

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

Report No.: RFCDVB-WTW-P24010023-5

FCC ID: QYLAX211NG

Product: Wireless Module

Brand: Getac

Model No.: AX211NGW

Received Date: 2024/1/20

Test Date: 2024/4/15 ~ 2024/4/16

Issued Date: 2024/4/23

Applicant: Getac Technology Corporation.

Address: 5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang Dist., Taipei City 11568,

Taiwan, R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kewi Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003

Designation Number:

Approved by	Jeven, Lin	. Date:	2024/4/23	
Approved by:		, Date:	2024/4/23	
·				

Jeremy Lin / Project Engineer

This test report consists of 30 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Gina Liu / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Rele	lease Control Record	3
1	Certificate	4
2	Summary of Test Results	5
2. ²		
3	General Information	6
3.3 3.3 3.4 3.6 3.7 3.8	Antenna Description of EUT	
4	Test Instruments	11
4.7 4.3 4.4	AC Power Conducted Emissions	11 12
5	Limits of Test Items	14
5.2 5.2 5.2 5.4	5.2 AC Power Conducted Emissions	14 14
6	Test Arrangements	16
6.2 6.2 6.2 6.3 6.3 6.4 6.4	5.1.1 Test Setup	
7	Test Results of Test Item	20
7.2 7.2 7.4	7.2 AC Power Conducted Emissions	23 25
8	Pictures of Test Arrangements	29
9	Information of the Testing Laboratories	30

Release Control Record

Issue No.	Description	Date Issued
RFCDVB-WTW-P24010023-5	Original release.	2024/4/23

Report No.: RFCDVB-WTW-P24010023-5 Page No. 3 / 30 Report Format Version: 7.1.1

1 Certificate

Product: Wireless Module

Brand: Getac

Test Model: AX211NGW

Sample Status: Engineering sample

Applicant: Getac Technology Corporation.

Test Date: 2024/4/15 ~ 2024/4/16

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

Measurement ANSI C63.10-2013

procedure: KDB 291074 D02 EMC Measurement v01

KDB 789033 D02 General UNII Test Procedure New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)						
Clause	Test Item	Result	Remark			
15.407(a)(3)	RF Output Power	Pass	Meet the requirement of limit.			
15.407(a)(3)	Power Spectral Density	N/A	Refer to Note			
15.407(b)(9)	AC Power Conducted Emissions	Pass	Minimum passing margin is -13.22 dB at 0.52347 MHz			
15.407(b)(9)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -8.5 dB at 36.79 MHz			
15.407(b)(5) 15.407(b)(10)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -4.7 dB at 5925.00 MHz			
15.407(e)	6 dB Bandwidth	N/A	Refer to Note			
15.407(g)	Frequency Stability	N/A	Refer to Note			
15.203	Antenna Requirement	Pass	Antenna connector is MHF-4 not a standard connector.			

Notes:

- 1. Only test item of Output Power, AC Power Conducted Emissions and Unwanted Emissions were performed for this report. Other testing data please refer to module report No.: 210209-01.TR09 (Brand: Intel® Wi-Fi 6E AX211, Model: AX211NGW).
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)
RF Output Power	-	1.371 dB
AC Power Conducted Emissions	9 kHz ~ 30 MHz	2.88 dB
Linuxantad Emissions halow 1 CHz	9 kHz ~ 30 MHz	2.44 dB
Unwanted Emissions below 1 GHz	30 MHz ~ 1 GHz	2.95 dB
I Inwented Emissions above 1 CHz	1 GHz ~ 18 GHz	2.26 dB
Unwanted Emissions above 1 GHz	18 GHz ~ 40 GHz	1.94 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

Report No.: RFCDVB-WTW-P24010023-5 Page No. 5 / 30 Report Format Version: 7.1.1

3 General Information

3.1 General Description of EUT

Product	Wireless Module
Brand	Getac
Test Model	AX211NGW
Status of EUT	Engineering sample
	End-product:
Power Supply Rating	19.0 Vdc (from adapter)
	10.8 Vdc (from battery)
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode 1024QAM for OFDMA in 11ax mode
Modulation Technology	OFDM, OFDMA
Transfer Rate	Up to 2402.0 Mbps
Operating Frequency	5.815 GHz ~ 5.885 GHz
Number of Channel	802.11a, 802.11n (HT20), 802.11ax (HE20):3 802.11n (HT40), 802.11ax (HE40):2 802.11ac (VHT80), 802.11ax (HE80):1 802.11ac (VHT160), 802.11ax (HE160):1
Output Power	EIRP: 369.166 mW (25.67 dBm)

Note:

- 1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report to module report No.: 210209-01.TR09 (Brand: Intel® Wi-Fi 6E AX211, Model: AX211NGW). The difference compared with original report are adding End-product. Therefore, only Output Power, AC Power Conducted Emission and Radiated Emissions were verified and recorded in this report. AC Power Conducted Emission and Radiated Emission tests according to module report radiated emission worst channel, and Conducted power were re-test.
- 2. The EUT is authorized for use in specific End-product. Please refer to below for more details.

Product	Brand	Model	Difference
		S510	
Notebook	Getac	S510Y (Y= 10 characters, Y can be 0 to 9, A to Z, a to z, "/", "\", "-", "_" or blank for marketing purpose)	marketing purpose

3. The End-product contains following accessory devices.

Battery	-			
Brand	Model	Specification		
Getac	BP3S2P3450P-04	Power Rating : Rating: 10.8Vdc , 6600mAh, 72Wh Typical Capacity: 6900mAh, 75Wh		
AC Adapter 1				
Brand	Model	Specification		
FSP	FSP065-RBBN3	AC Input : 100-240 Vac ; 50-60 Hz ; 1.5 A DC Output : 19.0Vdc ; 3.42A, 65.0W DC Output Cable : 1.45M / 1 core		
AC Adapter 2				
Brand	Model	Specification		
FSP	FSP090-ABBN3	AC Input : 100-240 Vac ; 50-60 Hz ; 1.2 A DC Output : 19.0Vdc ; 4.74A, 90.0W DC Output Cable : 1.2M / 1 core		
Touch Pen				
Brand		Model		
Getac	340GA8900001			

^{*}After the pretesting, adapter 2 mode is found to be the worse case and therefore had been chosen for final test.

^{4.} The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

Ant	enna No.	2.4GHz 2400-2483.5 MHz	5.2GHz 5150-5250 MHz	5.3GHz 5250-5350 MHz	5.6GHz 5470-5725 MHz	5.8GHz 5725-5850 MHz	5.9GHz 5850-5895 MHz	6.2GHz 5925-6425 MHz	6.5GHz 6425-6525 MHz	6.7GHz 6525-6875 MHz	7.0GHz 6875-7125 MHz	Antenna Type	Connector Type
	1	2.41	1.39	1.21	2.45	2.41	2.39	2.18	1.46	1.83	1.56	PIFA	MHF-4
	2	1.68	1.22	1.17	1.8	1.78	0.52	1.2	1.18	1.14	2.3	PIFA	MHF-4

^{*} Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2. The EUT incorporates a MIMO function:

5 GHz Band					
Modulation Mode	TX & RX Co	nfiguration			
802.11a	1Tx Diversity	1Rx diversity			
802.11n (HT20)	2TX	2RX			
802.11n (HT40)	2TX	2RX			
802.11ac (VHT80)	2TX	2RX			
802.11ac (VHT160)	2TX	2RX			
802.11ax (HE20)	2TX	2RX			
802.11ax (HE40)	2TX	2RX			
802.11ax (HE80)	2TX	2RX			
802.11ax (HE160)	2TX	2RX			

Note:

Report No.: RFCDVB-WTW-P24010023-5 Page No. 7 / 30 Report Format Version: 7.1.1

The modulation and bandwidth are similar for 802.11n mode for 20 MHz (40 MHz), 802.11ac mode for 80 MHz (160 MHz) and 802.11ax mode for 20 MHz (40 MHz, 80 MHz, 160 MHz) therefore the manufacturer will control the power for 802.11n/ac mode is same as the 802.11ax mode or lower than it and investigated worst case to representative mode in test report.

3.3 Channel List

3 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency	Channel	Frequency
*169	5845 MHz	173	5865 MHz	177	5885 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
*167	5835 MHz	175	5875 MHz

1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency
*171	5855 MHz

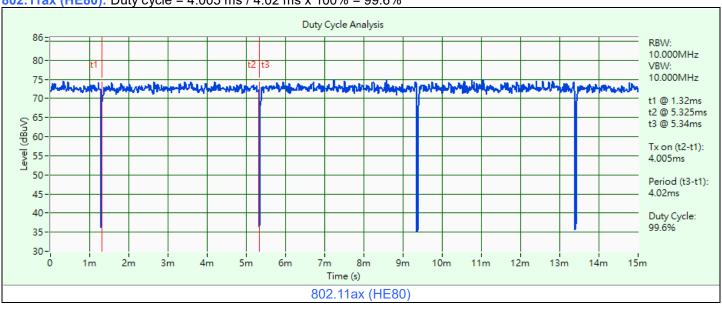
1 channel is provided for 802.11ac (VHT160), 802.11ax (HE160):

Channel	Frequency
*163	5815 MHz

Note: * U-NII-3 & -4 span channels.

Report No.: RFCDVB-WTW-P24010023-5 Page No. 8 / 30 Report Format Version: 7.1.1

3.4 Test Mode Applicability and Tested Channel Detail

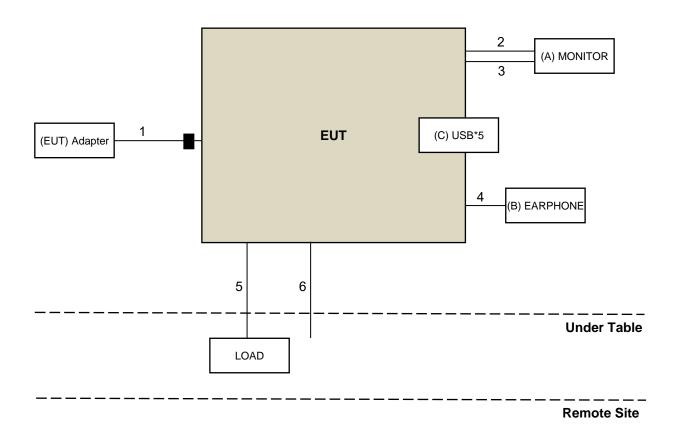

Following channel(s) was (were) selected for the final test as listed below:

Test Item	Ant. Mode	Mode	Tested Channel	Modulation	Data Rate Parameter
	SISO B	802.11a	169, 173, 177	BPSK	6Mb/s
		802.11n (HT20)	169, 173, 177	BPSK	MCS0
		802.11n (HT40)	167, 175	BPSK	MCS0
	MIMO	802.11ac (VHT80)	171	BPSK	MCS0
RF Output Power		802.11ac (VHT160)	163	BPSK	MCS0
		802.11ax (HE20)	169, 173, 177	BPSK	MCS0
		802.11ax (HE40)	167, 175	BPSK	MCS0
		802.11ax (HE80)	171	BPSK	MCS0
		802.11ax (HE160)	163	BPSK	MCS0
AC Power Conducted Emissions	MIMO	802.11ax (HE80)	171	BPSK	MCS0
Unwanted Emissions below 1 GHz	MIMO	802.11ax (HE80)	171	BPSK	MCS0
Unwanted Emissions above 1 GHz	MIMO	802.11ax (HE80)	171	BPSK	MCS0

Note: The EUT is designed to be positioned on the NB Mode only.

3.5 Duty Cycle of Test Signal

802.11ax (HE80): Duty cycle = 4.005 ms / 4.02 ms x 100% = 99.6%



3.6 Test Program Used and Operation Descriptions

Controlling software DRTU 22.100.1.1 has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 Connection Diagram of EUT and Peripheral Devices

3.8 Configuration of Peripheral Devices and Cable Connections

	ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
	Α	Monitor	DELL	A14S2421HSXmTW	CN-01KWFW- WSL00-24C-711B	N/A	Provided by Lab
	В	EARPHONE	APPLE	MB77PFEB	N/A	N/A	Provided by Lab
ſ	С	USB*5	SanDisk	SDDDC3-032G	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	ADAPTER	1	1.2	Υ	1	Accessory of EUT
2	HDMI	1	1.8	Υ	0	Provided by Lab
3	DP	1	1.8	Υ	0	Provided by Lab
4	AUDIO	1	1.2	N	0	Provided by Lab
5	LAN	1	1.8	N	0	Provided by Lab
6	RS232	1	1.5	N	0	Provided by Lab

Report No.: RFCDVB-WTW-P24010023-5 Page No. 10 / 30 Report Format Version: 7.1.1

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Peak Power Analyzer Keysight	8990B	MY51000485	2024/1/21	2025/1/20
Wideband Power Sensor	N1923A	MY58020002	2024/1/18	2025/1/17
Keysight	N 1923A	MY58140009	2024/1/18	2025/1/17

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2024/4/16

4.2 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohm terminal resistance HUBER+SUHNER	E1-011315	13	2023/11/22	2024/11/21
50 ohm terminal resistance	E1-011279	04	2023/11/22	2024/11/21
50 onin terminal resistance	E1-011280	05	2023/11/22	2024/11/21
DC-LISN Schwarzbeck	NNBM 8126G	8126G-069	2023/11/7	2024/11/6
EMI Test Receiver R&S	ESCI	100412	2023/8/23	2024/8/22
Fixed Attenuator SGH	BNC10W10dB	PAD-COND2-01	2023/9/2	2024/9/1
LISN	ESH2-Z5	100100	2024/3/6	2025/3/5
R&S	ESH3-Z5	100312	2023/9/12	2024/9/11
RF Coaxial Cable Woken	5D-FB	Cable-cond2-01	2023/9/2	2024/9/1
Software BVADT	BVADT_Cond_ V7.4.1.0	N/A	N/A	N/A
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2023/8/31	2024/8/30

Notes:

1. The test was performed in HY - Conduction 2.

2. Tested Date: 2024/4/15

4.3 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower &Turn Max-Full	MFA-440H	AT93021705	N/A	N/A
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-472	2023/10/16	2024/10/15
EXA Signal Analyzer Agilent	N9010A	MY52220207	2023/12/28	2024/12/27
Loop Antenna Electro-Metrics	EM-6879	269	2023/9/23	2024/9/22
Loop Antenna TESEQ	HLA 6121	45745	2023/8/8	2024/8/7
MXE EMI Receiver Keysight	N9038A	MY55420137	2023/5/3	2024/5/2
Preamplifier	EMC 330H	980112	2023/9/27	2024/9/26
EMCI	EMC001340	980201	2023/9/27	2024/9/26
RF Coaxial Cable Woken	8D-FB	Cable-Ch10-01	2023/9/27	2024/9/26
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MFT-201SS	N/A	N/A	N/A
Turn Table Controller Max-Full	MG-7802	N/A	N/A	N/A

Notes:

1. The test was performed in HY - 966 chamber 5.

2. Tested Date: 2024/4/15

4.4 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower &Turn Max-Full	MFA-440H	AT93021705	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	7	N/A	N/A
EXA Signal Analyzer Agilent	N9010A	MY52220207	2023/12/28	2024/12/27
Horn Antenna	BBHA 9120D	9120D-969	2023/11/12	2024/11/11
Schwarzbeck	BBHA 9170	148	2023/11/12	2024/11/11
MXE EMI Receiver Keysight	N9038A	MY55420137	2023/5/3	2024/5/2
Preamplifier	EMC 012645	980115	2023/9/27	2024/9/26
EMCI	EMC 184045	980116	2023/9/27	2024/9/26
	EMC102-KM-KM-600	150928	2023/7/8	2024/7/7
RF Coaxial Cable	EMC102-KM-KM-3000	150929	2023/7/8	2024/7/7
EMCI	EMC104-SM-SM- 8000+3000	171005	2023/9/27	2024/9/26
RF Coaxial Cable HUBER+SUHNER	SUCOFLEX 104	EMC104-SM-SM- 1000(140807)	2023/9/27	2024/9/26
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MFT-201SS	N/A	N/A	N/A
Turn Table Controller Max-Full	MG-7802	N/A	N/A	N/A

Notes:

1. The test was performed in HY - 966 chamber 5.

2. Tested Date: 2024/4/15

5 Limits of Test Items

5.1 RF Output Power

Device Category	Limit (Max Average Power)	
Indoor access point	EIRP 36 dBm	
Subordinate device	EIRP 36 dBm	
Client device EIRP 30 dBm		
Note: For all U-NII-4 and U-NII-3 & -4 span channels shall met above EIRP values.		

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

For power measurements on all other devices: Array Gain = 10 log(N_{ANT}/N_{SS}) dB.

5.2 AC Power Conducted Emissions

Fraguency (MHz)	Conducted Limit (dBuV)		
Frequency (MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.3 Unwanted Emissions below 1 GHz

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- Emission level (dBuV/m) = 20 log Emission level (uV/m).

Report No.: RFCDVB-WTW-P24010023-5 Page No. 14 / 30 Report Format Version: 7.1.1

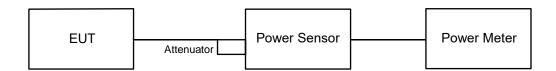
5.4 Unwanted Emissions above 1 GHz

- (i) For an indoor access point or subordinate device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of 15 dBm/MHz and shall decrease linearly to an e.i.r.p. of −7 dBm/MHz at or above 5.925 GHz.
- (ii) For a client device, all emissions at or above 5.895 GHz shall not exceed an e.i.r.p. of −5 dBm/MHz and shall decrease linearly to an e.i.r.p. of −27 dBm/MHz at or above 5.925 GHz.
- (iii) For a client device or indoor access point or subordinate device, all emissions below 5.725 GHz shall not exceed an e.i.r.p. of −27 dBm/MHz at 5.65 GHz increasing linearly to 10 dBm/MHz at 5.7 GHz, and from 5.7 GHz increasing linearly to a level of 15.6 dBm/MHz at 5.72 GHz, and from 5.72 GHz increasing linearly to a level of 27 dBm/MHz at 5.725 GHz.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

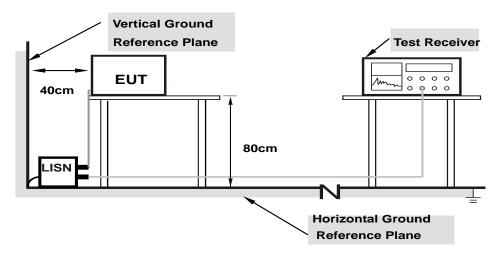
E =
$$\frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).


Report No.: RFCDVB-WTW-P24010023-5 Page No. 15 / 30 Report Format Version: 7.1.1

6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup



6.1.2 Test Procedure

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to average. Duty factor is not added to measured value.

6.2 AC Power Conducted Emissions

6.2.1 Test Setup

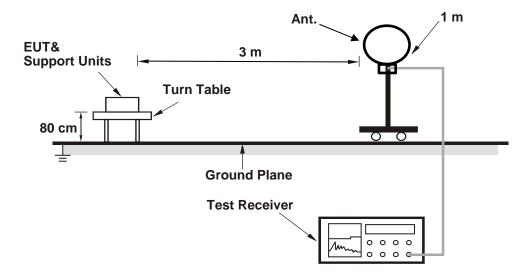
Note: 1.Support units were connected to second LISN.

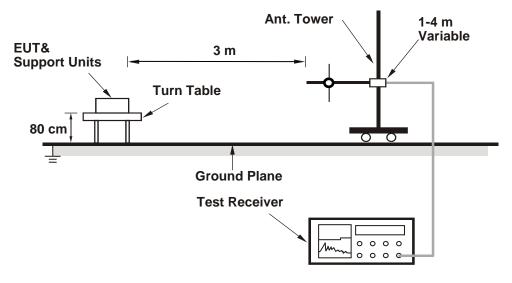
For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure

- a. The EUT was placed on a 0.8 meter to the top of table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.


Report No.: RFCDVB-WTW-P24010023-5 Page No. 16 / 30 Report Format Version: 7.1.1


6.3 Unwanted Emissions below 1 GHz

6.3.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.3.2 Test Procedure

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

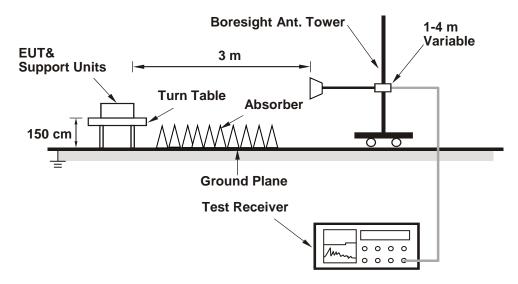
Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RFCDVB-WTW-P24010023-5 Page No. 18 / 30 Report Format Version: 7.1.1

6.4 Unwanted Emissions above 1 GHz

6.4.1 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.4.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- 2. For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1 GHz.
- All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RFCDVB-WTW-P24010023-5 Page No. 19 / 30 Report Format Version: 7.1.1

7 Test Results of Test Item

7.1 RF Output Power

Input Power:	10.8 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Charles Hsiao	
--------------	----------	---------------------------	--------------	------------	---------------	--

802.11a

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)	Antenna Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Test Result
169	5845	82.985	19.19	2.41	144.544	21.6	30	Pass
173	5865	82.414	19.16	2.39	142.89	21.55	30	Pass
177	5885	82.035	19.14	2.39	142.233	21.53	30	Pass

Notes:

- 1. For U-NII-3 & -4 span channel, the antenna gain is 2.41 dBi.
- 2. For U-NII-4, the antenna gain is 2.39 dBi.

802.11n (HT20)

Chan.	Chan. Freq.	_	(100)(1/1)	Total Power	Power Power		EIRP (mW)	EIRP (dBm)	EIRP Limit	Test Result
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	Gain (dBi)	(11100)	(dDIII)	(dBm)	Mesuit
169	5845	16.00	16.75	87.126	19.40	2.41	151.757	21.81	30	Pass
173	5865	16.00	16.67	86.262	19.36	2.39	149.561	21.75	30	Pass
177	5885	15.86	16.75	85.863	19.34	2.39	148.87	21.73	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

802.11n (HT40)

Chan.	Chan. Freq.	_	e Power Bm)	Total Power	Total Power	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit	Test Result
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	Gairi (ubi)	(11100)	(dbiii)	(dBm)	Result
167	5835	19.43	20.13	190.739	22.80	2.41	332.231	25.21	30	Pass
175	5875	19.50	20.22	194.321	22.89	2.39	336.915	25.28	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

Report No.: RFCDVB-WTW-P24010023-5 Page No. 20 / 30 Report Format Version: 7.1.1

802.11ac (VHT80)

Chan.	Chan. Freq.	_	e Power Bm)	Total Power	Total Power	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit	Test Result
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)				(dBm)	Result
171	5855	19.53	20.02	190.204	22.79	2.41	331.299	25.2	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

802.11ac (VHT160)

Chan.	Chan. Freq.	_	e Power Bm)	Total Power	Total Power	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Test Result
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)					
163	5815	15.50	16.02	75.476	18.78	2.41	131.465	21.19	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

802.11ax (HE20)

Chan.	Chan. Freq. (MHz)	_	e Power Bm) Chain 1	Total Power (mW)	Total Power (dBm)	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Test Result
169	5845	16.11	16.89	89.697	19.53	2.41	156.235	21.94	30	Pass
173	5865	16.13	16.92	90.224	19.55	2.39	156.431	21.94	30	Pass
177	5885	15.90	16.78	86.548	19.37	2.39	150.057	21.76	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

802.11ax (HE40)

Chan.	Chan. Freq.	Average (dE	e Power Bm)	Total Power	Total Power	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit	Test Result
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	Gairi (dbi)	(11100)	(dbiii)	(dBm)	Nesuit
167	5835	19.46	20.16	192.061	22.83	2.41	334.533	25.24	30	Pass
175	5875	19.62	20.41	201.523	23.04	2.39	349.401	25.43	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

802.11ax (HE80)

Chan.	Chan. Freq.	_	e Power Bm)	Total Power (mW)	Total Power	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit	Test Result
	(MHz)	Chain 0	Chain 1		(dBm)				(dBm)	Result
171	5855	20.00	20.49	211.944	23.26	2.41	369.166	25.67	30	Pass

Notes:

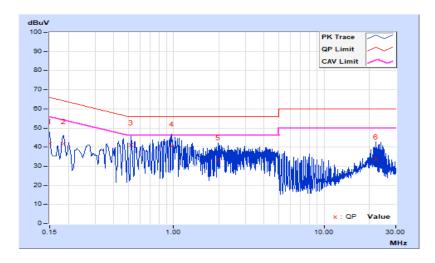
- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

802.11ax (HE160)

Chan.	Chan. Freq.		e Power Bm)	Total Power	Total Power	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit	Test Result
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	Gaill (ubi)	(11100)	(ubiii)	(dBm)	Result
163	5815	15.82	16.68	84.753	19.28	2.41	147.623	21.69	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-3 & -4 span channel, the maximum gain is 2.41 dBi.
- 3. For U-NII-4, the maximum gain is 2.39 dBi.

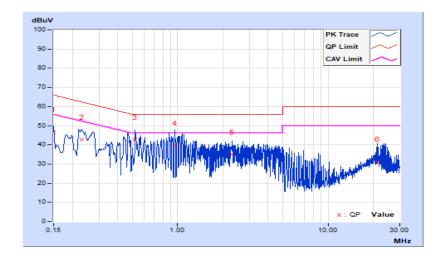


7.2 AC Power Conducted Emissions

RF Mode	802.11ax (HE80)	Channel	CH 171: 5855 MHz
Frequency Range	1 1 5 O KHZ ~ 3 O MHZ		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	23°C, 67% RH
Tested By	Adair Peng		

	Phase Of Power : Line (L)													
No	Frequency	Correction Factor		g Value uV)	Emission Level (dBuV)			nit uV)	Margin (dB)					
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.				
1	0.15000	10.33	31.45	16.33	41.78	26.66	66.00	56.00	-24.22	-29.34				
2	0.18509	10.35	31.25	18.78	41.60	29.13	64.25	54.25	-22.65	-25.12				
3	0.51955	10.44	30.50	9.27	40.94	19.71	56.00	46.00	-15.06	-26.29				
4	0.96541	10.45	29.82	12.36	40.27	22.81	56.00	46.00	-15.73	-23.19				
5	1.97836	10.44	22.94	7.01	33.38	17.45	56.00	46.00	-22.62	-28.55				
6	22.13018	10.93	22.72	9.98	33.65	20.91	60.00	50.00	-26.35	-29.09				

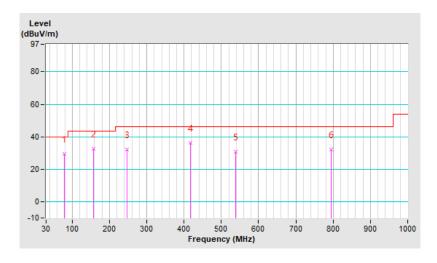
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



			VERITAS
RF Mode	802.11ax (HE80)	Channel	CH 171: 5855 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	23°C, 67% RH
Tested By	Adair Peng		

	Phase Of Power : Neutral (N)										
No	Frequency Correction Reading Value Emission Level Factor (dBuV) (dBuV)					Margin (dB)					
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.36	36.40	19.48	46.76	29.84	66.00	56.00	-19.24	-26.16	
2	0.23094	10.40	32.43	19.17	42.83	29.57	62.42	52.42	-19.59	-22.85	
3	0.52347	10.47	32.31	12.77	42.78	23.24	56.00	46.00	-13.22	-22.76	
4	0.95368	10.48	29.24	9.87	39.72	20.35	56.00	46.00	-16.28	-25.65	
5	2.29906	10.48	24.47	8.95	34.95	19.43	56.00	46.00	-21.05	-26.57	
6	21.24238	11.04	20.15	9.13	31.19	20.17	60.00	50.00	-28.81	-29.83	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

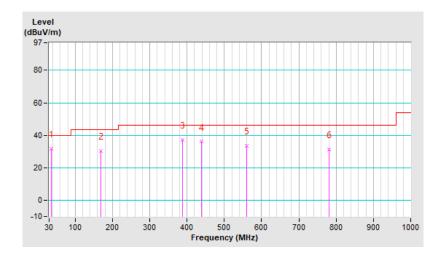


7.3 Unwanted Emissions below 1 GHz

RF Mode	802.11ax (HE80)	Channel	CH 171: 5855 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	23°C, 68% RH
Tested By	Adair Peng		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	79.47	29.5 QP	40.0	-10.5	1.00 H	64	43.2	-13.7		
2	158.04	32.7 QP	43.5	-10.8	2.00 H	260	41.7	-9.0		
3	246.31	32.0 QP	46.0	-14.0	2.00 H	186	41.7	-9.7		
4	417.03	36.1 QP	46.0	-9.9	1.50 H	265	41.7	-5.6		
5	539.25	30.6 QP	46.0	-15.4	2.00 H	185	34.0	-3.4		
6	794.36	32.2 QP	46.0	-13.8	1.00 H	3	30.1	2.1		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



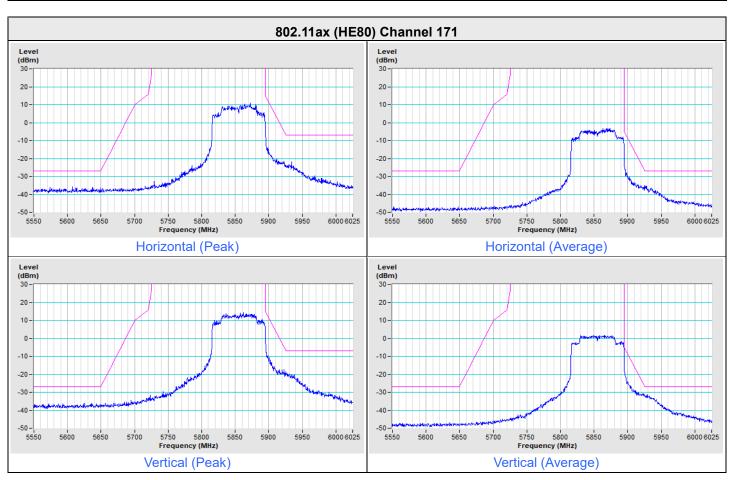
			VERITAS
RF Mode	802.11ax (HE80)	Channel	CH 171: 5855 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	QP: RB=120kHz, DET=Quasi-Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	23°C, 68% RH
Tested By	Adair Peng		

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	36.79	31.5 QP	40.0	-8.5	1.01 V	137	41.9	-10.4		
2	169.68	30.2 QP	43.5	-13.3	1.01 V	263	39.5	-9.3		
3	386.96	37.3 QP	46.0	-8.7	2.00 V	18	43.5	-6.2		
4	439.34	36.0 QP	46.0	-10.0	1.01 V	39	41.0	-5.0		
5	559.62	33.7 QP	46.0	-12.3	1.50 V	220	36.7	-3.0		
6	781.75	31.2 QP	46.0	-14.8	1.50 V	18	29.1	2.1		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The frequency range 9 kHz \sim 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

7.4 Unwanted Emissions above 1 GHz

RF Mode	802.11ax (HE80)	Channel	CH 171 : 5855 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak
Input Power	120 Vac, 60 Hz	Environmental Conditions	23°C, 67% RH
Tested By	Adair Peng		


		А	ntenna Polari	ty & Test Dist	ance : Horizoi	ntal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	#5650.00	56.7 PK	68.2	-11.5	1.58 H	108	51.0	5.7
2	*5855.00	107.8 PK			1.58 H	108	67.7	40.1
3	*5855.00	94.6 AV			1.58 H	108	54.5	40.1
4	#5895.00	86.8 PK	110.2	-23.4	1.58 H	108	80.8	6.0
5	#5895.00	70.3 AV	90.2	-19.9	1.58 H	108	64.3	6.0
6	#5925.00	75.0 PK	88.2	-13.2	1.58 H	108	68.9	6.1
7	#5925.00	60.3 AV	68.2	-7.9	1.58 H	108	54.2	6.1
8	11710.00	58.8 PK	74.0	-15.2	1.99 H	260	42.4	16.4
9	11710.00	45.8 AV	54.0	-8.2	1.99 H	260	29.4	16.4
			Antenna Pola	rity & Test Dis	stance : Vertic	al at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	#5650.00	57.0 PK	68.2	-11.2	1.69 V	163	51.3	5.7
2	*5855.00	110.6 PK			1.69 V	163	70.5	40.1
3	*5855.00	98.2 AV			1.69 V	163	58.1	40.1
4	#5895.00	91.5 PK	110.2	-18.7	1.69 V	163	85.5	6.0
5	#5895.00	75.2 AV	90.2	-15.0	1.69 V	163	69.2	6.0
6	#5925.00	76.5 PK	88.2	-11.7	1.69 V	163	70.4	6.1
7	#5925.00	63.5 AV	68.2	-4.7	1.69 V	163	57.4	6.1
8	11710.00	59.0 PK	74.0	-15.0	1.95 V	145	42.6	16.4
0								

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- $2. \ Correction \ Factor(dB/m) = Antenna \ Factor(dB/m) + Cable \ Factor(dB) Pre-Amplifier \ Factor(dB)$
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.
- 6. " # ": The radiated frequency is out of the restricted band.

Plot of Band Edge

Frequency Range 5.55 GHz ~ 6.025 GHz Detector Function & PK: RB=1 MHz, VB=3 MHz, DET=Peak AV: RB=1 MHz, VB=10 Hz, DET=Peak

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@bureauveritas.com
Web Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFCDVB-WTW-P24010023-5 Page No. 30 / 30 Report Format Version: 7.1.1