

Report No.: FR100537A

FCC RADIO TEST REPORT

FCC ID : QYLAX210NG Equipment : WLAN Module

Brand Name : Getac

Model Name : AX210NGW

Applicant : Getac Technology Corporation.

5F., Building A, No. 209, Sec.1, Nangang Rd., Nangang Dist., Taipei

City 11568, Taiwan, R.O.C.

Standard : FCC Part 15 Subpart C §15.247

The product was received on Nov. 15, 2021 and testing was performed from Nov. 27, 2021 to Jan. 11, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

TEL: 886-3-327-0868

Sporton International Inc. Wensan Laboratory

No. 58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number

: 1 of 21

Table of Contents

Report No. : FR100537A

His	tory c	of this test report	3
Su	mmar	y of Test Result	4
1	General Description		
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	7
	1.3	Testing Location	7
	1.4	Applicable Standards	7
2	Test	Configuration of Equipment Under Test	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
3	Test	11	
	3.1	Output Power Measurement	11
	3.2	Radiated Band Edges and Spurious Emission Measurement	12
	3.3	AC Conducted Emission Measurement	16
	3.4	Antenna Requirements	18
4	List	of Measuring Equipment	19
5	Unce	ertainty of Evaluation	21
Ар	pendi	x A. Conducted Test Results	
Аp	pendi	x B. AC Conducted Emission Test Result	
Аp	pendi	x C. Radiated Spurious Emission	
Аp	pendi	x D. Radiated Spurious Emission Plots	
Аp	pendi	x E. Duty Cycle Plots	
Ар	pendi	x F. Setup Photographs	

History of this test report

Report No. : FR100537A

Report No.	Version	Description	Issue Date
FR100537A	01	Initial issue of report	Jan. 27, 2022
FR100537A	02	Revise Appendix C	Feb. 11, 2022
FR100537A	03	Revise model name	Feb. 17, 2022

TEL: 886-3-327-0868 Page Number : 3 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

Summary of Test Result

Report No.: FR100537A

Report Clause	· I I I I I I I I I I I I I I I I I I I		Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	-	See Note
-	15.247(a)(1)	Hopping Channel Separation	-	See Note
-	15.247(a)(1)	Dwell Time of Each Channel	-	See Note
-	15.247(a)(1)	20dB Bandwidth	-	See Note
-	2.1049	99% Occupied Bandwidth	-	See Note
3.1	15.247(b)(1)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	-	See Note
-	15.247(d)	Conducted Spurious Emission	-	See Note
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	-
3.3	15.207	AC Conducted Emission	Pass	-
3.4	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note: The module (Model: AX210NGW) makes no difference after verifying output power, this report reuses test data from the module report.

Declaration of Conformity:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to this report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang Report Producer: Amy Chen

TEL: 886-3-327-0868 Page Number : 4 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax and Wi-Fi 6GHz 802.11a/n/ac/ax

Report No.: FR100537A

Didotooti, William 172.40112 002.110/g/11/dx, William 1700112 002.110/11/do/dx						
	Product Feature					
Sample 1	EUT with Host 1					
Sample 2	EUT with Host 2					
Sample 3	EUT with Host 3					
Sample 4	EUT with Host 4					
Sample 5	EUT with Host 5					
	WLAN:					
Antonno Timo	<main>: PIFA Antenna</main>					
Antenna Type	<aux.>: PIFA Antenna</aux.>					
	Bluetooth: PIFA Antenna					

Antenna information				
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	2.86		

Remark: The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

TEL: 886-3-327-0868 Page Number : 5 of 21 FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

The product was installed into Notebook (Brand Name: Getac, Model Name: X600, X600 Pro X600Y (Y= 10 characters, Y can be 0-9, a-z, A-Z, "-", "_" or blank for marketing purpose and no impact safety related critical components and constructions.)) during test, which can be referred the following information:

Report No.: FR100537A

Host Information				
Host 1	SKU A			
Host 2	SKU B			
Host 3	SKU C			
Host 4	SKU D			
Host 5	SKU E			

SKU List						
DVT OKU	SKU A	SKU B	SKU C	SKU D	SKU E	
DVT SKUs	(STD)	(STD)	(STD)	(Pro)	(Pro)	
CPU	I5-11500H	I5-11500H	I5-11500H	I7-11850H	I7-11850H	
Display	B156HTN03.8,	B156HTN03.8,	B156HTN03.8,	B156HTN03.8,	B156HTN03.8,	
Display	AUO	AUO	AUO	AUO	AUO	
Camera	FO20FF-790H,	FO20FF-790H,	FO20FF-790H,	FN20FF-679H,	FN20FF-679H,	
Calliera	FOXLINK	FOXLINK	FOXLINK	FOXLINK	FOXLINK	
MXM	w/o MXM	Nvidia RTX3000	Nvidia GTX1650	Nvidia RTX3000	Nvidia GTX1650	
Memory	16GB	16GB	16GB	32GB	32GB	
Main storage	512GB	512GB	512GB	1TB	1TB	
Second storage	512GB	512GB	512GB	1TB	1TB	
Third storage	512GB	512GB	512GB	1TB	1TB	
Touch pad	TP-PCT3854	TP-PCT3854	TP-PCT3854	TP-PCT3854	TP-PCT3854	
Smart card	Yes	Yes	Yes	Yes	Yes	
SD card	No	No	No	Yes	Yes	
PCMCIA/EXPRESS	PCMCIA	PCMCIA	PCMCIA	N/A	N/A	
card	FOIVIOIA	FCIVICIA	FCIVICIA	IN/A	IN/A	
Wifi+BT	AX210NGW	AX210NGW	AX210NGW	AX210NGW	AX210NGW	
WWAN	w/o WWAN	EM7511	EM7511	EM7511	EM7511	
GPS/GNSS	Mc-1010-V2b	combo with	combo with	combo with	combo with	
GF 3/GN33		WWAN	WWAN	WWAN	WWAN	
	FSP150-ABBN3	FSP230-AJAN3	FSP230-AJAN3	FSP230-AJAN3	FSP230-AJAN3	
AC adapter	THP0K15W4A5-1	THP0K23W4A5-1	THP0K23W4A5-1	THP0K23W4A5-1	THP0K23W4A5-1	
	G	G	G	G	G	
FPR	ETU-811JG	ETU-811JG	ETU-811JG	N/A	ETU-811JG	
RFID	NA	NA	NA	NA	NA	
Main Battery	BP3S2P3450P-0	BP3S2P3450P-0	BP3S2P3450P-0	BP3S2P3450P-0	BP3S2P3450P-0	
	2	2	2	2	2	
Optional IO	RS232	RS232	RS232	VGA	VGA	
Pass through	No	No	No	Yes	Yes	
				RS232/RS422 x1	RS232/RS422 x1	
Expansion	NA	NA	NA	PCMCIA x1 +	PCMCIA x1 +	
				Express card x1	Express card x1	
ODD	NA	NA	NA	BDR-UD03ASW,		
				PIONEER	PIONEER	
2nd Battery	NA NA	NA	NA	BP3S2P2100S-0	BP3S2P2100S-0	
				3	3	
Connectivity module	NA	NA	NA	4 RJ45 module	4 RJ45 module	

TEL: 886-3-327-0868 Page Number : 6 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site Sporton International Inc. EMC & Wireless Communications Laborator		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No.	
rest site No.	CO05-HY (TAF Code: 1190)	
Remark	The AC Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory	

Report No.: FR100537A

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, 03CH11-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 7 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

2 Test Configuration of Equipment Under Test

Report No.: FR100537A

: 8 of 21

: 03

: Feb. 17, 2022

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-0868 Page Number FAX: 886-3-327-0855 Issue Date

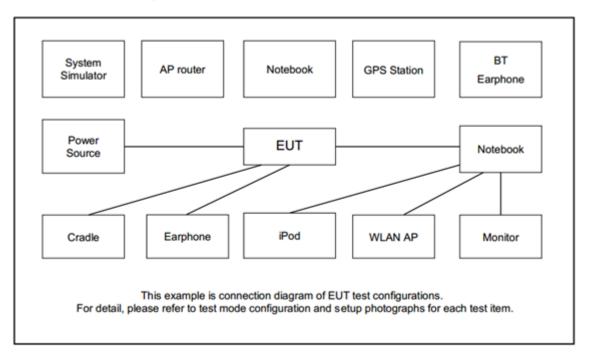
2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). The worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

Report No.: FR100537A

b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases					
Test Item		Data Rate / Modulation				
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
Radiated	i	Bluetooth BR 1Mbps GFS	<			
Test Cases		Mode 1: CH00_2402 MHz				
	,	Link + Bluetooth Link + H-F	Pattern + Earphone + USB			
AC Conducted	Cable + Adapter 1 + Battery 1 for Sample 1 Mode 2 :LTE Band 7 Link + WLAN (2.4GHz) Link + Bluetooth Link + H-Pattern + Earphone + USB Cable + Adapter 2 + Battery 1 for Sample 2					
Emission	Mode 3 :LTE Band 7 Link + WLAN (2.4GHz) Link + Bluetooth Link +					
	Earphone + USB Cable + Adapter 4 + Battery 1 + Battery 2 for Sample 4 Mode 4 :LTE Band 7 Link + WLAN (2.4GHz) Link + Bluetooth Link + H-Pattern + Earphone + USB Cable + Adapter 4 + Battery 1 + Battery 2 for Sample 5					

Remark:

- For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.
- 2. The worst case of Conducted Emission is mode 2; only the test data of it was reported.
- 3. For Radiated Test Cases, the tests were performed with Adapter 2, Battery 1 and Sample 2.

TEL: 886-3-327-0868 Page Number : 9 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

2.3 Connection Diagram of Test System

Report No.: FR100537A

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	GT-AXE11000	MSQ-RTAXJF00	N/A	Unshielded,1.8m
4.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
	Notebook	Dell	Latitude 3400	FCC DoC		AC I/P:
_					N/A	Unshielded, 0.8 m
5.						DC O/P:
						Shielded, 1.77 m

2.5 EUT Operation Test Setup

The RF test items, utility "DRTU Version 22.21070.0.0-OEM.DRTU12463" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-0868 Page Number : 10 of 21 FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

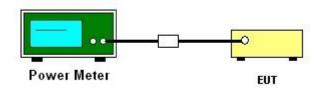
3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR100537A


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 11 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR100537A

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 12 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

3.2.3 Test Procedures

1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR100537A

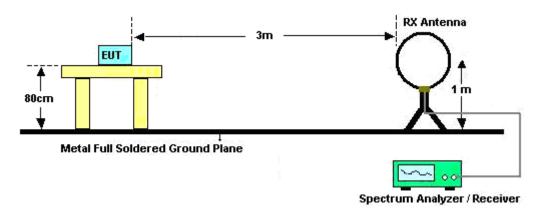
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

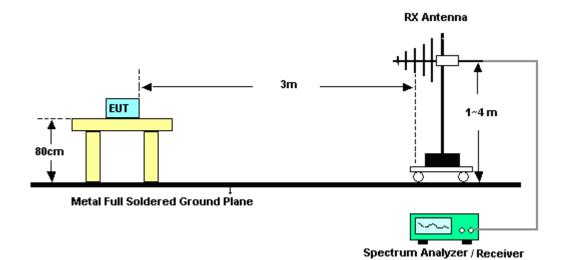
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

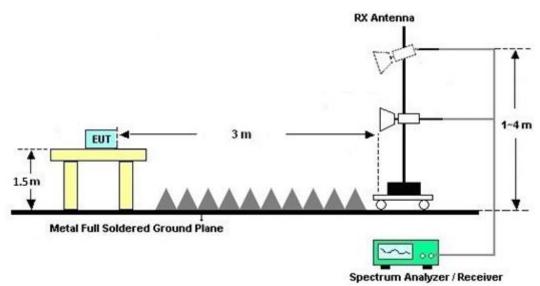

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-0868 Page Number : 13 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

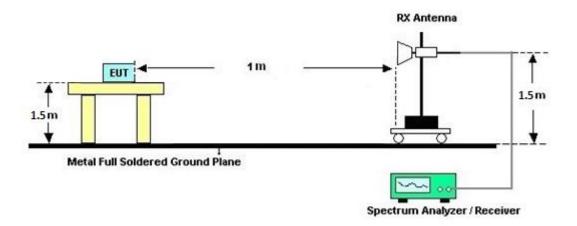

3.2.4 Test Setup

For radiated test below 30MHz



Report No.: FR100537A

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 14 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

For radiated test above 18GHz

Report No.: FR100537A

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.2.7 Duty Cycle

Please refer to Appendix E.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-0868 Page Number : 15 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

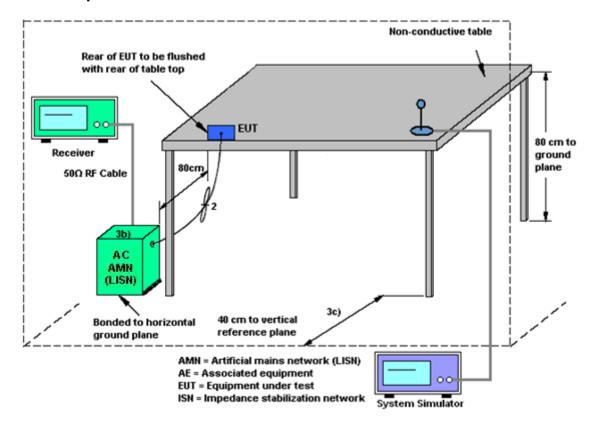
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR100537A

Eraguanay of amission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 16 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

3.3.4 Test Setup

Report No.: FR100537A

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 17 of 21 FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

3.4 Antenna Requirements

3.4.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR100537A

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-0868 Page Number : 18 of 21
FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 09, 2021	Dec. 11, 2021~ Dec. 15, 2021	Oct. 08, 2022	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz~18GHz	Oct. 25, 2021	Dec. 11, 2021~ Dec. 15, 2021	Oct. 24, 2022	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 26, 2021	Dec. 11, 2021~ Dec. 15, 2021	Nov. 25, 2022	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 07, 2021	Dec. 11, 2021~ Dec. 15, 2021	Sep. 06, 2022	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 10, 2021	Dec. 11, 2021~ Dec. 15, 2021	Nov. 09, 2022	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55007	1GHz~18GHz	Jun. 16, 2021	Dec. 11, 2021~ Dec. 15, 2021	Jun. 15, 2022	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 15, 2021	Dec. 11, 2021~ Dec. 15, 2021	Oct. 14, 2022	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN3	3GHz High Pass Filter	Sep. 13, 2021	Dec. 11, 2021~ Dec. 15, 2021	Sep. 12, 2022	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN11	1.53GHz Low Pass Filter	Sep. 13, 2021	Dec. 11, 2021~ Dec. 15, 2021	Sep. 12, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 11, 2021	Dec. 11, 2021~ Dec. 15, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz~40GHz	Mar. 11, 2021	Dec. 11, 2021~ Dec. 15, 2021	Mar. 10, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102 , SUCOFLEX 104	811852/4,MY 2859/2,MY98 37/4PE	30MHz~18GHz	Nov. 15, 2021	Dec. 11, 2021~ Dec. 15, 2021	Nov. 14, 2022	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Dec. 11, 2021~ Dec. 15, 2021	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Dec. 11, 2021~ Dec. 15, 2021	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Dec. 11, 2021~ Dec. 15, 2021	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.09824_2019 1225	RK-000992	N/A	N/A	Dec. 11, 2021~ Dec. 15, 2021	N/A	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2020	Dec. 11, 2021~ Dec. 15, 2021	Dec. 27, 2021	Radiation (03CH11-HY)

Report No.: FR100537A

TEL: 886-3-327-0868 Page Number : 19 of 21 FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 12, 2021~ Jan. 11, 2022	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Dec. 12, 2021~ Jan. 11, 2022	Nov. 30, 2022	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2021	Dec. 12, 2021~ Jan. 11, 2022	Nov. 16, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 03, 2021	Dec. 12, 2021~ Jan. 11, 2022	Dec. 02, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Dec. 12, 2021~ Jan. 11, 2022	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Dec. 12, 2021~ Jan. 11, 2022	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Dec. 12, 2021~ Dec. 29, 2021	Dec. 30, 2021	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 30, 2021	Dec. 30, 2021~ Jan. 11, 2022	Dec. 29, 2022	Conduction (CO05-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16, 2021	Nov. 27, 2021	Nov. 15, 2022	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Jan. 14, 2021	Nov. 27, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jan. 14, 2021	Nov. 27, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 30, 2021	Nov. 27, 2021	Aug. 29, 2022	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW191204 (BOX8)	N/A	Jan. 07, 2021	Nov. 27, 2021	Jan. 06, 2022	Conducted (TH05-HY)

Report No. : FR100537A

TEL: 886-3-327-0868 Page Number : 20 of 21 FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.1 dB
of 95% (U = 2Uc(y))	3.1 dB

Report No.: FR100537A

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	3.6 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4 dB
of 95% (U = 2Uc(y))	3.4 UD

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	50 10
of 95% (U = 2Uc(y))	5.9 dB

TEL: 886-3-327-0868 Page Number : 21 of 21 FAX: 886-3-327-0855 Issue Date : Feb. 17, 2022

Report Number : FR100537A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Junyu Jhou	Temperature:	21.8~24.6	°C
Test Date:	2021/11/27	Relative Humidity:	52.8~63.2	%

TEST RESULTS DATA Peak Power Table Peak Power Power Limit Test CH. NTX (dBm) (dBm) Result 20.97 Pass 0 9.99 1 39 78 0 10.68 **10.77** 10.25 DH1 20.97 1 Pass 20.97 20.97 20.97 Pass Pass 1 Pass 2DH1 39 1 10.42 20.97 1 10.13 Pass Pass 0 10.29 20.97 1 3DH1 39 78 1 10.47 20.97 Pass 10.22 20.97 Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)							
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)			
	0	1	9.98	5.18			
DH1	39	1	10.60	5.18			
	78	1	10.76	5.18			
	0	1	9.45	5.05			
2DH1	39	1	9.60	5.05			
	78	1	8.87	5.05			
	0	1	9.51	5.05			
3DH1	39	1	9.61	5.05			
	78	1	8.88	5.05			

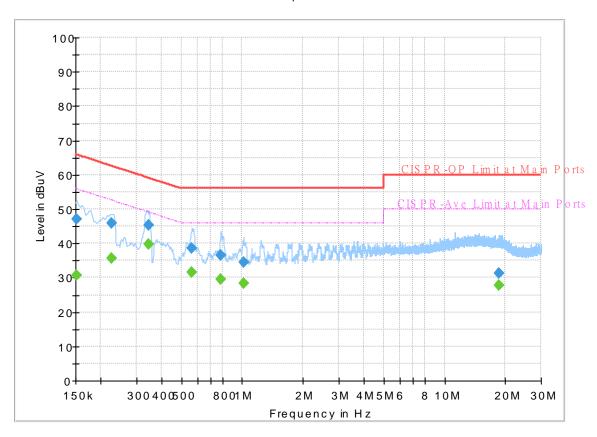
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Calvin Wang	Temperature :	23~26℃
	Calvill Wallg	Relative Humidity:	45~55%

Report No.: FR100537A

TEL: 886-3-327-0868 Page Number : B1 of B1

EUT Information

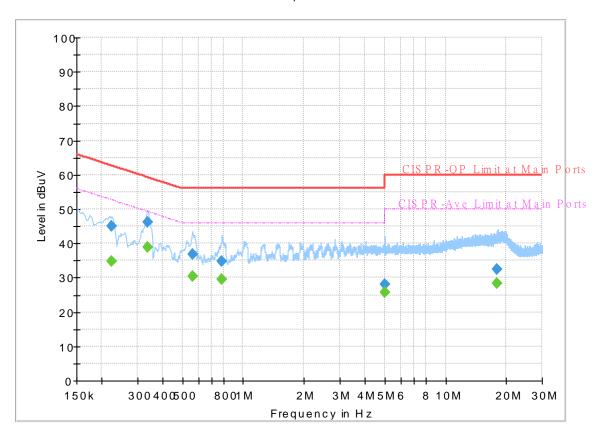

 Report NO :
 100537

 Test Mode :
 Mode 2

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum


Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
, ,	(ubuv)	, ,	,				. ,
0.152250		30.71	55.88	25.17	L1	OFF	19.6
0.152250	47.19		65.88	18.69	L1	OFF	19.6
0.226500	-	35.55	52.58	17.03	L1	OFF	19.6
0.226500	45.76		62.58	16.82	L1	OFF	19.6
0.345750	-	39.71	49.06	9.35	L1	OFF	19.6
0.345750	45.25		59.06	13.81	L1	OFF	19.6
0.561750		31.57	46.00	14.43	L1	OFF	19.8
0.561750	38.61		56.00	17.39	L1	OFF	19.8
0.786750		29.52	46.00	16.48	L1	OFF	20.0
0.786750	36.66		56.00	19.34	L1	OFF	20.0
1.014000	-	28.31	46.00	17.69	L1	OFF	20.1
1.014000	34.46		56.00	21.54	L1	OFF	20.1
18.593250		27.70	50.00	22.30	L1	OFF	20.4
18.593250	31.23		60.00	28.77	L1	OFF	20.4

EUT Information

Report NO: 100537
Test Mode: Mode 2
Test Voltage: 120Vac/60Hz
Phase: Neutral

FullSpectrum

Final Result

Frequency (MHz) QuasiPeak (dBuV) CAverage (dBuV) Limit (dBuV) Margin (dB) Line (dB) Filter (dB) 0.224250 34.69 52.66 17.97 N OFF 19.6 0.224250 44.90 62.66 17.76 N OFF 19.6 0.336750 38.99 49.28 10.29 N OFF 19.6 0.336750 46.05 59.28 13.23 N OFF 19.6 0.559500 30.36 46.00 15.64 N OFF 19.8 0.559500 36.74 56.00 19.26 N OFF 19.8 0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 17.952000	<u> </u>							
0.224250 34.69 52.66 17.97 N OFF 19.6 0.224250 44.90 62.66 17.76 N OFF 19.6 0.336750 38.99 49.28 10.29 N OFF 19.6 0.336750 46.05 59.28 13.23 N OFF 19.6 0.559500 30.36 46.00 15.64 N OFF 19.8 0.559500 36.74 56.00 19.26 N OFF 19.8 0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33	Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
0.224250 44.90 62.66 17.76 N OFF 19.6 0.336750 38.99 49.28 10.29 N OFF 19.6 0.336750 46.05 59.28 13.23 N OFF 19.6 0.559500 30.36 46.00 15.64 N OFF 19.8 0.559500 36.74 56.00 19.26 N OFF 19.8 0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.336750 38.99 49.28 10.29 N OFF 19.6 0.336750 46.05 59.28 13.23 N OFF 19.6 0.559500 30.36 46.00 15.64 N OFF 19.8 0.559500 36.74 56.00 19.26 N OFF 19.8 0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.224250		34.69	52.66	17.97	N	OFF	19.6
0.336750 46.05 59.28 13.23 N OFF 19.6 0.559500 30.36 46.00 15.64 N OFF 19.8 0.559500 36.74 56.00 19.26 N OFF 19.8 0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.224250	44.90		62.66	17.76	N	OFF	19.6
0.559500 30.36 46.00 15.64 N OFF 19.8 0.559500 36.74 56.00 19.26 N OFF 19.8 0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.336750		38.99	49.28	10.29	N	OFF	19.6
0.559500 36.74 56.00 19.26 N OFF 19.8 0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.336750	46.05		59.28	13.23	N	OFF	19.6
0.786750 29.48 46.00 16.52 N OFF 20.0 0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.559500		30.36	46.00	15.64	N	OFF	19.8
0.786750 34.73 56.00 21.27 N OFF 20.0 5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.559500	36.74		56.00	19.26	N	OFF	19.8
5.014500 25.63 50.00 24.37 N OFF 20.0 5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.786750		29.48	46.00	16.52	N	OFF	20.0
5.014500 27.94 60.00 32.06 N OFF 20.0 17.952000 28.33 50.00 21.67 N OFF 20.5	0.786750	34.73		56.00	21.27	N	OFF	20.0
17.952000 28.33 50.00 21.67 N OFF 20.5	5.014500		25.63	50.00	24.37	N	OFF	20.0
111111111111111111111111111111111111111	5.014500	27.94		60.00	32.06	N	OFF	20.0
17.952000 32.50 60.00 27.50 N OFF 20.5	17.952000		28.33	50.00	21.67	N	OFF	20.5
	17.952000	32.50		60.00	27.50	N	OFF	20.5

Appendix C. Radiated Spurious Emission

Test Engineer :	Daniel Lee, Hayden Wu, James Chiu, and Troye Hsieh	Temperature :	20.1~21.4°C
rest Engineer .		Relative Humidity :	55.2~67.3%

Report No.: FR100537A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ote	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
	2341.92	47.12	-26.88	74	45.06	27.18	8.36	33.48	250	113	Р	I
	2341.92	22.33	-31.67	54	-	-	-	-	-	-	Α	Н
*	2402	106.54	-	-	104.13	27.41	8.45	33.45	250	113	Р	Н
*	2402	81.75	-	-	-	-	-	-	-	-	Α	Н
												Н
												Н
	2342.025	46.2	-27.8	74	44.14	27.18	8.36	33.48	250	190	Р	٧
	2342.025	21.41	-32.59	54	-	-	-	-	-	-	Α	V
*	2402	104.15	-	-	101.74	27.41	8.45	33.45	250	190	Р	٧
*	2402	79.36	-	-	-	-	-	-	-	-	Α	٧
												٧
												٧
	*	2341.92 2341.92 * 2402 * 2402 * 2402 2342.025 2342.025 * 2402	2341.92 47.12 2341.92 22.33 * 2402 106.54 * 2402 81.75 2342.025 46.2 2342.025 21.41 * 2402 104.15	(MHz) (dBμV/m) (dB) 2341.92 47.12 -26.88 2341.92 22.33 -31.67 * 2402 106.54 - * 2402 81.75 - 2342.025 46.2 -27.8 2342.025 21.41 -32.59 * 2402 104.15 -	(MHz) (dBμV/m) (dB) (dBμV/m) 2341.92 47.12 -26.88 74 2341.92 22.33 -31.67 54 * 2402 106.54 - - * 2402 81.75 - - 2342.025 46.2 -27.8 74 2342.025 21.41 -32.59 54 * 2402 104.15 - -	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 2341.92 47.12 -26.88 74 45.06 2341.92 22.33 -31.67 54 - * 2402 106.54 - - 104.13 * 2402 81.75 - - - 2342.025 46.2 -27.8 74 44.14 2342.025 21.41 -32.59 54 - * 2402 104.15 - - 101.74	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dBμV) 2341.92 47.12 -26.88 74 45.06 27.18 2341.92 22.33 -31.67 54 - - * 2402 106.54 - - 104.13 27.41 * 2402 81.75 - - - - 2342.025 46.2 -27.8 74 44.14 27.18 2342.025 21.41 -32.59 54 - - * 2402 104.15 - - 101.74 27.41	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) 2341.92 47.12 -26.88 74 45.06 27.18 8.36 2341.92 22.33 -31.67 54 - - - * 2402 106.54 - - 104.13 27.41 8.45 * 2402 81.75 - - - - - 2342.025 46.2 -27.8 74 44.14 27.18 8.36 2342.025 21.41 -32.59 54 - - - * 2402 104.15 - - 101.74 27.41 8.45	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 2341.92 47.12 -26.88 74 45.06 27.18 8.36 33.48 2341.92 22.33 -31.67 54 - - - - * 2402 106.54 - - 104.13 27.41 8.45 33.45 * 2402 81.75 -	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) 2341.92 47.12 -26.88 74 45.06 27.18 8.36 33.48 250 * 2402 106.54 - - 104.13 27.41 8.45 33.45 250 * 2402 81.75 - - - - - - - 2342.025 46.2 -27.8 74 44.14 27.18 8.36 33.48 250 * 2402 104.15 -	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) 2341.92 47.12 -26.88 74 45.06 27.18 8.36 33.48 250 113 2341.92 22.33 -31.67 54 -	(MHz) (dBμV/m) <

Remark

TEL: 886-3-327-0868 Page Number : C1 of C5

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

Report No.: FR100537A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
		4804	42.34	-31.66	74	56.34	32.41	12.05	58.46	-	-	Р	Н
		4804	17.55	-36.45	54	-	-	-	-	-	-	Α	Н
		11295	45.84	-28.16	74	50.84	39.19	17.66	61.85	-	-	Р	Н
		11295	21.05	-32.95	54	-	-	-	-	-	-	Α	Н
		14295	46.98	-27.02	74	49.95	40.51	19.81	63.29	-	-	Р	Н
BT		14295	22.19	-31.81	54	-	-	-	-	-	-	Α	Н
CH 00 2402MHz		4804	41	-33	74	55	32.41	12.05	58.46	-	-	Р	Н
24UZIVITIZ		4804	16.21	-37.79	54	-	-	-	-	-	-	Α	Н
		11295	45.86	-28.14	74	50.86	39.19	17.66	61.85	-	-	Р	Н
		11295	21.07	-32.93	54	-	-	-	-	-	-	Α	Н
		17985	49.48	-24.52	74	40.16	42.88	23.08	56.64	-	-	Р	Н
		17985	24.69	-29.31	54	-	-	-	-	-	-	Α	Н

^{1.} No other spurious found.

2. All results are PASS against Peak and Average limit line.

Remark

. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

4. The emission level close to 18GHz is checked that the average emission level is noise floor only.

TEL: 886-3-327-0868 Page Number : C2 of C5

Emission below 1GHz 2.4GHz BT (LF)

Report No.: FR100537A

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
		30	23.25	-16.75	40	30.46	24.27	1.01	32.49	-	-	Р	Н
		138.64	29.75	-13.75	43.5	43.14	17.24	1.87	32.5	-	-	Р	Н
		260.86	34.9	-11.1	46	45.25	19.58	2.49	32.42	-	-	Р	Н
		512.09	34.96	-11.04	46	40.19	23.87	3.49	32.59	-	-	Р	Н
		675.05	30.53	-15.47	46	32.08	26.34	4.52	32.41	-	-	Р	Н
		977.69	35.45	-18.55	54	29.69	30.7	6.06	31	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
2.40112 BT													Н
LF		30	29.86	-10.14	40	37.07	24.27	1.01	32.49	-	-	Р	V
		167.74	29.21	-14.29	43.5	44.12	15.54	2.04	32.49	-	-	Р	V
		280.26	27.2	-18.8	46	38.41	18.66	2.58	32.45	-	-	Р	V
		511.12	38.42	-7.58	46	43.64	23.88	3.49	32.59	-	-	Р	V
		767.2	29.67	-16.33	46	29.09	27.98	4.95	32.35	-	-	Р	V
		974.78	37.59	-16.41	54	31.79	30.83	6	31.03	-	-	Р	V
													V
													V
													V
													V
													V
													V

1. No other spurious found.

Remark

2. All results are PASS against limit line.

3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-0868 Page Number : C3 of C5

Note symbol

Report No. : FR1O0537A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-0868 Page Number : C4 of C5

A calculation example for radiated spurious emission is shown as below:

Report No.: FR100537A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

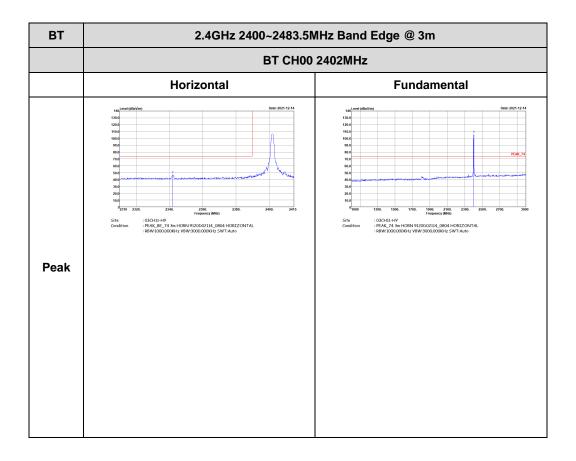
Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

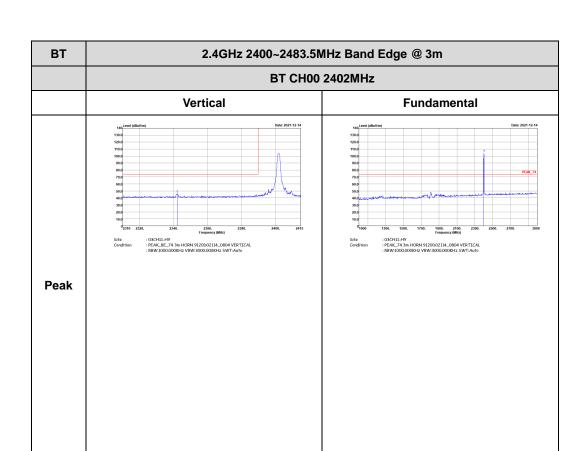
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".


TEL: 886-3-327-0868 Page Number : C5 of C5

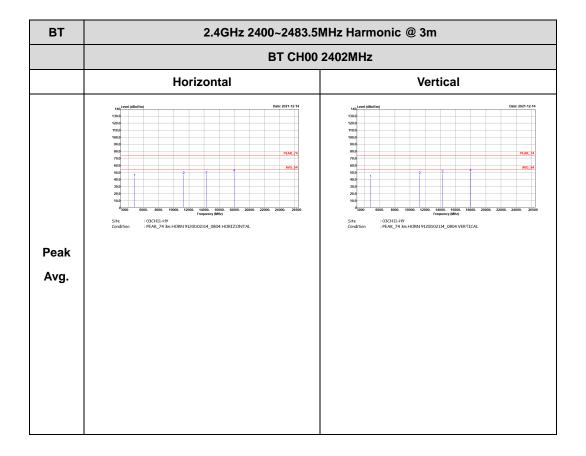
Appendix D. Radiated Spurious Emission Plots


Test Engineer :	Daniel Lee, Hayden Wu, James Chiu, and Troye Hsieh	Temperature :	20.1~21.4°C
rest Engineer.		Relative Humidity :	55.2~67.3%

Report No.: FR100537A

2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

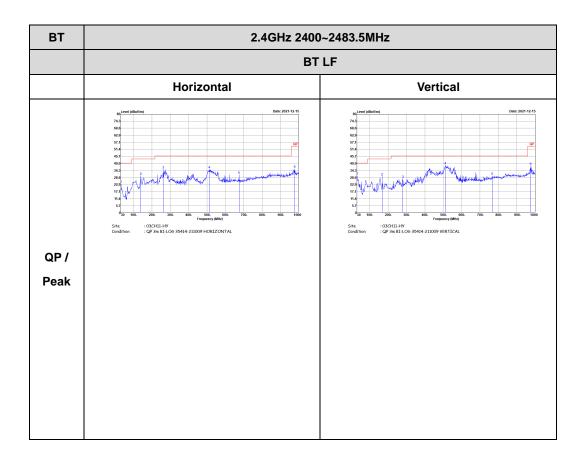
TEL: 886-3-327-0868 Page Number : D1 of D4


Report No.: FR100537A

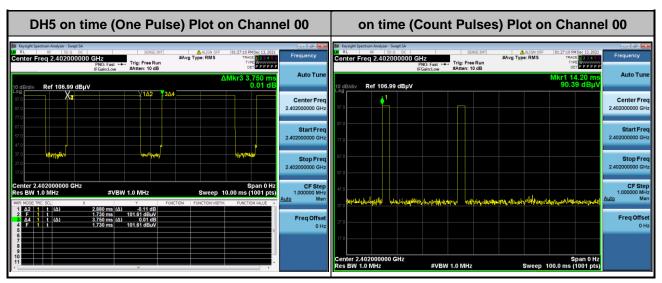
TEL: 886-3-327-0868 Page Number : D2 of D4

2.4GHz 2400~2483.5MHz

Report No.: FR100537A


BT (Harmonic @ 3m)

TEL: 886-3-327-0868 Page Number : D3 of D4


Emission below 1GHz 2.4GHz BT (LF)

Report No.: FR100537A

TEL: 886-3-327-0868 Page Number : D4 of D4

Appendix E. Duty Cycle Plots

Report No.: FR100537A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

$$2.88 \text{ ms x } 20 \text{ channels} = 57.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops Thus, the maximum possible ON time:

$$2.88 \text{ ms } x 2 = 5.76 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$$

TEL: 886-3-327-0868 Page Number : E1 of E1