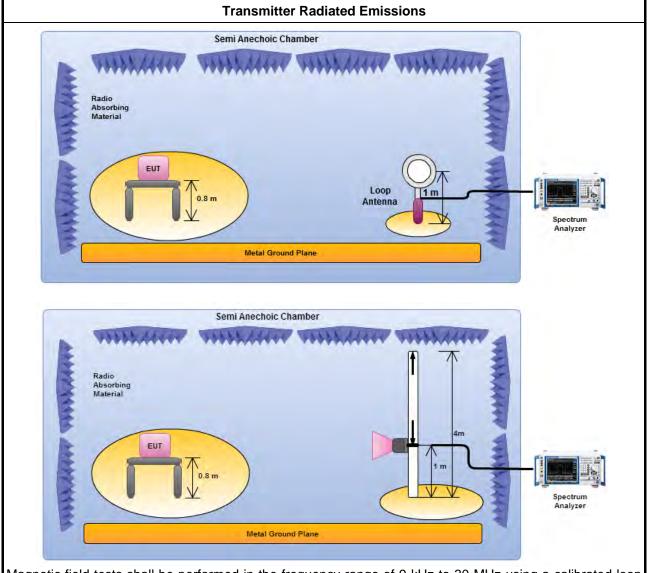
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Note 3: the frequency bands 9-90 kHz, 110-490 kHz measurements employing an average detector and other below 1GHz measurements employing a CISPR quasi-peak detector.

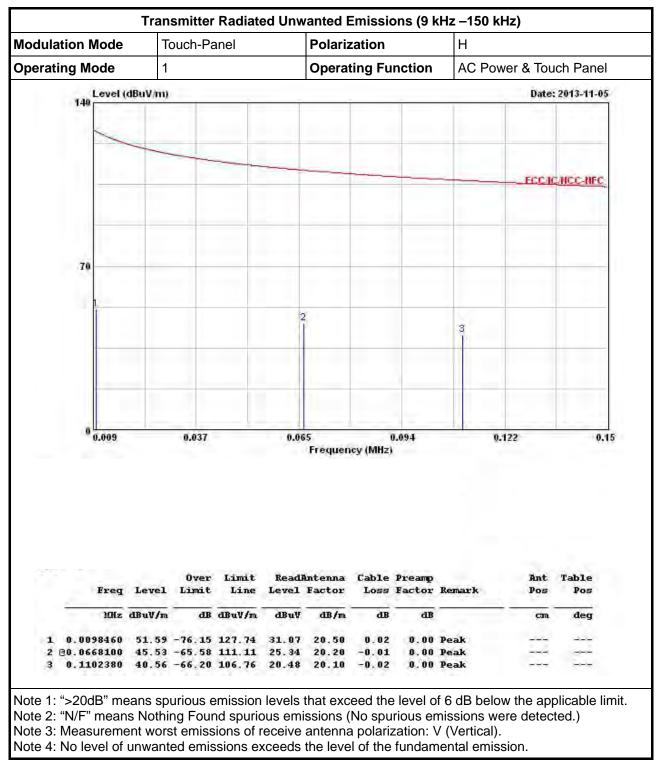
3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

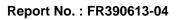


3.2.3 Test Procedures

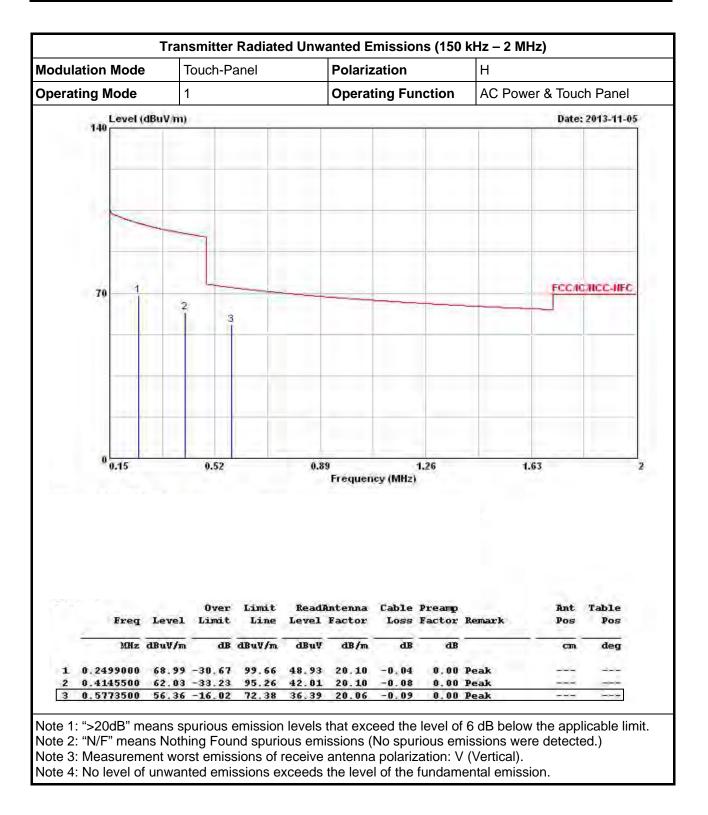
	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1 GHz and test distance is 3m.
\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz. The frequency bands 9-90 kHz, 110-490 kHz measurements employing an average detector and other below 30MHz measurements employing a CISPR quasi-peak detector. Test distance is 3m.
\boxtimes	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.
\boxtimes	The any unwanted emissions level shall not exceed the fundamental emission level.
\square	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



3.2.4 Test Setup



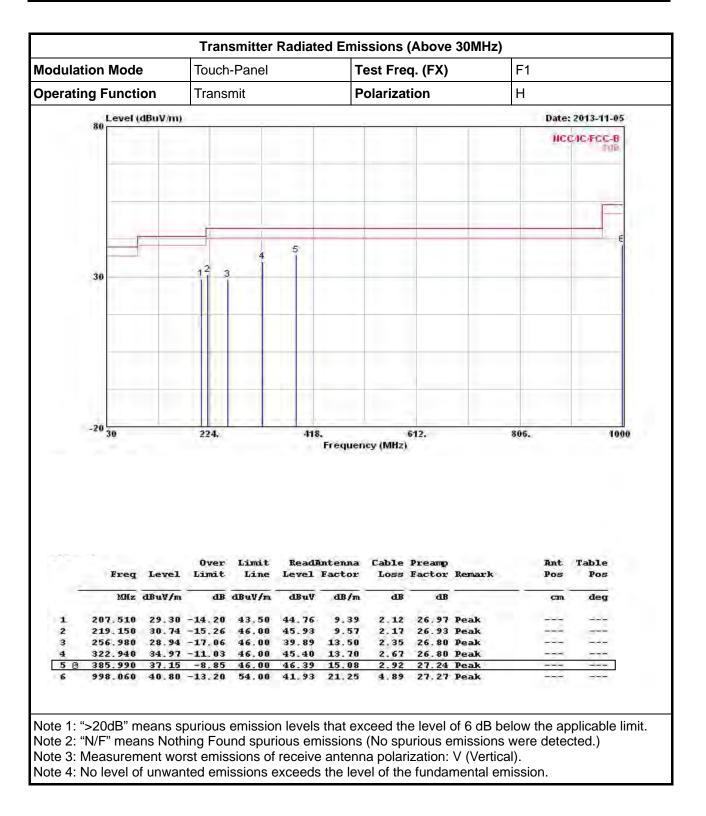
Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. The center of the loop shall be 1 m above the ground. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna. the antenna height shall be varied from 1 m to 4 m.



3.2.5 Transmitter Radiated Emissions (Below 30MHz)

	on Mode	e 7	Fouch-P	anel		Polariz	ation		Н		
peratin	g Mode	1	1			Operat	ting Fu	nction	AC Power & Touch Panel		
	40	dBuV/m)			_					Date:	2013-11-05
1									1		
						_			_		
	70		_						_	FCCIE	CHICCHIFC
									_		
	1		_		2					3 	
	0 2		3.2		4.	ł Freguen	cy (MHz)	5.6		6.8	
			Over	Limit	Readi Level	Antenna	1 C	Preamp Factor	Remark	Ant Pos	Table Pos
	Freq	Level	Limit	Line	neser	ractor					
_		Level dBuV/m		dBuV/m	dBuV	dB/m	dB	dB			deg
1 2 3		dBuV/m 40.61 37.37	dB			dB/m 20.00 20.00	_	0.00 0.00	Peak Peak Peak		

erating Mode 1 Operating Function AC Power & Touch Panel		on Mode	T	ouch-Pa	anel		Polariz	zation		н			
	perating	g Mode	1				Operating Function			AC Po	AC Power & Touch Panel		
70			dBuV/m)								Date:	2013-11-0	
		70									FCCA	JAICC-HF	
			1				2				3		
0 8 11.4 14.8 18.2 21.6 Frequency (MHz)		0 8		11.4	_	14.				1	21.6		
				Over	Limit	Read	Intenna	Cable	Preamp		Ant	Table	
				Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	
MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg		MHz	dBuV/m	Limit dB	Line dBuV/m	Level dBuV	Factor dB/m	Loss dB	Factor dB		Pos	Pos	
		MHz 10.550	dBuV/m 35.12	Limit dB -34.42	Line dBuV/m 69.54	Level dBu¥ 15.47	Factor dB/m 20.10	Loss dB -0.45	Factor dB 0.00	Peak	Pos	Pos	


	lation Mode		Touch-Panel			Polariz	zation		Н	Н		
peratin	ting Mode		1			Operating Function			AC Po	AC Power & Touch Panel		
	Level (dBuV/m)	W/m) Date: 2013-11-05									
	140											
									11	-	1	
	1.0								-			
				-								
			_							EPIC AL	CHEC-HEC	
	70									FLUI	-ncc-nrc	
								0			· ·	
									1.0			
	1			2					3			
					_	_		-	_	_		
	0 25		26.		27	, Frequen	icy (MHz	28.		29.	3	
			Over	Limit	Readi	Frequen	Cable) Preamp		Ant	Table	
	Freq	Level	Over Limit	Line	Readi Level	Frequen Antenna Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos	
	Freq	dBu¥/m	Over Limit dB		Readi	Frequen	Cable	Preamp Factor	Remark	Ant	Table	
1 2	Freq	dBuV/m 33.01	Over Limit	Line	Readi Level	Frequen Antenna Factor	Cable Loss	Preamp Factor dB 0.00	Remark	Ant Pos	Table Pos	

	tion Mode	•	Touch-	-Panel		Те	Test Freq. (FX)			F1		
erati	ing Functi	on	Transmit			Ро	Polarization			V		
	80	dBuV/m)									Date:	: 2013-11-0
								-	1.1		HC	CAC/FCC-B
	_								_	_		-
	-	-	-					1	-	-	_	3
	30											
		2	3	4	5							
				-				-	_			
									1			
				-								
	-20 30		224.		418	l. Frequen		612.		806.		10
		Level	224. Over Limit	Limit	Readi	And a second second	cy (MHz) Cable	Preamp	Remark	806.	Ant Pos	10 Table Pos
	Freq	Level dBuV/m	Over Limit		Readi	Frequen	cy (MHz) Cable	Preamp Factor	Remark	806.		Table
1,2	Бгед 1042 30.000	dBuV/m 20.89	Over Limit dB -19.11	Line dBuV/m 40.00	Readi Level dBuV 28.88	Frequen Intenna Factor dB/m 18.85	Cable Loss dB 0.77	Preamp Factor dB 27.61	Peak	806.	Pos cm	Table Pos deg
2	Ereq MHz 30.000 97.900 210.420	dBuV/m 20.89 22.00 23.59	Over Limit dB -19.11 -21.50 -19.91	Line dBuV/m 40.00 43.50 43.50	ReadJ Level dBuV 28.88 37.26 38.97	Frequen Entenna Factor dB/m 18.85 10.69 9.45	Cable Loss dB 0.77 1.44 2.13	Preamp Factor dB 27.61 27.39 26.96	Peak Peak Peak	806.	Pos cm	Table Pos
2	Ereq 10Hz 30.000 97.900	dBuV/m 20.89 22.00 23.59 24.74	Over Limit dB -19.11 -21.50 -19.91 -21.26	Line dBuV/m 40.00 43.50 43.50 43.50	ReadJ Level dBuV 28.88 37.26 38.97 35.17	Frequen Antenna Factor dB/m 18.85 10.69 9.45 13.70	Cable Loss dB 0.77 1.44 2.13 2.67	Preamp Factor dB 27.61 27.39 26.96	Peak Peak Peak Peak Peak	806.	Pos cm	Table Pos deg

3.2.6 Transmitter Radiated Emissions (Above 30MHz)

3.2.7 Test Result of Field Strength of Fundamental Emissions

Field Strength of Fundamental Emissions Result										
Modulation Mode	Frequency (MHz)	Fundamental (dBuV/m)@3m	Polarization	Margin (dB)	Limit (dBuV/m)@3m					
Touch-Panel	F1	81.30	Н	27.92	109.22					
Re	Result Complied									
Note 1: Measurer	ment worst emissi	ons of receive ante	nna polarization: \	/ (Vertical).						

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2013	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRON IK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2013	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Nov. 09, 2012	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Dec. 01, 2012	Radiation (03CH03-HY)
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May. 03, 2013	Radiation (03CH03-HY)
Spectrum	R&S	FSP30	100023	9kHz ~ 30GHz	Jul. 20, 2013	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 21, 2013	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Jan. 17, 2013	Radiation (03CH03-HY)
Turn Table	EM Electronics	EM Electronics	060615	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	MF	MF-7802	MF780208179	1 ~ 4 m	N/A	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	Dec. 02, 2012	Radiation (03CH03-HY)

Note: Calibration Interval of instruments listed above is two year.