




# **RF Test Report**

Applicant : Getac Technology Corporation

Product Type : Wireless module

Trade Name : Getac

Model Number : AX200NGW

Applicable Standard : FCC 47 CFR PART 15 SUBPART E

ANSI C63.10:2013

Received Date : May 13, 2020

Test Period : May 22, 2020

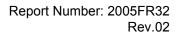
Issued Date : Jun. 23, 2020

Issued by

A Test Lab Techno Corp. No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.)

Tel: +86-3-2710188 / Fax: +86-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330


Test Firm MRA designation number: TW0010





#### Note:

- 1. The test results are valid only for samples provided by customers and under the test conditions described in this report.
- 2. This report shall not be reproduced except in full, without the written approval of A Test Lab Technology Corporation.
- 3. The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility.





# **Revision History**

| Rev. | Issued Date   | Revisions                                                                                                   | Revised By  |
|------|---------------|-------------------------------------------------------------------------------------------------------------|-------------|
| 00   | May 27, 2020  | Initial Issue                                                                                               | Tobey Cheng |
| 01   | Jun. 11, 2020 | Page 8 Revised Max. RF Output Power. Page 23~29 Added Maximum Conducted Output Power Measurement test data. | Nina Lin    |
| 02   | Jun. 23, 2020 | Update chapter 2 (P.6). Update chapter 5 (P.23~P.26).                                                       | Nina Lin    |
|      |               |                                                                                                             |             |



Rev.02

# Verification of Compliance

Issued Date: Jun. 23, 2020

Applicant : Getac Technology Corporation

Product Type : Wireless module

Trade Name : Getac

Model Number : AX200NGW

FCC ID : QYLAX200NG

EUT Rated Voltage : DC 3.7 V

Test Voltage : 120 Vac / 60 Hz

Applicable Standard : FCC 47 CFR PART 15 SUBPART E

ANSI C63.10:2013

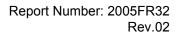
Test Result : Complied

Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District,

Taoyuan City 33465, Taiwan (R.O.C.)

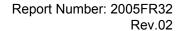
Tel: +86-3-2710188 / Fax: +86-3-2710190


Taiwan Accreditation Foundation accreditation number: 1330

http://www.atl-lab.com.tw/e-index.htm

A Test Lab Techno Corp. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by A Test Lab Techno Corp. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Approved By


(Flv L





# **TABLE OF CONTENTS**

| 1 | Gen  | eral Information                        | 5  |
|---|------|-----------------------------------------|----|
|   | 1.1. | Summary of Test Result                  | 5  |
|   |      | Measurement Uncertainty                 |    |
| 2 |      | Description                             |    |
| 3 |      | : Methodology                           |    |
|   | 3.1. | Mode of Operation                       | 9  |
|   | 3.2. |                                         |    |
|   | 3.3. | Configuration of Test System Details    | 12 |
|   | 3.4. |                                         |    |
|   | 3.5. | Test Site Environment                   | 14 |
| 4 | Mea  | surement Procedure                      | 15 |
|   | 4.1. | AC Power Conducted Emission Measurement | 15 |
|   | 4.2. |                                         |    |
| 5 | Test | : Results                               | 21 |
|   | Anne | ex A. Conducted Emission                | 21 |
|   | Anne | ex B. Conducted Test Results            | 23 |
|   | Anne | ex C. Radiated Emission Measurement     | 27 |





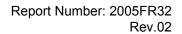
## 1 General Information

# 1.1. Summary of Test Result

| Standard                     | Item                                   | Result | Remark |
|------------------------------|----------------------------------------|--------|--------|
| 15.407(b)(6)<br>15.207       | AC Power Conducted Emission            | PASS   |        |
| 15.407(b)<br>15.205 / 15.209 | Transmitter Radiated Emissions         | PASS   | Note 2 |
| 15.407(a)                    | Maximum Conducted Output Power         | PASS   |        |
| 15.407(a)                    | 26 dB RF Bandwidth                     | N/A    | Note 1 |
| 15.407(e)                    | 6 dB RF Bandwidth                      | N/A    | Note 1 |
| 15.407(a)                    | Maximum Power Spectral Density         | N/A    | Note 1 |
| 15.407(c)                    | Automatically discontinue transmission | N/A    | Note 1 |
| 15.407(a)<br>15.203          | Antenna Requirement                    | N/A    | Note 1 |

Note 1: Class II permissive change. No need for verification.

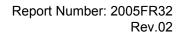
Note 2: Transmitter Radiated Emissions in below 1 GHz for Verification.


| Standard                  | Description                                                                                                            |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| CFR47, Part 15, Subpart C | Intentional Radiators                                                                                                  |  |
| CFR47, Part 15, Subpart E | Unlicensed National Information Infrastructure Devices                                                                 |  |
| ANSI C63. 10: 2013        | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                         |  |
| KDB789033: D02            | Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E |  |
| KDB 662911 D01 v02r01     | Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)              |  |

# 1.2. Measurement Uncertainty

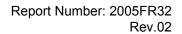
| Test Item          | Frequency Range       | Uncertainty (dB) |
|--------------------|-----------------------|------------------|
| Conducted Emission | 150 kHz ~ 30 MHz      | 2.68             |
|                    | 9 kHz ~ 30 MHz        | 2.14             |
|                    | 30 MHz ~ 1000 MHz     | 4.99             |
| Radiated Emission  | 1000 MHz ~ 18000 MHz  | 4.99             |
|                    | 18000 MHz ~ 26500 MHz | 4.23             |
|                    | 26500 MHz ~ 40000 MHz | 4.39             |

Decision Rule


- Uncertainty is not included.
- $\hfill \square$  Uncertainty is included.

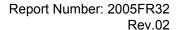





# 2 **EUT Description**

| Applicant                     | Getac Technology Corporation 5F.,Building A,No.209,Sec.1 Nangang.,Rd., Taipei City, 11568, Taiwan |                                                                                                             |                          |                       |  |
|-------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--|
| Manufacturer                  | Intel Mobile Communications 100 Center Point Circle, Suite                                        |                                                                                                             |                          |                       |  |
| Product Type                  | Wireless module                                                                                   |                                                                                                             |                          |                       |  |
| Trade Name                    | Getac                                                                                             |                                                                                                             |                          |                       |  |
| Model No.                     | AX200NGW                                                                                          |                                                                                                             |                          |                       |  |
| FCC ID                        | QYLAX200NG                                                                                        |                                                                                                             |                          |                       |  |
| Class II Permissive<br>Change | originally granted on 2020/3/1  Modification: The major change filed under                        | (1) This is to request a Class II permissive change for FCC ID:QYLAX200NG , originally granted on 2020/3/18 |                          |                       |  |
| Host Information              | Product Type: Tablet<br>Trade Name: Getac<br>Model Name: UX10                                     | Trade Name: Getac                                                                                           |                          |                       |  |
|                               | Frequency Band                                                                                    |                                                                                                             | Frequency Range<br>(MHz) | Number of<br>Channels |  |
|                               |                                                                                                   | U-NII Band I                                                                                                | 5180 – 5240              | 3                     |  |
|                               | IEEE 802.11a                                                                                      | U-NII Band II-A                                                                                             | 5260 – 5320              | 3                     |  |
|                               | IEEE 002.11a                                                                                      | U-NII Band II-C                                                                                             | 5500 – 5700              | 3                     |  |
|                               |                                                                                                   | U-NII Band III                                                                                              | 5745 – 5825              | 3                     |  |
|                               |                                                                                                   | U-NII Band I                                                                                                | 5180 – 5240              | 3                     |  |
|                               | IEEE 802.11n 5 GHz 20 MHz                                                                         | U-NII Band II-A                                                                                             | 5260 – 5320              | 3                     |  |
|                               | IEEE 002.1111 5 GHZ 20 MHZ                                                                        | U-NII Band II-C                                                                                             | 5500 – 5700              | 4                     |  |
|                               |                                                                                                   | U-NII Band III                                                                                              | 5745 – 5825              | 3                     |  |
| Operate Frequency             |                                                                                                   | U-NII Band I                                                                                                | 5190 – 5230              | 2                     |  |
|                               | 1555 000 44 5 OU - 40 MU -                                                                        | U-NII Band II-A                                                                                             | 5270 – 5310              | 2                     |  |
|                               | IEEE 802.11n 5 GHz 40 MHz                                                                         | U-NII Band II-C                                                                                             | 5510 – 5710              | 4                     |  |
|                               |                                                                                                   | U-NII Band III                                                                                              | 5755 – 5795              | 2                     |  |
|                               |                                                                                                   | U-NII Band I                                                                                                | 5210                     | 1                     |  |
|                               | IEEE 000 44 a 2 00 MH.                                                                            | U-NII Band II-A                                                                                             | 5290                     | 1                     |  |
|                               | IEEE 802.11ac 80 MHz                                                                              | U-NII Band II-C                                                                                             | 5530 – 5690              | 3                     |  |
|                               |                                                                                                   | U-NII Band III                                                                                              | 5775                     | 1                     |  |
|                               | IEEE 802.11ac 160 MHz                                                                             | U-NII Band I &<br>U-NII Band II-A                                                                           | 5250                     | 1                     |  |
|                               |                                                                                                   | U-NII Band II-C                                                                                             | 5570                     | 1                     |  |






|                     | Frequency Band        |               | Frequency Range<br>(MHz)          | Number of Channels |                    |
|---------------------|-----------------------|---------------|-----------------------------------|--------------------|--------------------|
|                     | IEEE 802.11ax 20 MHz  |               | U-NII Band I                      | 5180 – 5240        | 3                  |
|                     |                       |               | U-NII Band II-A                   | 5260 – 5320        | 3                  |
|                     | IEEE 802.1            | Iax 20 MHZ    | U-NII Band II-C                   | 5500 – 5720        | 4                  |
|                     |                       |               | U-NII Band III                    | 5720 – 5825        | 4                  |
|                     |                       |               | U-NII Band I                      | 5190 – 5230        | 2                  |
|                     | IEEE 802.1            | lov 40 MHz    | U-NII Band II-A                   | 5270 – 5310        | 2                  |
| Operate Frequency   | IEEE 802.1            | iax 40 MHZ    | U-NII Band II-C                   | 5510 – 5710        | 4                  |
|                     |                       |               | U-NII Band III                    | 5710 – 5795        | 3                  |
|                     |                       |               | U-NII Band I                      | 5210               | 1                  |
|                     | JEEE 000 44           | 1 00 MH-      | U-NII Band II-A                   | 5290               | 1                  |
|                     | IEEE 802.11ax 80 MHz  |               | U-NII Band II-C                   | 5530 – 5690        | 3                  |
|                     |                       |               | U-NII Band III                    | 5690 – 5775        | 2                  |
|                     | IEEE 802.11ax 160 MHz |               | U-NII Band I &<br>U-NII Band II-A | 5250               | 1                  |
|                     |                       |               | U-NII Band II-C                   | 5570               | 1                  |
| Modulation Type     | OFDM/OF               | OMA           |                                   |                    |                    |
| Equipment Type      | Client devi           | ces           |                                   |                    |                    |
|                     | ANT                   | Model Number  | Туре                              | Frequency<br>(MHz) | Max. Gain<br>(dBi) |
|                     |                       | T-0239 UX10   | PIFA Antenna                      | 5150~5250          | 2.14               |
|                     | Main                  |               |                                   | 5250~5350          | 2.43               |
| Antonno information | (ANT-0)               | MAIN WIFI ANT |                                   | 5470~5725          | 4.37               |
| Antenna information |                       |               |                                   | 5725~5850          | 3.43               |
|                     |                       |               |                                   | 5150~5250          | 1.71               |
|                     | AUX<br>(ANT-1)        | T-0239 UX10   | PIFA Antenna                      | 5250~5350          | 1.27               |
|                     |                       | AUX WIFI ANT  |                                   | 5470~5725          | 1.18               |
|                     |                       |               | 5725~5850                         | 1.40               |                    |
| Antenna Delivery    | Reference section 3.1 |               |                                   |                    |                    |
| Operate Temp. Range | 0 ~ +80 ℃             |               |                                   |                    |                    |





| Frequency Band            |                                   | RF Output Power<br>(W) |  |
|---------------------------|-----------------------------------|------------------------|--|
|                           |                                   | SYSTEM 2 Full          |  |
|                           | U-NII Band I                      | 0.055                  |  |
| JEEE 000 440              | U-NII Band II-A                   | 0.055                  |  |
| IEEE 802.11a              | U-NII Band II-C                   | 0.055                  |  |
|                           | U-NII Band III                    | 0.055                  |  |
|                           | U-NII Band I                      | 0.054                  |  |
| IEEE 000 44° 5 CH 20 MH-  | U-NII Band II-A                   | 0.055                  |  |
| IEEE 802.11n 5 GHz 20 MHz | U-NII Band II-C                   | 0.056                  |  |
|                           | U-NII Band III                    | 0.054                  |  |
|                           | U-NII Band I                      | 0.055                  |  |
| IEEE 000 44° 5 CH 40 MH-  | U-NII Band II-A                   | 0.056                  |  |
| IEEE 802.11n 5 GHz 40 MHz | U-NII Band II-C                   | 0.054                  |  |
|                           | U-NII Band III                    | 0.056                  |  |
|                           | U-NII Band I                      | 0.051                  |  |
| IEEE 000 44 co 00 MHz     | U-NII Band II-A                   | 0.053                  |  |
| IEEE 802.11ac 80 MHz      | U-NII Band II-C                   | 0.053                  |  |
|                           | U-NII Band III                    | 0.053                  |  |
| IEEE 802.11ac 160 MHz     | U-NII Band I &<br>U-NII Band II-A | 0.027                  |  |
|                           | U-NII Band II-C                   | 0.030                  |  |
|                           | U-NII Band I                      | 0.054                  |  |
| IEEE 802.11ax 20 MHz      | U-NII Band II-A                   | 0.054                  |  |
| IEEE 002.118X 20 MITZ     | U-NII Band II-C                   | 0.055                  |  |
|                           | U-NII Band III                    | 0.054                  |  |
|                           | U-NII Band I                      | 0.054                  |  |
| IEEE 802.11ax 40 MHz      | U-NII Band II-A                   | 0.055                  |  |
| IEEE 002.11ax 40 Minz     | U-NII Band II-C                   | 0.054                  |  |
|                           | U-NII Band III                    | 0.056                  |  |
|                           | U-NII Band I                      | 0.050                  |  |
| JEEE 902 110x 90 MHz      | U-NII Band II-A                   | 0.053                  |  |
| IEEE 802.11ax 80 MHz      | U-NII Band II-C                   | 0.053                  |  |
|                           | U-NII Band III                    | 0.053                  |  |
| IEEE 802.11ax 160 MHz     | U-NII Band I &<br>U-NII Band II-A | 0.029                  |  |
|                           | U-NII Band II-C                   | 0.029                  |  |





| Equipment Type                     |                     |   |  |
|------------------------------------|---------------------|---|--|
| Outdoor access point               | point-to-point      |   |  |
|                                    | point-to-multipoint |   |  |
| Indoor access point                |                     |   |  |
| Fixed point-to-point access points |                     |   |  |
| Client devices                     |                     | V |  |

# 3 Test Methodology

## 3.1. Mode of Operation

Decision of Test ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

| Pre-Test Mode                                        |
|------------------------------------------------------|
| Mode 1: Transmit mode                                |
| Mode 2: IEEE 802.11a Continuous TX mode              |
| Mode 3: IEEE 802.11n 5 GHz 20 MHz Continuous TX mode |
| Mode 4: IEEE 802.11n 5 GHz 40 MHz Continuous TX mode |
| Mode 5: IEEE 802.11ac 80 MHz Continuous TX mode      |
| Mode 6: IEEE 802.11ac 160 MHz Continuous TX mode     |
| Mode 7: IEEE 802.11ax 20 MHz Continuous TX mode      |
| Mode 8: IEEE 802.11ax 40 MHz Continuous TX mode      |
| Mode 9: IEEE 802.11ax 80 MHz Continuous TX mode      |
| Mode 10: IEEE 802.11ax 160 MHz Continuous TX mode    |

| Final-Test Mode                                 |  |
|-------------------------------------------------|--|
| Mode 1: Transmit mode                           |  |
| Mode 3: IEEE 802.11ac 20 MHz Continuous TX mode |  |
| Mode 7: IEEE 802.11ax 20 MHz Continuous TX mode |  |

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes.



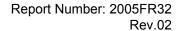
Rev.02

|                              |                        | Decision of               | of Test Mode                                                                                       |               |
|------------------------------|------------------------|---------------------------|----------------------------------------------------------------------------------------------------|---------------|
| Description                  | Vender                 | Model Number              | Remarks                                                                                            | SYSTEM 2 Full |
| Main Board                   | WUS Printed<br>Circuit | R0B                       |                                                                                                    | V             |
| CPU                          | Intel                  | i7-10710U                 | 1.10 GHz, 1528 Pin                                                                                 | V             |
| Menory                       | Kingston               | CBD26D4S9S8ME-8           | DDR4, 2400 MHz, 8 GB                                                                               |               |
| ivieriory                    | Kingston               | CBD24D4S7D8ME-16          | DDR4, 2400 MHz, 16GB                                                                               | V             |
| HDD                          | LITEON                 | CV8-8E256                 | 256 GB, 3D TLC AES                                                                                 |               |
| TIDD                         | LITEON                 | CV8-8E512                 | 512 GB, 3D TLC AES                                                                                 | V             |
| LCM                          | K&D<br>Technology      | KD101N69-30NP             | 1920 x 1080 (FHD)                                                                                  |               |
|                              | Getac                  | GET-101                   | Digitizer                                                                                          | V             |
| Upside Option                | Getac                  | UX10 PN7462 NFC<br>Module | NXP RFID                                                                                           |               |
|                              | Motorola               | SE4710                    | Moto, Zebra, SE4710                                                                                | V             |
| STD Battery<br>(Optional)    | Getac                  | BP3S2P2100S-01            | 11.1 VDC, 4200 mAh                                                                                 |               |
| Large Battery (Optional)     | Getac                  | BP3S3P3450P-03            | 10.8 VDC, 9240 mAh                                                                                 | V             |
| Bridge Battery (Optional)    | Getac                  | BP2S1P2100S               | Back Expansion Bay 7.4 VDC, 2100 mAh                                                               | V             |
| Fingerprint<br>CrossMatch(1) | Crossmatch             | TCETC1                    | Right Expansion Bay                                                                                |               |
| Finger print(2)              | Egistec                | ETU-801(*)                | Right Expansion Bay                                                                                | V             |
| MSR Reader                   | Magtek                 | 99875494-3                | Right Expansion Bay                                                                                | V             |
|                              | Getac                  | EM7455                    | WWAN/GPS                                                                                           | V             |
| Module                       | LOCOSYS                | MC 1010                   | GPS/GNS                                                                                            |               |
|                              | Intel                  | AX200NGW                  | WLAN/BT                                                                                            | V             |
| Rear Camera<br>8M            | Foxlink                | FN80AF-704H               |                                                                                                    | V             |
| Windows<br>Hollow            | Foxlink                | FN23FF-705H               |                                                                                                    | V             |
| Capacitive Pen               | Who Care               | N/A                       |                                                                                                    |               |
| AC Adapter (1)               | FSP                    | FSP065-RBBN3              | INPUT: 100-240 VAC, 50-60 Hz, 1.5 A<br>OUTPUT: 19 VDC, 3.42 A<br>Non-Shielded,1.5 m, with one core | V             |
| AC Adapter (2)               | Getac                  | MTA190474W4               | INPUT: 100-240 VAC, 50-60 Hz, 1.6 A<br>OUTPUT: 19 VDC, 4.74 A<br>Non-Shielded,1.5 m with two cores | V             |
| Power Cord (1)               | I-SHENG                | SP-305B+IS-034            | 3 pin, for U.S. power connector<br>Non-Shielded,1.75 m                                             |               |
| Power Cord (2)               | I-SHENG                | SP-305B+IS-034            | 3 pin, for European power connector<br>Non-Shielded,1.75 m                                         |               |
| Digitizer Pen<br>(Optional)  | EMRight                | GET-101                   |                                                                                                    | V             |

Note 1: (\*) Add keyparts.

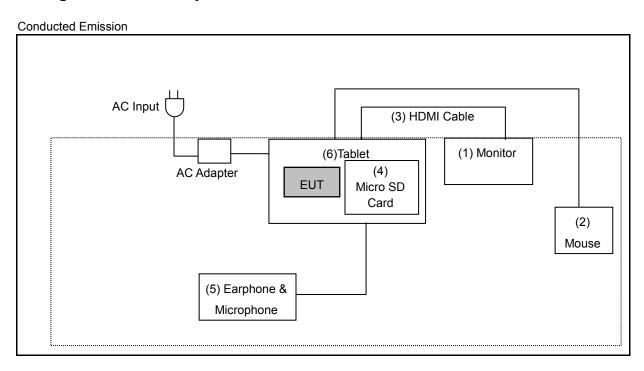
Note 2: The device used two models of adapter, adapter number: MTA190474W4 is worst case to perform testing.

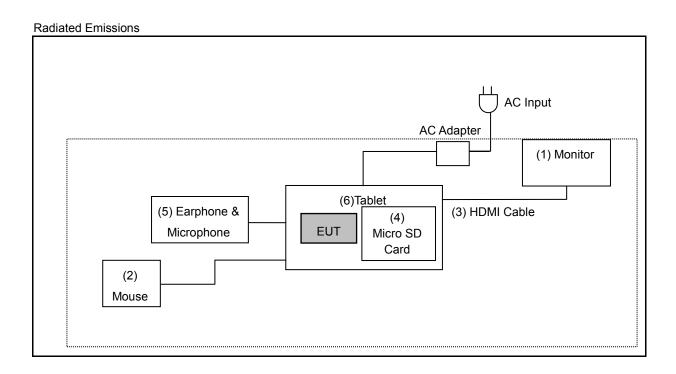



Rev.02

# 3.2. EUT Test Step

The EUT is operated in the engineering mode to fix the TX frequency for the purposes of measurement. According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

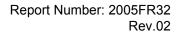

| 1. | Setup the EUT shown on "Configuration of Test System Details". |
|----|----------------------------------------------------------------|
| 2. | Turn on the power of all equipment.                            |
| 3. | Turn on TX function.                                           |
| 4. | EUT run test program.                                          |


| Meas | Measurement Software             |        |         |  |  |  |  |
|------|----------------------------------|--------|---------|--|--|--|--|
| No.  | No. Description Software Version |        |         |  |  |  |  |
| 1    | Conducted Emission               | EZ EMC | 1.1.4.3 |  |  |  |  |
| 2    | Radiated Emission                | EZ EMC | 1.1.4.4 |  |  |  |  |





# 3.3. Configuration of Test System Details








Rev.02

|             | Devices Description   |              |                 |                              |                 |  |  |  |  |
|-------------|-----------------------|--------------|-----------------|------------------------------|-----------------|--|--|--|--|
|             | Product               | Manufacturer | Model Number    | Serial Number                | Power Cord      |  |  |  |  |
| (1) Monitor |                       | DELL         | U2410f          | CN-OJ257M-72872<br>-09J-01AL |                 |  |  |  |  |
| (2) Mouse   |                       | DELL         | MOCZUL          | CN-049TWY-73820<br>-63N-01SB |                 |  |  |  |  |
| (3)         | HDMI Cable            | Avier        | K48GHS          |                              | Shielded, 1.7 m |  |  |  |  |
| (4)         | Micro SD Card         | Transcend    | 9153BA 8G 07DS1 |                              |                 |  |  |  |  |
| (5)         | Earphone & Microphone | HUAWEI       | LYA-L29         |                              |                 |  |  |  |  |
| (6)         | Tablet                | Getac        | UX10            |                              |                 |  |  |  |  |

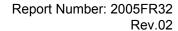




## 3.4. Test Instruments

For Conducted Emission Test Period: May 22, 2020 Testing Engineer: Paul.chiu

| Equipment         | Manufacturer | Model Number   | Serial Number | Cal. Date  | Cal. Period |  |  |  |
|-------------------|--------------|----------------|---------------|------------|-------------|--|--|--|
| Test Receiver R&S |              | ESCI           | 100367        | 05/23/2019 | 1 year      |  |  |  |
| LISN              | R&S          | ENV216         | 101040        | 03/23/2020 | 1 year      |  |  |  |
| LISN              | R&S          | ENV216         | 101041        | 04/06/2020 | 1 year      |  |  |  |
| RF Cable          | Woken        | 00100D1380194M | TE-02-03      | 05/23/2019 | 1 year      |  |  |  |


For Radiated Emissions Test Period: May 22, 2020 Testing Engineer: Ricky Liu

| resuring Engineer. Nicky Liu       |                          |                        |               |            |             |  |  |  |
|------------------------------------|--------------------------|------------------------|---------------|------------|-------------|--|--|--|
| Equipment Manufacturer             |                          | Model Number           | Serial Number | Cal. Date  | Cal. Period |  |  |  |
| Spectrum Analyzer (10 Hz~44 GHz)   | Keysight                 | N9010A                 | MY52221312    | 01/13/2020 | 1 year      |  |  |  |
| Pre Amplifier<br>(100 kHz~1.3 GHz) | Agilent                  | 8447D                  | 2944A11119    | 01/15/2020 | 1 year      |  |  |  |
| Broadband<br>Antenna               | Schwarzbeck              | VULB9168               | 416           | 10/23/2019 | 1 year      |  |  |  |
| Loop Antenna                       | COM-POWER<br>CORPORATION | AL-130                 | 121014        | 03/27/2020 | 1 year      |  |  |  |
| RF Cable                           | EMCI                     | EMC104-N-N-6000        | TE01-1        | 02/20/2020 | 1 year      |  |  |  |
| Microwave Cable EMCI               |                          | EMC104-SM-SM<br>-13000 | 170814        | 10/29/2019 | 1 year      |  |  |  |
| Microwave Cable                    | EMCI                     | EMC102-KM-KM<br>-14000 | 151001        | 02/20/2020 | 1 year      |  |  |  |

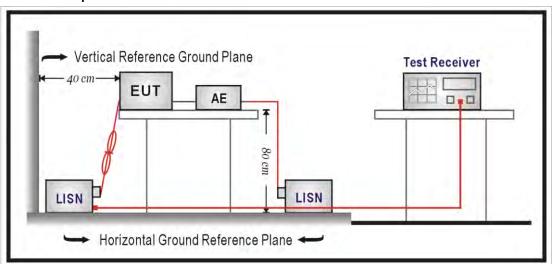
Note: N.C.R. = No Calibration Request.

## 3.5. Test Site Environment

| Items                      | Required (IEC 60068-1) | Actual   |  |
|----------------------------|------------------------|----------|--|
| Temperature (°C)           | 15-35                  | 20-30    |  |
| Humidity (%RH)             | 25-75                  | 45-75    |  |
| Barometric pressure (mbar) | 860-1060               | 990-1005 |  |






## 4 Measurement Procedure

## 4.1. AC Power Conducted Emission Measurement

## ■ Limit

| Frequency (MHz) | Quasi-peak | Average  |
|-----------------|------------|----------|
| 0.15 - 0.5      | 66 to 56   | 56 to 46 |
| 0.50 - 5.0      | 56         | 46       |
| 5.0 - 30.0      | 60         | 50       |

## ■ Test Setup





Rev.02

#### ■ Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50  $\Omega$ // 50 uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50  $\Omega$ // 50 uH coupling impedance with 50 ohm termination.

Tabletop device shall be placed on a non-conducting platform, of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The wall of screened room shall be located 40 cm to the rear of the EUT. Other surfaces of tabletop or floor standing EUT shall be at least 80 cm from any other ground conducting surface including one or more LISNs. For floor-standing device shall be placed under the EUT with a 12 mm insulating material.

Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a resolution bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 4.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. When all of peak value were complied with quasi-peak and average limit from 150 kHz to 30 MHz then quasi-peak and average measurement was unnecessary.

The AMN shall be placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for AMNs mounted on top of the ground reference plane. This distance is between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8 m from the AMN. If the mains power cable is longer than 1 m then the cable shall be folded back and forth at the centre of the lead to form a bundle no longer than 0.4 m. All of interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. All of EUT and AE shall be separate place more than 0.1 m. All 50  $\Omega$  ports of the LISN shall be resistively terminated into 50  $\Omega$  loads when not connected to the measuring instrument.

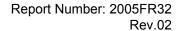
If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored



Rev.02

#### 4.2. Transmitter Radiated Emissions Measurement

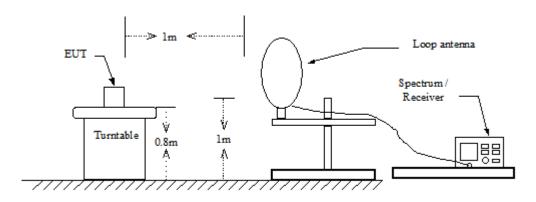
#### ■ Limit


- (1)Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
  - (a)For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
  - (b)For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
  - (c)For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
  - (d)For transmitters operating in the 5.725-5.85 GHz band:
  - (i)All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2)Limits of Radiated Emission Measurement

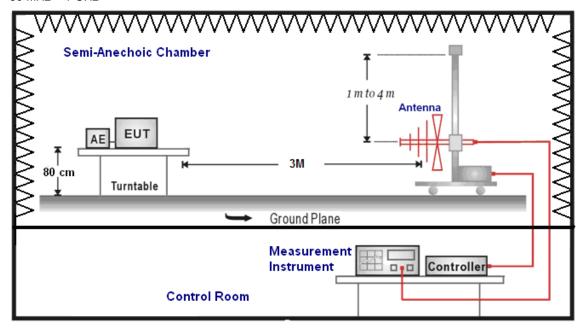
Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

| Frequency Range<br>(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|--------------------------|-----------------------------------|-------------------------------|
| 0.009 ~ 0.490            | 2400/F(kHz)                       | 300                           |
| 0.490 ~ 1.705            | 24000/F(kHz)                      | 30                            |
| 1.705 ~ 30.0             | 30                                | 30                            |
| 30 ~ 88                  | 10                                | 3                             |
| 88 ~ 216                 | 150                               | 3                             |
| 216 ~ 960                | 200                               | 3                             |
| Above 960                | 500                               | 3                             |

Note: 1. The lower limit shall apply at the transition frequencies.


- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.






## ■ Setup

9 kHz ~ 30 MHz



## 30 MHz ~ 1 GHz





Rev.02

#### ■ Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height(below 1 GHz use 0.8 m turntable / above 1 GHz use 1.5 m turntable), top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 40 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For restricted measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 3 MHz for peak measurements and 10 Hz for average measurements when Duty cycle > 0.98 / 1/T for average measurements when Duty cycle < 0.98.

For out of band measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 3 MHz for peak measurements.

A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Trilog-Broadband Antenna at 3 Meter and the ETS-Lindgren Double-Ridged Waveguide Horn antnna Schwarzbeck Mess-Elektronik Broadband Horn Antenna was used in frequencies 1 – 40 GHz at a distance of 3 meter. The antenna at an angle toward the source of the emission. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20 dB/decade).

For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).



Rev.02

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

(1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)

FI= Reading of the field intensity.

AF= Antenna factor.

CL= Cable loss.

P.S Amplitude is auto calculate in spectrum analyzer.

(2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

- (a) For fundamental frequency: Transmitter Output < +30 dBm
- (b) For spurious frequency: Spurious emission limits = fundamental emission limit /10

#### Measuring Instruments and setting

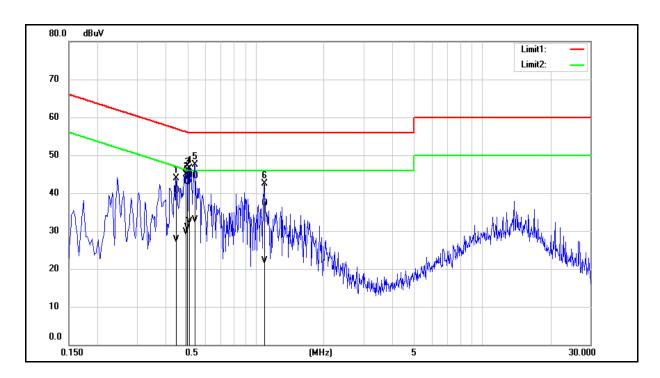
The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter                       | Setting                     |
|------------------------------------------|-----------------------------|
| Attenuation                              | Auto                        |
| Start Frequency                          | 1000 MHz                    |
| Stop Frequency                           | 40 GHz                      |
| RBW/VBW(Emission in restricted band)     | 1 William (171) for Average |
| RBW/VBW(Emission in non-restricted band) | 1 MHz / 3 MHz for Peak      |



Rev.02

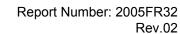
## 5 Test Results


## **Annex A. Conducted Emission**

 Standard:
 FCC Part 15.407
 Line:
 L1

 Test item:
 Conducted Emission
 Power:
 AC 120 V/60 Hz

 Mode:
 Mode 1
 Temp.(°C)/Hum.(%RH):
 26(°C)/60 %RH


 Description:
 Temp.(°C)/Hum.(%RH):
 26(°C)/60 %RH

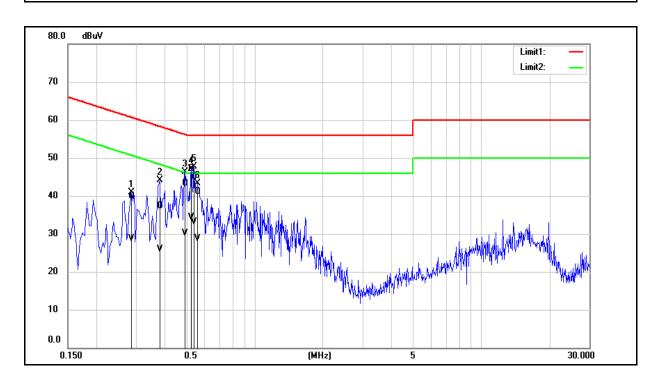


| No. | Frequency | QP      | AVG     | Correction | QP     | AVG    | QP     | AVG    | QP     | AVG    | Remark |
|-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------|
|     |           | reading | reading | factor     | result | result | limit  | limit  | margin | margin |        |
|     | (MHz)     | (dBuV)  | (dBuV)  | (dB)       | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB)   | (dB)   |        |
| 1   | 0.4460    | 30.97   | 18.08   | 9.66       | 40.63  | 27.74  | 56.95  | 46.95  | -16.32 | -19.21 | Pass   |
| 2   | 0.4900    | 33.48   | 20.09   | 9.66       | 43.14  | 29.75  | 56.17  | 46.17  | -13.03 | -16.42 | Pass   |
| 3   | 0.4980    | 33.26   | 21.21   | 9.66       | 42.92  | 30.87  | 56.03  | 46.03  | -13.11 | -15.16 | Pass   |
| 4   | 0.5100    | 35.05   | 22.82   | 9.66       | 44.71  | 32.48  | 56.00  | 46.00  | -11.29 | -13.52 | Pass   |
| 5   | 0.5380    | 34.93   | 23.18   | 9.66       | 44.59  | 32.84  | 56.00  | 46.00  | -11.41 | -13.16 | Pass   |
| 6   | 1.0900    | 27.60   | 12.38   | 9.68       | 37.28  | 22.06  | 56.00  | 46.00  | -18.72 | -23.94 | Pass   |

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

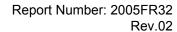





 Standard:
 FCC Part 15.407
 Line:
 N

 Test item:
 Conducted Emission
 Power:
 AC 120 V/60 Hz

 Mode:
 Mode 1
 Temp.(°C)/Hum.(%RH):
 26(°C)/60 %RH

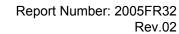

 Description:
 Temp.(°C)/Hum.(%RH):
 26(°C)/60 %RH



| No. | Frequency | QP      | AVG     | Correction | QP     | AVG    | QP     | AVG    | QP     | AVG    | Remark |
|-----|-----------|---------|---------|------------|--------|--------|--------|--------|--------|--------|--------|
|     |           | reading | reading | factor     | result | result | limit  | limit  | margin | margin |        |
|     | (MHz)     | (dBuV)  | (dBuV)  | (dB)       | (dBuV) | (dBuV) | (dBuV) | (dBuV) | (dB)   | (dB)   |        |
| 1   | 0.2860    | 30.14   | 19.06   | 9.68       | 39.82  | 28.74  | 60.64  | 50.64  | -20.82 | -21.90 | Pass   |
| 2   | 0.3820    | 27.60   | 16.32   | 9.68       | 37.28  | 26.00  | 58.24  | 48.24  | -20.96 | -22.24 | Pass   |
| 3   | 0.4900    | 33.71   | 20.44   | 9.69       | 43.40  | 30.13  | 56.17  | 46.17  | -12.77 | -16.04 | Pass   |
| 4   | 0.5260    | 37.33   | 24.69   | 9.69       | 47.02  | 34.38  | 56.00  | 46.00  | -8.98  | -11.62 | Pass   |
| 5   | 0.5380    | 35.50   | 23.45   | 9.69       | 45.19  | 33.14  | 56.00  | 46.00  | -10.81 | -12.86 | Pass   |
| 6   | 0.5580    | 31.47   | 18.97   | 9.69       | 41.16  | 28.66  | 56.00  | 46.00  | -14.84 | -17.34 | Pass   |

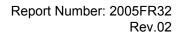
Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).



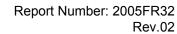



**Annex B. Conducted Test Results** 


## **Maximum Conducted Output Power Measurement**

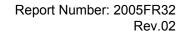
| ANT-0     |           |           |                  |       |      |  |  |  |
|-----------|-----------|-----------|------------------|-------|------|--|--|--|
|           | Frequency | _         | Average Output P | Limit |      |  |  |  |
| Test Mode | (MHz)     | Data Rate | Measurement Re   | sults |      |  |  |  |
|           |           |           | dBm              | W     | dBm  |  |  |  |
|           | 2412      |           | 19.38            | 0.087 | ≤ 30 |  |  |  |
|           | 2437      |           | 19.81            | 0.096 | ≤ 30 |  |  |  |
| Mode 2    | 2462      | 1 M       | 18.92            | 0.078 | ≤ 30 |  |  |  |
|           | 2467      |           | 17.88            | 0.061 | ≤ 30 |  |  |  |
|           | 2472      | <u> </u>  | 14.78            | 0.030 | ≤ 30 |  |  |  |
|           | 2412      |           | 16.87            | 0.049 | ≤ 30 |  |  |  |
|           | 2437      |           | 19.71            | 0.094 | ≤ 30 |  |  |  |
| Mode 3    | 2462      | 6 M       | 14.82            | 0.030 | ≤ 30 |  |  |  |
|           | 2467      | ] [       | 13.81            | 0.024 | ≤ 30 |  |  |  |
|           | 2472      |           | 11.81            | 0.015 | ≤ 30 |  |  |  |
|           | 2412      |           | 16.81            | 0.048 | ≤ 30 |  |  |  |
|           | 2437      | ] [       | 19.69            | 0.093 | ≤ 30 |  |  |  |
| Mode 4    | 2462      | 6.5 M     | 16.77            | 0.048 | ≤ 30 |  |  |  |
|           | 2467      |           | 14.16            | 0.026 | ≤ 30 |  |  |  |
|           | 2472      |           | 12.41            | 0.017 | ≤ 30 |  |  |  |
|           | 2422      |           | 16.11            | 0.041 | ≤ 30 |  |  |  |
|           | 2437      |           | 16.71            | 0.047 | ≤ 30 |  |  |  |
| Mode 5    | 2452      | 13.5 M    | 15.31            | 0.034 | ≤ 30 |  |  |  |
|           | 2457      |           | 12.98            | 0.020 | ≤ 30 |  |  |  |
|           | 2462      |           | 12.41            | 0.017 | ≤ 30 |  |  |  |






|           | ANT-0              |           |         |           |           |                     |      |  |  |  |
|-----------|--------------------|-----------|---------|-----------|-----------|---------------------|------|--|--|--|
|           | _                  |           |         |           | Average O | Limit               |      |  |  |  |
| Test Mode | Frequency<br>(MHz) | Data Rate | RU Tone | RU Number | Measurem  | Measurement Results |      |  |  |  |
|           | (1411 12)          |           |         |           | dBm       | W                   | dBm  |  |  |  |
|           | 2412               |           | 242     | 1         | 16.73     | 0.047               | ≤ 30 |  |  |  |
|           | 2437               | MCS 0     | 242     | 1         | 19.11     | 0.081               | ≤ 30 |  |  |  |
| Mode 6    | 2462               |           | 242     | 1         | 16.36     | 0.043               | ≤ 30 |  |  |  |
|           | 2467               |           | 242     | 1         | 14.82     | 0.030               | ≤ 30 |  |  |  |
|           | 2472               |           | 242     | 1         | 11.82     | 0.015               | ≤ 30 |  |  |  |
|           | 2422               | MCS 0     | 484     | 1         | 16.71     | 0.047               | ≤ 30 |  |  |  |
|           | 2437               |           | 484     | 1         | 16.17     | 0.041               | ≤ 30 |  |  |  |
| Mode 7    | 2452               |           | 484     | 1         | 14.83     | 0.030               | ≤ 30 |  |  |  |
|           | 2457               |           | 484     | 1         | 12.46     | 0.018               | ≤ 30 |  |  |  |
|           | 2462               |           | 484     | 1         | 11.88     | 0.015               | ≤ 30 |  |  |  |



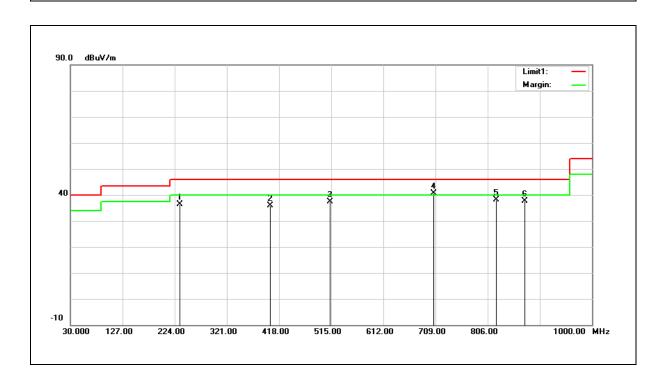



| ANT-1     |                    |           |                    |         |      |  |  |  |
|-----------|--------------------|-----------|--------------------|---------|------|--|--|--|
|           |                    |           | Average Output Pov | - Limit |      |  |  |  |
| Test Mode | Frequency<br>(MHz) | Data Rate | Measurement Resu   |         |      |  |  |  |
|           | (1711 12)          |           | dBm                | W       | dBm  |  |  |  |
|           | 2412               |           | 18.33              | 0.068   | ≤ 30 |  |  |  |
|           | 2437               |           | 18.38              | 0.069   | ≤ 30 |  |  |  |
| Mode 2    | 2462               | 1 M       | 18.35              | 0.068   | ≤ 30 |  |  |  |
|           | 2467               |           | 16.79              | 0.048   | ≤ 30 |  |  |  |
|           | 2472               |           | 14.32              | 0.027   | ≤ 30 |  |  |  |
|           | 2412               | 6 M       | 16.91              | 0.049   | ≤ 30 |  |  |  |
|           | 2437               |           | 18.08              | 0.064   | ≤ 30 |  |  |  |
| Mode 3    | 2462               |           | 14.72              | 0.030   | ≤ 30 |  |  |  |
|           | 2467               |           | 13.85              | 0.024   | ≤ 30 |  |  |  |
|           | 2472               |           | 11.88              | 0.015   | ≤ 30 |  |  |  |
|           | 2412               |           | 16.91              | 0.049   | ≤ 30 |  |  |  |
|           | 2437               |           | 18.07              | 0.064   | ≤ 30 |  |  |  |
| Mode 4    | 2462               | 6.5 M     | 16.77              | 0.048   | ≤ 30 |  |  |  |
|           | 2467               |           | 14.81              | 0.030   | ≤ 30 |  |  |  |
|           | 2472               |           | 11.74              | 0.015   | ≤ 30 |  |  |  |
|           | 2422               | ]         | 16.43              | 0.044   | ≤ 30 |  |  |  |
|           | 2437               | ]         | 16.81              | 0.048   | ≤ 30 |  |  |  |
| Mode 5    | 2452               | 13.5 M    | 15.14              | 0.033   | ≤ 30 |  |  |  |
|           | 2457               |           | 12.22              | 0.017   | ≤ 30 |  |  |  |
|           | 2462               |           | 11.87              | 0.015   | ≤ 30 |  |  |  |





|           | ANT-1              |           |         |           |           |             |       |  |  |  |
|-----------|--------------------|-----------|---------|-----------|-----------|-------------|-------|--|--|--|
|           |                    |           |         |           | Average O | Limit       |       |  |  |  |
| Test Mode | Frequency<br>(MHz) | Data Rate | RU Tone | RU Number | Measurem  | ent Results | Limit |  |  |  |
|           | (1711 12)          |           |         |           | dBm       | W           | dBm   |  |  |  |
|           | 2412               |           | 242     | 1         | 16.82     | 0.048       | ≤ 30  |  |  |  |
|           | 2437               | MCS 0     | 242     | 1         | 17.54     | 0.057       | ≤ 30  |  |  |  |
| Mode 6    | 2462               |           | 242     | 1         | 16.23     | 0.042       | ≤ 30  |  |  |  |
|           | 2467               |           | 242     | 1         | 11.24     | 0.013       | ≤ 30  |  |  |  |
|           | 2472               |           | 242     | 1         | 11.29     | 0.013       | ≤ 30  |  |  |  |
|           | 2422               | MCS 0     | 484     | 1         | 16.76     | 0.047       | ≤ 30  |  |  |  |
|           | 2437               |           | 484     | 1         | 16.37     | 0.043       | ≤ 30  |  |  |  |
| Mode 7    | 2452               |           | 484     | 1         | 14.61     | 0.029       | ≤ 30  |  |  |  |
|           | 2457               |           | 484     | 1         | 12.22     | 0.017       | ≤ 30  |  |  |  |
|           | 2462               |           | 484     | 1         | 11.91     | 0.016       | ≤ 30  |  |  |  |

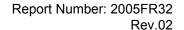





Annex C. Radiated Emission Measurement

## Below 1 GHz

Standard: FCC Part 15.407 Test Distance: 3 m Test item: Radiated Emission Power: AC 120 V/60 Hz 5500 MHz Temp.(°C)/Hum.(%RH): 26(°C)/60 %RH Frequency: Mode: Mode 3 Ant.Polar.: Horizontal



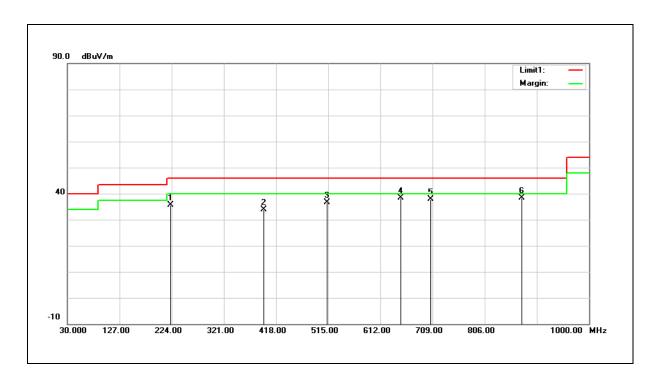

| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 233.7000  | 43.02   | -6.68          | 36.34    | 46.00    | -9.66  | QP     |
| 2   | 401.5100  | 38.04   | -2.05          | 35.99    | 46.00    | -10.01 | QP     |
| 3   | 513.0600  | 37.26   | 0.17           | 37.43    | 46.00    | -8.57  | QP     |
| 4   | 705.1200  | 36.68   | 4.05           | 40.73    | 46.00    | -5.27  | QP     |
| 5   | 821.5200  | 32.05   | 6.18           | 38.23    | 46.00    | -7.77  | QP     |
| 6   | 874.8700  | 30.40   | 7.11           | 37.51    | 46.00    | -8.49  | QP     |

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 36.34 = -6.68 + 43.02

- $2. Correction \ factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ loss \ (dB) Pre-Amplifier \ gain \ (dB).$
- 3. When the peak results are less than average limit, so not need to evaluate the average.



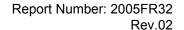



Standard: FCC Part 15.407 Test Distance: 3 m

Test item: Radiated Emission Power: AC 120 V/60 Hz

Frequency: 5500 MHz Temp.(°C )/Hum.(%RH): 26(°C )/60 %RH

Mode: Mode 3
Ant.Polar.: Vertical



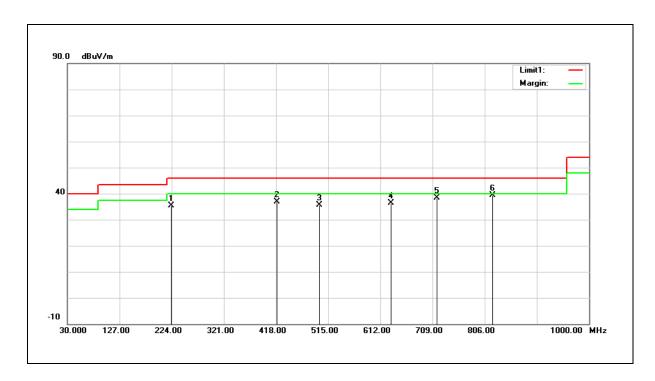

| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 222.0600  | 42.76   | -7.10          | 35.66    | 46.00    | -10.34 | QP     |
| 2   | 394.7200  | 36.10   | -2.23          | 33.87    | 46.00    | -12.13 | QP     |
| 3   | 513.0600  | 36.42   | 0.17           | 36.59    | 46.00    | -9.41  | QP     |
| 4   | 649.8300  | 35.36   | 2.91           | 38.27    | 46.00    | -7.73  | QP     |
| 5   | 705.1200  | 33.94   | 4.05           | 37.99    | 46.00    | -8.01  | QP     |
| 6   | 874.8700  | 31.35   | 7.11           | 38.46    | 46.00    | -7.54  | QP     |

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 35.66 = -7.10 + 42.76

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.

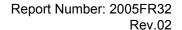





Standard: FCC Part 15.407 Test Distance: 3 m

Test item: Radiated Emission Power: AC 120 V/60 Hz

Frequency: 5500 MHz Temp.(°C)/Hum.(%RH): 26(°C)/60 %RH


Mode: Mode 7
Ant.Polar.: Horizontal

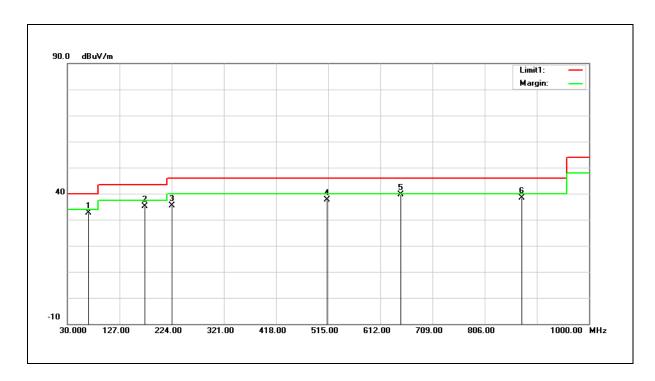


| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 223.0300  | 42.52   | -7.09          | 35.43    | 46.00    | -10.57 | QP     |
| 2   | 419.9400  | 38.48   | -1.54          | 36.94    | 46.00    | -9.06  | QP     |
| 3   | 498.5100  | 35.73   | -0.15          | 35.58    | 46.00    | -10.42 | QP     |
| 4   | 631.4000  | 33.58   | 2.76           | 36.34    | 46.00    | -9.66  | QP     |
| 5   | 717.7300  | 33.99   | 4.38           | 38.37    | 46.00    | -7.63  | QP     |
| 6   | 820.5500  | 33.11   | 6.16           | 39.27    | 46.00    | -6.73  | QP     |

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.






Standard: FCC Part 15.407 Test Distance: 3 m

Test item: Radiated Emission Power: AC 120 V/60 Hz

Frequency: 5500 MHz Temp.( $^{\circ}$ C)/Hum.( $^{\circ}$ RH): 26( $^{\circ}$ C)/60 %RH

Mode: Mode 7
Ant.Polar.: Vertical



| No. | Frequency | Reading | Correct Factor | Result   | Limit    | Margin | Remark |
|-----|-----------|---------|----------------|----------|----------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB/m)         | (dBuV/m) | (dBuV/m) | (dB)   |        |
| 1   | 68.8000   | 41.12   | -8.37          | 32.75    | 40.00    | -7.25  | QP     |
| 2   | 173.5600  | 41.13   | -6.08          | 35.05    | 43.50    | -8.45  | QP     |
| 3   | 224.9700  | 42.45   | -7.07          | 35.38    | 46.00    | -10.62 | QP     |
| 4   | 513.0600  | 37.44   | 0.17           | 37.61    | 46.00    | -8.39  | QP     |
| 5   | 649.8300  | 36.77   | 2.91           | 39.68    | 46.00    | -6.32  | QP     |
| 6   | 874.8700  | 31.21   | 7.11           | 38.32    | 46.00    | -7.68  | QP     |

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.