FCC SAR Test Report Report No. : SA120629C20 Applicant : Getac Technology Corporation. Address : 5F., Building A, No. 209, Sec. 1, Nangang Rd., Nangang Dist, Taipei City 11568, Taiwan, R.O.C. Product : PDA FCC ID : 3G: QYLPHS8-PP, WLAN: QYLAPM6658 Brand : Getac Model No. : PS336 Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1991 / IEEE 1528:2003 FCC OET Bulletin 65 Supplement C (Edition 01-01) KDB 248227 D01 v01r02 / KDB 648474 D01 v01r05 KDB 941225 D01 v02 / KDB 941225 D03 v01 Date of Testing : Sep. 11, 2012 ~ Sep. 18, 2012 **CERTIFICATION:** The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch - Taiwan HwaYa Lab**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. Prepared By: Polly Chien / Specialist Approved By: Roy Wu / Manager This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report Format Version 5.0.0 Page No. : 1 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 # **Table of Contents** | Rel | ease C | ontrol Record | 3 | |-----|--------|---|----| | 1. | Summ | nary of Maximum SAR Value | 4 | | 2. | | iption of Equipment Under Test | | | 3. | | Neasurement System | | | | 3.1 | Definition of Specific Absorption Rate (SAR) | | | | 3.2 | SPEAG DASY System | | | | | 3.2.1 Robot | | | | | 3.2.2 Probes | | | | | 3.2.3 Data Acquisition Electronics (DAE) | 8 | | | | 3.2.4 Phantoms | ę | | | | 3.2.5 Device Holder | | | | | 3.2.6 System Validation Dipoles | | | | | 3.2.7 Tissue Simulating Liquids | | | | 3.3 | SAR System Verification | | | | 3.4 | SAR Measurement Procedure | | | | | 3.4.1 Area & Zoom Scan Procedure | 14 | | | | 3.4.2 Volume Scan Procedure | | | | | 3.4.3 Power Drift Monitoring | 14 | | | | 3.4.4 Spatial Peak SAR Evaluation | 15 | | | | 3.4.5 SAR Averaged Methods | 15 | | 4. | SAR N | Measurement Evaluation | 16 | | | 4.1 | EUT Configuration and Setting | 16 | | | 4.2 | EUT Testing Position | 17 | | | 4.3 | Tissue Verification | 20 | | | 4.4 | System Verification | 20 | | | 4.5 | Conducted Power Results | | | | 4.6 | SAR Testing Results | 23 | | | | 4.6.1 SAR Results for Head | | | | | 4.6.2 SAR Results for Body | 23 | | | | 4.6.3 Simultaneous Multi-band Transmission Evaluation | | | 5. | | ation of Test Equipment | | | 6. | | urement Uncertainty | | | 7 | Inform | nation on the Testing Laboratories | 27 | Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup # **Release Control Record** | Issue No. | Reason for Change | Date Issued | |-----------|-------------------|---------------| | R01 | Original release | Oct. 12, 2012 | | | | | Report Format Version 5.0.0 Page No. : 3 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 ## 1. Summary of Maximum SAR Value | Mode / Band | Test Position | SAR-1g
(W/kg) | |--------------------|------------------------|------------------| | OCMOSO | Head | 0.324 | | GSM850 | Body Worn (1.5 cm Gap) | 0.235 | | 0004000 | Head | 0.290 | | GSM1900 | Body Worn (1.5 cm Gap) | 0.263 | | WORMA Day III | Head | 0.374 | | WCDMA Band II | Body Worn (1.5 cm Gap) | 0.366 | | WODMA Dand V | Head | 0.300 | | WCDMA Band V | Body Worn (1.5 cm Gap) | 0.238 | | WI AND ACID | Head | 0.116 | | WLAN 2.4GHz | Body Worn (1.5 cm Gap) | 0.029 | | Divisto eth / DEID | Head | N/A | | Bluetooth / RFID | Body Worn (1.5 cm Gap) | N/A | #### Note: - 1. The SAR limit **(1.6 W/kg)** for general population/uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1991. - 2. Since the maximum power of Bluetooth / RFID is less than $2P_{Ref}$ and the maximum WWAN SAR is less than 1.2 W/kg, SAR testing for Bluetooth / RFID is not required. Report Format Version 5.0.0 Page No. : 4 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 ## 2. <u>Description of Equipment Under Test</u> | EUT Type | PDA | |-----------------------------|---------------------------------------| | FCC ID | 3G: QYLPHS8-PP, WLAN: QYLAPM6658 | | Brand Name | Getac | | Model Name | PS336 | | HW Version | DVT | | | GSM850 : 824 ~ 849 | | | GSM1900 : 1850 ~ 1910 | | Tx Frequency Bands | WCDMA Band II: 1850 ~ 1910 | | (Unit: MHz) | WCDMA Band V : 824 ~ 849 | | | WLAN : 2400 ~ 2483.5 | | | Bluetooth : 2400 ~ 2483.5 | | | GSM & GPRS : GMSK | | | EDGE: 8PSK | | Uplink Modulations | WCDMA: QPSK | | Opinik Modulations | 802.11b : DSSS | | | 802.11g/n: OFDM | | | Bluetooth : GFSK | | | GSM850 : 32.92 | | | GSM1900 : 29.69 | | Maximum AVG Conducted Power | WCDMA Band II: 23.18 | | | WCDMA Band V: 23.55 | | (Unit: dBm) | 802.11b : 13.02 | | | 802.11g : 10.25 | | | 802.11n HT20 : 10.11 | | Antenna Type | Fixed Internal Antenna | | EUT Stage | Engineering Sample | | <u> </u> | · · · · · · · · · · · · · · · · · · · | #### Note: 1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual. #### **List of Accessory:** | | Brand Name | Asian Power Devices | | |------------|--------------------|---|--| | | Model Name | WA-24I12R | | | AC Adapter | Power Rating | I/P:100-240Vac, 50-60Hz, 7A;
O/P: 12Vdc, 2A | | | | DC Power Cord Type | 1.7 meter shielded cable with 1 ferrite core | | | | Brand Name | NA | | | USB Cable | Model Name | NA | | | | Signal Line Type | 0.9 meter non-shielded cable without ferrite core | | | | Brand Name | Getac | | | Docking | Model Name | PS336 office docking | | | | Power Rating | I/P:12Vdc, 4.16A | | | | Brand Name | Asian Power Devices | | | AC cable | Model Name | DA-60N12 | | | | Signal Line Type | 1.1 meter non-shielded cable with 1 ferrite core | | Report Format Version 5.0.0 Page No. : 5 of 27 Report No.: \$A120629C20 Issued Date : Oct. 12, 2012 ## 3. SAR Measurement System ## 3.1 Definition of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ### 3.2 SPEAG DASY System DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4/5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC. Report Format Version 5.0.0 Page No. : 6 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 Fig-3.1 DASY System Setup #### 3.2.1 Robot The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our
application: - High precision (repeatability ±0.035 mm) - · High reliability (industrial design) - · Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) Report Format Version 5.0.0 Report No. : SA120629C20 Revision: R01 Page No. : 7 of 27 Issued Date : Oct. 12, 2012 #### 3.2.2 Probes The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. | Model | EX3DV4 | | |---------------|--|--| | Construction | Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 6 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g to 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | Model | ES3DV3 | | |---------------|---|------| | Construction | Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE). | | | Frequency | 10 MHz to 4 GHz
Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis)
± 0.3 dB in tissue material (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g to 100 mW/g
Linearity: ± 0.2 dB | AST. | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm | | ## 3.2.3 Data Acquisition Electronics (DAE) | Model | DAE3, DAE4 | | |-------------------------|--|----------| | Construction | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. | | | Measurement | -100 to +300 mV (16 bit resolution and two range settings: 4mV, | | | Range | 400mV) | Talket . | | Input Offset
Voltage | < 5μV (with auto zero) | | | Input Bias Current | < 50 fA | | | Dimensions | 60 x 60 x 68 mm | | Report Format Version 5.0.0 Page No. : 8 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 ## 3.2.4 Phantoms | Model | Twin SAM | | |--|---|--| | Construction | The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot. | | | Material Vinylester, glass fiber reinforced (VE-GF) | | | | Shell Thickness $2 \pm 0.2 \text{ mm}$ (6 ± 0.2 mm at ear point) | | | | Dimensions | Length: 1000 mm
Width: 500 mm
Height: adjustable feet | | | Filling Volume | approx. 25 liters | | | Model | ELI | | |-----------------|---|--| | Construction | Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles. | | | Material | Vinylester, glass fiber reinforced (VE-GF) | | | Shell Thickness | 2.0 ± 0.2 mm (bottom plate) | | | Dimensions | Major axis: 600 mm
Minor axis: 400 mm | | | Filling Volume | approx. 30 liters | | Report Format Version 5.0.0 Report No. : SA120629C20 Revision: R01 Page No. : 9 of 27 Issued Date : Oct. 12, 2012 ### 3.2.5 Device Holder | Model | Mounting Device | _ | |--------------|---|---| | Construction | In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). | | | Material | POM | | | Model | Laptop Extensions Kit | | |--------------|---|----| | Construction | Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. | | | Material | POM, Acrylic glass, Foam | 15 | ## 3.2.6 System Validation Dipoles | Model | D-Serial | | |------------------|--|--| | Construction | Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions. | | | Frequency | 750 MHz to 5800 MHz | | | Return Loss | > 20 dB | | | Power Capability | > 100 W (f < 1GHz), > 40 W (f > 1GHz) | | Report Format Version 5.0.0 Page No. : 10 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 #### 3.2.7 Tissue Simulating Liquids For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1. The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528 and FCC OET 65 Supplement C Appendix C. For the body tissue simulating liquids, the dielectric properties are defined in FCC OET 65 Supplement C Appendix C. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer. **Table-3.1 Targets of Tissue Simulating Liquid** | Frequency
(MHz) | Target
Permittivity | Range of ±5% | Target
Conductivity | Range of ±5% | |--------------------|------------------------|--------------|------------------------|--------------| | · · · | | For Head | | | | 835 | 41.5 | 39.4 ~ 43.6 | 0.90 | 0.86 ~ 0.95 | | 1900 | 40.0 | 38.0 ~ 42.0 | 1.40 | 1.33 ~ 1.47 | | 2450 | 39.2 | 37.2 ~ 41.2 | 1.80 | 1.71 ~ 1.89 | | | | For Body | | | | 835 | 55.2 | 52.4 ~ 58.0 | 0.97 | 0.92 ~ 1.02 | | 1900 | 53.3 | 50.6 ~ 56.0 | 1.52 | 1.44 ~ 1.60 | | 2450 | 52.7 | 50.1 ~ 55.3 | 1.95 |
1.85 ~ 2.05 | Report Format Version 5.0.0 Page No. : 11 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 The following table gives the recipes for tissue simulating liquids. Table-3.2 Recipes of Tissue Simulating Liquid | Tissue
Type | Bactericide | DGBE | HEC | NaCl | Sucrose | Triton
X-100 | Water | Diethylene
Glycol
Mono-
hexylether | |----------------|-------------|------|-----|------|---------|-----------------|-------|---| | H835 | 0.2 | - | 0.2 | 1.5 | 57.0 | - | 41.1 | - | | H1900 | - | 44.5 | - | 0.2 | - | - | 55.3 | - | | H2450 | - | 45.0 | - | 0.1 | - | - | 54.9 | - | | B835 | 0.2 | - | 0.2 | 0.9 | 48.5 | - | 50.2 | - | | B1900 | - | 29.5 | - | 0.3 | - | - | 70.2 | - | | B2450 | - | 31.4 | - | 0.1 | - | - | 68.5 | - | Report Format Version 5.0.0 Page No. : 12 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 ### 3.3 SAR System Verification The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below. The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %. Report Format Version 5.0.0 Report No.: SA120629C20 Revision: R01 Page No. : 13 of 27 Issued Date : Oct. 12, 2012 #### 3.4 SAR Measurement Procedure According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement The SAR measurement procedures for each of test conditions are as follows: - (a) Make EUT to transmit maximum output power - (b) Measure conducted output power through RF cable - (c) Place the EUT in the specific position of phantom - (d) Perform SAR testing steps on the DASY system - (e) Record the SAR value #### 3.4.1 Area & Zoom Scan Procedure First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for below 3 GHz, and 7x7x9 points with step size 4, 4 and 2.5 mm for above 5 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. #### 3.4.2 Volume Scan Procedure The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 3.4.3 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. Report Format Version 5.0.0 Page No. : 14 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 #### 3.4.4 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g #### 3.4.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. Report Format Version 5.0.0 Page No. : 15 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 ## 4. SAR Measurement Evaluation ## 4.1 EUT Configuration and Setting For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Brand: Agilent, Model: E5515C). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing. For GSM850, the power control level is set to 5. For GPRS850 (GMSK, CS1), the power control level is set to 5. For EDGE850 (GMSK: MCS1, 8PSK:MCS9), the power control level is set to 8. For GSM1900, the power control level is set to 0. For GPRS1900 (GMSK, CS1), the power control level is set to 0. For EDGE1900 (GMSK: MCS1, 8PSK:MCS9), the power control level is set to 2. SAR testing is performed on the maximum frame-averaged power mode. For WCDMA, head and body SAR is tested under 12.2k RMC mode with power control set all up bits. SAR for AMR is not required since its power is less than 1/4 dB higher than RMC. SAR for HSDPA/HSUPA is not required since its power is less than 1/4 dB higher than RMC without HSDPA/HSUPA and SAR for 12.2 kbps RMC is less than 75% of the SAR limit (1.2 W/kg). For WLAN SAR testing, the EUT has installed WLAN engineering testing software which can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle. The data rates for WLAN SAR testing were set in 1 Mbps for 802.11b due to the highest RF output power. Report Format Version 5.0.0 Page No. : 16 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 #### **4.2 EUT Testing Position** This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Front Face of EUT with phantom 1.5 cm gap, and Rear Face of EUT with phantom 1.5 cm gap positions as illustrated below: #### 1. Define two imaginary lines on the handset - (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset. - (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A. - (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and
other irregularly shaped handsets. Fig-4.1 Illustration for Handset Vertical and Horizontal Reference Lines Report Format Version 5.0.0 Page No. : 17 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 #### 2. Cheek Position - (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. - (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig-4.2). Fig-4.2 Illustration for Cheek Position #### 3. Tilted Position - (a) To position the device in the "cheek" position described above. - (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig-4.3). Fig-4.3 Illustration for Tilted Position Report Format Version 5.0.0 Page No. : 18 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 ## 4. Body Worn Position - (a) To position the EUT parallel to the phantom surface. - (b) To adjust the EUT parallel to the flat phantom. - (c) To adjust the distance between the EUT surface and the flat phantom to 1.5 cm. Fig-4.4 Illustration for Body Worn Position Report Format Version 5.0.0 Page No. : 19 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 ## 4.3 Tissue Verification The measuring results for tissue simulating liquid are shown as below. | Tissue
Type | Frequency
(MHz) | Liquid
Temp.
(℃) | Measured
Conductivity
(σ) | Measured
Permittivity
(ε _r) | Target
Conductivity
(σ) | Target
Permittivity
(ε _r) | Conductivity
Deviation
(%) | Permittivity
Deviation
(%) | Test
Date | |----------------|--------------------|------------------------|---------------------------------|---|-------------------------------|---|----------------------------------|----------------------------------|---------------| | H835 | 835 | 21.2 | 0.916 | 42.748 | 0.90 | 41.5 | 1.78 | 3.01 | Sep. 11, 2012 | | H835 | 835 | 21.5 | 0.909 | 42.343 | 0.90 | 41.5 | 1.00 | 2.03 | Sep. 12, 2012 | | H1900 | 1900 | 21.6 | 1.436 | 39.743 | 1.40 | 40.0 | 2.57 | -0.64 | Sep. 12, 2012 | | H2450 | 2450 | 21.5 | 1.780 | 40.200 | 1.80 | 39.2 | -1.11 | 2.55 | Sep. 18, 2012 | | B835 | 835 | 20.1 | 0.980 | 55.843 | 0.97 | 55.2 | 1.03 | 1.16 | Sep. 13, 2012 | | B1900 | 1900 | 20.2 | 1.545 | 52.799 | 1.52 | 53.3 | 1.64 | -0.94 | Sep. 13, 2012 | | B2450 | 2450 | 21.7 | 2.030 | 52.800 | 1.95 | 52.7 | 4.10 | 0.19 | Sep. 17, 2012 | #### Note: The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within $\pm 2\%$. ## 4.4 System Verification The measuring results for system check are shown as below. | Test
Date | Mode | Frequency
(MHz) | 1W Target
SAR-1g
(W/kg) | Measured
SAR-1g
(W/kg) | Normalized
to 1W
SAR-1g
(W/kg) | Deviation
(%) | Dipole
S/N | Probe
S/N | DAE
S/N | |---------------|------|--------------------|-------------------------------|------------------------------|---|------------------|---------------|--------------|------------| | Sep. 11, 2012 | Head | 835 | 9.46 | 2.45 | 9.80 | 3.59 | 4d021 | 3650 | 861 | | Sep. 12, 2012 | Head | 835 | 9.46 | 2.46 | 9.84 | 4.02 | 4d021 | 3650 | 861 | | Sep. 12, 2012 | Head | 1900 | 38.90 | 9.77 | 39.08 | 0.46 | 5d036 | 3650 | 861 | | Sep. 18, 2012 | Head | 2450 | 52.90 | 13.10 | 52.40 | -0.95 | 737 | 3864 | 1277 | | Sep. 13, 2012 | Body | 835 | 9.60 | 2.42 | 9.68 | 0.83 | 4d021 | 3650 | 861 | | Sep. 13, 2012 | Body | 1900 | 38.90 | 9.31 | 37.24 | -4.27 | 5d036 | 3650 | 861 | | Sep. 17, 2012 | Body | 2450 | 50.00 | 12.50 | 50.00 | 0.00 | 737 | 3864 | 1277 | #### Note: Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report. Report Format Version 5.0.0 Page No. : 20 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 ## 4.5 Conducted Power Results The measuring conducted power (Unit: dBm) are shown as below. | Band | | GSM850 | | | GSM1900 | | |--------------------------|-------|---------------|-----------------|----------|---------|--------| | Channel | 128 | 189 | 251 | 512 | 661 | 810 | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | 1850.2 | 1880.0 | 1909.8 | | | | Maximum Burst | -Averaged Outp | ut Power | | | | GSM (GMSK, 1 Uplink) | 32.88 | 32.89 | 32.92 | 29.47 | 29.15 | 29.69 | | GPRS 8 (GMSK, 1 Uplink) | 32.84 | 32.86 | 32.86 | 29.35 | 29.03 | 29.57 | | GPRS 10 (GMSK, 2 Uplink) | 29.60 | 29.61 | 29.64 | 25.80 | 25.48 | 26.02 | | GPRS 11 (GMSK, 3 Uplink) | 28.15 | 28.07 | 27.91 | 24.57 | 24.13 | 24.14 | | GPRS 12 (GMSK, 4 Uplink) | 26.75 | 26.68 | 26.53 | 23.39 | 22.90 | 22.35 | | EDGE 8 (GMSK, 1 Uplink) | 32.83 | 32.84 | 32.87 | 29.36 | 29.04 | 29.58 | | EDGE 10 (GMSK, 2 Uplink) | 29.47 | 29.48 | 29.51 | 25.79 | 25.47 | 26.01 | | EDGE 11 (GMSK, 3 Uplink) | 28.12 | 28.02 | 27.89 | 24.59 | 24.08 | 24.11 | | EDGE 12 (GMSK, 4 Uplink) | 26.63 | 26.78 | 26.44 | 23.42 | 22.93 | 22.41 | | EDGE 8 (8PSK, 1 Uplink) | 26.70 | 26.71 | 26.74 | 24.76 | 24.44 | 24.98 | | EDGE 10 (8PSK, 2 Uplink) | 23.62 | 23.63 | 23.66 | 21.56 | 21.24 | 21.78 | | EDGE 11 (8PSK, 3 Uplink) | 22.31 | 22.21 | 22.02 | 20.85 | 20.38 | 20.39 | | EDGE 12 (8PSK, 4 Uplink) | 21.35 | 21.31 | 21.14 | 19.59 | 19.10 | 18.94 | | | | Maximum Frame | e-Averaged Outp | ut Power | | | | GSM (GMSK, 1 Uplink) | 23.88 | 23.89 | 23.92 | 20.47 | 20.15 | 20.69 | | GPRS 8 (GMSK, 1 Uplink) | 23.84 | 23.86 | 23.86 | 20.35 | 20.03 | 20.57 | | GPRS 10 (GMSK, 2 Uplink) | 23.60 | 23.61 | 23.64 | 19.80 | 19.48 | 20.02 | | GPRS 11 (GMSK, 3 Uplink) | 23.89 | 23.81 | 23.65 | 20.31 | 19.87 | 19.88 | | GPRS 12 (GMSK, 4 Uplink) | 23.75 | 23.68 | 23.53 | 20.39 | 19.90 | 19.35 | | EDGE 8 (GMSK, 1 Uplink) | 23.83 | 23.84 | 23.87 | 20.36 | 20.04 | 20.58 | | EDGE 10 (GMSK, 2 Uplink) | 23.47 | 23.48 | 23.51 | 19.79 | 19.47 | 20.01 | | EDGE 11 (GMSK, 3 Uplink) | 23.86 | 23.76 | 23.63 | 20.33 | 19.82 | 19.85 | | EDGE 12 (GMSK, 4 Uplink) | 23.63 | 23.78 | 23.44 | 20.42 | 19.93 | 19.41 | | EDGE 8 (8PSK, 1 Uplink) | 17.70 | 17.71 | 17.74 | 15.76 | 15.44 | 15.98 | | EDGE 10 (8PSK, 2 Uplink) | 17.62 | 17.63 | 17.66 | 15.56 | 15.24 | 15.78 | #### Note: - 1. SAR testing for GSM/GPRS/EDGE was performed on the maximum frame-averaged power mode. - 2. The frame-averaged power is linearly scaled the maximum burst-averaged power based on time slots. The calculated methods are shown as below: Frame-averaged power = Burst-averaged power (1 Uplink) - 9 dBm Frame-averaged power = Burst averaged power (2 Uplink) - 6 dBm Frame-averaged power = Burst averaged power (3 Uplink) - 4.26 dBm Frame-averaged power = Burst averaged power (4 Uplink) - 3 dBm Report Format Version 5.0.0 Page No. : 21 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 ## FCC SAR Test Report | Band | | WCDMA Band II | | | WCDMA Band V | | | | | |----------------------------------|--------|---------------|--------|-------|--------------|-------|--|--|--| | Channel | 9262 | 9400 | 9538 | 4132 | 4182 | 4233 | | | | | Frequency (MHz) | 1852.4 | 1880.0 | 1907.6 | 826.4 | 836.4 | 846.6 | | | | | RMC 12.2K | 23.11 | 23.18 | 23.13 | 23.54 | 23.55 | 23.51 | | | | | HSDPA Subtest-1 | 23.09 | 23.16 | 23.11 | 23.41 | 23.42 | 23.38 | | | | | HSDPA Subtest-2 | 23.07 | 23.14 | 23.09 | 23.40 | 23.41 | 23.37 | | | | | HSDPA Subtest-3 | 22.66 | 22.73 | 22.68 | 22.85 | 22.86 | 22.82 | | | | | HSDPA Subtest-4 | 22.61 | 22.68 | 22.63 | 22.98 | 22.99 | 22.95 | | | | | HSUPA Subtest-1 | 23.05 | 23.10 | 23.07 | 23.39 | 23.42 | 23.34 | | | | | HSUPA Subtest-2 | 21.01 | 21.08 | 21.04 | 21.28 | 21.35 | 21.27 | | | | | HSUPA Subtest-3 | 22.00 | 22.10 | 22.04 | 22.35 | 22.40 | 22.34 | | | | | HSUPA Subtest-4 | 21.00 | 21.09 | 21.06 | 21.27 | 21.37 | 21.27 | | | | | HSUPA Subtest-5 | 22.98 | 23.05 | 23.01 | 23.27 | 23.33 | 23.25 | | | | | Maximum Power Reduction | | | | | | | | | | | | | | (dB) | | | | | | | | HSDPA Subtest-1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | Target MPR = 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | HSDPA Subtest-2 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | | | | | Target MPR = 0 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | | | | | HSDPA Subtest-3 | 0.43 | 0.43 | 0.43 | 0.56 | 0.56 | 0.56 | | | | | Target MPR = 0.5 | | | | | | | | | | | HSDPA Subtest-4 | 0.48 | 0.48 | 0.48 | 0.43 | 0.43 | 0.43 | | | | | Target MPR = 0.5 HSUPA Subtest-1 | | | | | | | | | | | Target MPR = 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | HSUPA Subtest-2 | | | | | | | | | | | Target MPR = 2 | 2.04 | 2.02 | 2.03 | 2.11 | 2.07 | 2.07 | | | | | HSUPA Subtest-3 | | | | | | | | | | | Target MPR = 1 | 1.05 | 1.00 | 1.03 | 1.04 | 1.02 | 1.00 | | | | | HSUPA Subtest-4 | 2.05 | 2.04 | 0.04 | 0.40 | 2.05 | 2.07 | | | | | Target MPR = 2 | 2.05 | 2.01 | 2.01 | 2.12 | 2.05 | 2.07 | | | | | HSUPA Subtest-5 | 0.07 | 0.05 | 0.06 | 0.12 | 0.09 | 0.09 | | | | | Target MPR = 0 | 0.07 | 0.05 | 0.00 | 0.12 | 0.08 | 0.09 | | | | | Band | | 802.11b | |
802.11g | | | |-----------------|--------|---------|-------|---------|------|-------| | Channel | 1 6 11 | | | 1 | 6 | 11 | | Frequency (MHz) | 2412 | 2437 | 2462 | 2412 | 2437 | 2462 | | Average Power | 8.42 | 11.13 | 13.02 | 6.78 | 9.20 | 10.25 | | Band | 802.11n (HT20) | | | | | |-----------------|----------------|------|-------|--|--| | Channel | 1 | 6 | 11 | | | | Frequency (MHz) | 2412 | 2437 | 2462 | | | | Average Power | 6.33 | 9.12 | 10.11 | | | Report Format Version 5.0.0 Page No. : 22 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 ## 4.6 SAR Testing Results #### 4.6.1 SAR Results for Head | Plot
No. | Band | Mode | Test Position | Channel | Conducted
Power
(dBm) | Power
Drift
(dB) | SAR-1g
(W/kg) | |-------------|----------|----------|---------------|---------|-----------------------------|------------------------|------------------| | 1 | GSM850 | GSM | Right Cheek | 251 | 32.92 | 0.04 | 0.324 | | 2 | GSM850 | GSM | Right Tilted | 251 | 32.92 | 0.01 | 0.247 | | 3 | GSM850 | GSM | Left Cheek | 251 | 32.92 | 0.00 | 0.267 | | 4 | GSM850 | GSM | Left Tilted | 251 | 32.92 | 0.01 | 0.177 | | 5 | GSM1900 | GSM | Right Cheek | 810 | 29.69 | -0.17 | 0.290 | | 6 | GSM1900 | GSM | Right Tilted | 810 | 29.69 | 0.01 | 0.190 | | 7 | GSM1900 | GSM | Left Cheek | 810 | 29.69 | 0.19 | 0.165 | | 8 | GSM1900 | GSM | Left Tilted | 810 | 29.69 | -0.12 | 0.121 | | 13 | WCDMA II | RMC12.2K | Right Cheek | 9400 | 23.18 | -0.12 | 0.374 | | 14 | WCDMA II | RMC12.2K | Right Tilted | 9400 | 23.18 | 0.15 | 0.241 | | 15 | WCDMA II | RMC12.2K | Left Cheek | 9400 | 23.18 | -0.15 | 0.243 | | 16 | WCDMA II | RMC12.2K | Left Tilted | 9400 | 23.18 | 0.01 | 0.160 | | 9 | WCDMA V | RMC12.2K | Right Cheek | 4182 | 23.55 | 0.03 | 0.300 | | 10 | WCDMA V | RMC12.2K | Right Tilted | 4182 | 23.55 | 0.03 | 0.218 | | 11 | WCDMA V | RMC12.2K | Left Cheek | 4182 | 23.55 | 0.01 | 0.235 | | 12 | WCDMA V | RMC12.2K | Left Tilted | 4182 | 23.55 | -0.03 | 0.133 | | 32 | 802.11b | - | Right Cheek | 11 | 13.02 | 0.181 | 0.082 | | 33 | 802.11b | - | Right Tilted | 11 | 13.02 | -0.175 | 0.025 | | 34 | 802.11b | - | Left Cheek | 11 | 13.02 | 0.112 | 0.116 | | 35 | 802.11b | - | Left Tilted | 11 | 13.02 | 0.183 | 0.021 | #### Note: - 1. SAR is performed on the highest power channel. When the SAR value of highest power channel is less than 0.8 W/kg, SAR testing for optional channel is not required. - 2. SAR testing for 802.11g/n is not required because its maximum power is less than 1/4 dB higher than 802.11b. #### 4.6.2 SAR Results for Body | Plot
No. | Band | Mode | Test Position | Separation
Distance
(cm) | Channel | Conducted
Power
(dBm) | Power
Drift
(dB) | SAR-1g
(W/kg) | |-------------|----------|----------|---------------|--------------------------------|---------|-----------------------------|------------------------|------------------| | 17 | GSM850 | GSM | Front Face | 1.5 | 251 | 32.92 | -0.10 | 0.1 | | 18 | GSM850 | GSM | Rear Face | 1.5 | 251 | 32.92 | -0.04 | 0.235 | | 19 | GSM1900 | GSM | Front Face | 1.5 | 810 | 29.69 | 0.11 | 0.052 | | 20 | GSM1900 | GSM | Rear Face | 1.5 | 810 | 29.69 | -0.02 | 0.263 | | 23 | WCDMA II | RMC12.2K | Front Face | 1.5 | 9400 | 23.18 | -0.08 | 0.077 | | 24 | WCDMA II | RMC12.2K | Rear Face | 1.5 | 9400 | 23.18 | 0.03 | 0.366 | | 21 | WCDMA V | RMC12.2K | Front Face | 1.5 | 4182 | 23.55 | -0.04 | 0.083 | | 22 | WCDMA V | RMC12.2K | Rear Face | 1.5 | 4182 | 23.55 | -0.06 | 0.238 | | 30 | 802.11b | - | Front Face | 1.5 | 11 | 13.02 | 0.087 | 0.021 | | 31 | 802.11b | - | Rear Face | 1.5 | 11 | 13.02 | 0.15 | 0.029 | #### Note: - 1. SAR is performed on the highest power channel. When the SAR value of highest power channel is less than 0.8 W/kg, SAR testing for optional channel is not required. - 2. SAR testing for 802.11g/n is not required because its maximum power is less than 1/4 dB higher than 802.11b. Test Engineer: Sam Onn, and Hank Wu Report Format Version 5.0.0 Page No. : 23 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 #### 4.6.3 Simultaneous Multi-band Transmission Evaluation | No. | Conditions
(SAR1 + SAR2) | Mode | Position | Max.
SAR1 | Max.
SAR2 | SAR
Summation | SPLSR | |-----|-----------------------------|------------|--------------|--------------|--------------|------------------|-------| | | | | Right Cheek | 0.324 | 0.082 | 0.406 | - | | | 0011050 | Hood | Right Tilted | 0.247 | 0.025 | 0.272 | - | | | GSM850 | Head | Left Cheek | 0.267 | 0.116 | 0.383 | - | | 1 | 1 +
WLAN 2.4G | | Left Tilted | 0.177 | 0.021 | 0.198 | - | | | WLAN 2.4G | Pady Mara | Front Face | 0.1 | 0.021 | 0.121 | - | | | | Body-Worn | Rear Face | 0.235 | 0.029 | 0.264 | - | | | | | Right Cheek | 0.29 | 0.082 | 0.372 | - | | | 00114000 | Head | Right Tilted | 0.19 | 0.025 | 0.215 | - | | _ | GSM1900 | | Left Cheek | 0.165 | 0.116 | 0.281 | - | | 2 | WLAN 2.4G | | Left Tilted | 0.121 | 0.021 | 0.142 | - | | | WLAIT 2.40 | Body-Worn | Front Face | 0.052 | 0.021 | 0.073 | - | | | | | Rear Face | 0.263 | 0.029 | 0.292 | - | | | | | Right Cheek | 0.374 | 0.082 | 0.456 | - | | | MODMAII | Head | Right Tilted | 0.241 | 0.025 | 0.266 | - | | 3 | WCDMA II | пеац | Left Cheek | 0.243 | 0.116 | 0.359 | - | | 3 | WLAN 2.4G | | Left Tilted | 0.16 | 0.021 | 0.181 | - | | | WLAN 2.4G | Body-Worn | Front Face | 0.077 | 0.021 | 0.098 | - | | | | Body-Wolfi | Rear Face | 0.366 | 0.029 | 0.395 | - | | | | | Right Cheek | 0.3 | 0.082 | 0.382 | - | | | WODMAN | Head | Right Tilted | 0.218 | 0.025 | 0.243 | - | | 4 | WCDMA V | пеаи | Left Cheek | 0.235 | 0.116 | 0.351 | - | | - | WLAN 2.4G | | Left Tilted | 0.133 | 0.021 | 0.154 | - | | | WEAR 2.40 | Dody Worn | Front Face | 0.083 | 0.021 | 0.104 | - | | | | Body-Worn | Rear Face | 0.238 | 0.029 | 0.267 | - | #### Note: 1. The maximum SAR summation is calculated based on the same configuration and test position. #### **Summary:** According to KDB 648474, the simultaneous transmission SAR for WWAN and WLAN was not required, because the SAR summation is less than 1.6 W/kg. The BT/RFID standalone SAR, and WWAN/BT and WWAN/RFID simultaneous transmission SAR were not required, because the maximum output power of Bluetooth/RFID is less than $P_{Ref.}$ and the closest separation distance of these antennas is less than 2.5 cm, and the maximum WWAN SAR is less than 1.2 W/kg. Report Format Version 5.0.0 Page No. : 24 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 # 5. Calibration of Test Equipment | Equipment | Manufacturer | Model | SN | Cal. Date | Cal. Interval | |------------------------------|--------------|----------------|------------|---------------|---------------| | System Validation Kit | SPEAG | D835V2 | 4d021 | Apr. 20, 2012 | Annual | | System Validation Kit | SPEAG | D1900V2 | 5d036 | Jan. 26, 2012 | Annual | | System Validation Kit | SPEAG | D2450V2 | 737 | Jan. 24, 2012 | Annual | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3650 | Oct. 26, 2011 | Annual | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3864 | Jul. 19, 2012 | Annual | | Data Acquisition Electronics | SPEAG | DAE4 | 861 | Aug. 23, 2012 | Annual | | Data Acquisition Electronics | SPEAG | DAE4 | 1277 | Jul. 19, 2012 | Annual | | SAM Phantom | SPEAG | QD000P40CD | TP-1202 | N/A | N/A | | SAM Phantom | SPEAG | QD000P40CD | TP-1485 | N/A | N/A | | SAM Phantom | SPEAG | QD000P40CD | TP-1652 | N/A | N/A | | Radio Communication Tester | Agilent | E5515C | MY50260642 | Oct. 25, 2011 | Biennial | | ENA Series Network Analyzer | Agilent | E5071C | MY46214281 | May 14, 2012 | Annual | | MXG Analog Signal Generator | Agilent | N5181A | MY50143868 | May 06, 2012 | Annual | | Power Meter | Anritsu | ML2495A | 1218009 | May 07, 2012 | Annual | | Power Sensor | Anritsu | MA2411B | 1207252 | May 07, 2012 | Annual | | EXA Spectrum Analyzer | Agilent | N9010A | MY52100136 | Apr. 23, 2012 | Annual | | Dielectric Probe Kit | Agilent | 85070D | E2-020018 | May 14, 2012 | Annual | | Thermometer | YFE | YF-160A | 110600361 | Feb. 21, 2012 | Annual | | Directional Coupler | Woken | 0110A05602O-10 | 11122702 | Apr. 19, 2012 | Annual | | Power Amplifier | AR | 5S1G4 | 0339656 | Apr. 23, 2012 | Annual | | Power Amplifier | Mini-Circuit | ZVE-8G | 001000422 | Apr. 23, 2012 | Annual | | Attenuator | Woken | 00800A1G01L-03 | N/A | Apr. 19, 2012 | Annual | Report Format Version 5.0.0 Page No. : 25 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 # 6. Measurement Uncertainty | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Standard
Uncertainty
(1g) | Vi | |-------------------------------|------------------------------|-----------------------------|---------|------------|---------------------------------|----------| | Measurement System | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | ± 6.0 % | ∞ | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | ± 1.9 % | ∞ | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | ± 3.9 % | ∞ | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Linearity | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | ∞ | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | ∞ | | Readout Electronics | 0.6 | Normal | 1 | 1 | ± 0.6 % | ∞ | | Response Time | 0.0 | Rectangular | √3 | 1 | ± 0.0 % | ∞ | | Integration Time | 1.7 | Rectangular | √3 | 1 | ± 1.0 % | ∞ | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Probe Positioner | 0.5 | Rectangular | √3 | 1 | ± 0.3 % | ∞ | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | ± 1.7 % | ∞ | | Max. SAR Eval. | 2.3 | Rectangular | √3 | 1 | ± 1.3 % | ∞ | | Test Sample Related | | | | | | | | Device Positioning | 3.9 | Normal | 1 | 1 | ± 3.9 % | 31 | | Device Holder | 2.7 | Normal | 1 | 1 | ± 2.7 % | 19 | | Power Drift | 5.0 | Rectangular | √3 | 1 | ± 2.9 % | ∞ | | Phantom and Setup | | | | |
 | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | ± 2.3 % | ∞ | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | ± 1.8 % | ∞ | | Liquid Conductivity (Meas.) | 5.0 | Normal | 1 | 0.64 | ± 3.2 % | 29 | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | ± 1.7 % | ∞ | | Liquid Permittivity (Meas.) | 5.0 | Normal | 1 | 0.6 | ± 3.0 % | 29 | | Combined Standard Uncertainty | | | | | | | | Expanded Uncertainty (K=2) | | | | | | | Uncertainty budget for frequency range 300 MHz to 3 GHz Report Format Version 5.0.0 Page No. : 26 of 27 Report No. : SA120629C20 Issued Date : Oct. 12, 2012 ## 7. Information on the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site. If you have any comments, please feel free to contact us at the following: #### Taiwan HwaYa EMC/RF/Safety/Telecom Lab: Add: No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-318-3232 Fax: 886-3-327-0892 #### Taiwan LinKo EMC/RF Lab: Add: No. 47, 14th Ling, Chia Pau Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C. Tel: 886-2-2605-2180 Fax: 886-2-2605-1924 #### Taiwan HsinChu EMC/RF Lab: Add: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Vil., Chiung Lin Township, Hsinchu County 307, Taiwan, R.O.C. Tel: 886-3-593-5343 Fax: 886-3-593-5342 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The road map of all our labs can be found in our web site also. ---END--- Report Format Version 5.0.0 Page No. : 27 of 27 Report No.: SA120629C20 Issued Date : Oct. 12, 2012 # Appendix A. SAR Plots of System Verification The plots for system verification are shown as follows. Report Format Version 5.0.0 Issued Date : Oct. 12, 2012 Report No.: SA120629C20 ## **System Check H835 120911** ## **DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: H835_0911 Medium parameters used: f = 835 MHz; $\sigma = 0.916$ mho/m; $\varepsilon_r = 42.748$; $\rho =$ Date: 2012/09/11 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Pin=250mW/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.11 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.334 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.593 mW/g SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.62 mW/gMaximum value of SAR (measured) = 3.09 W/kg ## **System Check H835 120912** **DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: H835 0912 Medium parameters used: f = 835 MHz; $\sigma = 0.909$ mho/m; $\varepsilon_r = 42.343$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.2 °C; Liquid Temperature: 21.5 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.12 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.654 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.639 mW/g SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.63 mW/gMaximum value of SAR (measured) = 3.13 W/kg ## **System Check H1900 120912** ## **DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: H1900_0912 Medium parameters used: f = 1900 MHz; $\sigma = 1.436$ mho/m; $\epsilon_r = 39.743$; $\rho = 1.436$ mho/m; $\epsilon_r = 39.743$; 39.74$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Pin=250mW/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 14.5 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 100.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.644 mW/g SAR(1 g) = 9.77 mW/g; SAR(10 g) = 5.02 mW/g SAR(1 g) = 9.77 mW/g; SAR(10 g) = 5.02 mW/gMaximum value of SAR (measured) = 14.2 W/kg ## System Check_H2450_120918 **DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: H2450_0918 Medium parameters used: f = 2450 MHz; $\sigma = 1.78$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ Date: 2012/09/18 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.5 °C #### DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.28, 7.28, 7.28); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Pin=250mW/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 22.0 mW/g **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 5.98 mW/gMaximum value of SAR (measured) = 20.2 mW/g ## **System Check B835 120913** ## **DUT: Dipole 835 MHz; Type: D835V2; SN: 4d021** Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: B835_0913 Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 55.843$; $\rho = 1000$ Date: 2012/09/13 kg/m³ Ambient Temperature: 21.5°C; Liquid Temperature: 20.1°C ## DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(9.12, 9.12, 9.12); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Pin=250mW/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.06 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.857 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.581 mW/g SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.6 mW/gMaximum value of SAR (measured) = 3.07 W/kg ## **System Check B1900 120913** ### **DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036** Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: B1900_0913 Medium parameters used: f = 1900 MHz; $\sigma = 1.545$ mho/m; $\varepsilon_r = 52.799$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.8°C; Liquid Temperature: 20.2°C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.46, 7.46, 7.46); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Pin=250mW/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 13.6 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 95.232 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.865 mW/g SAR(1 g) = 9.31 mW/g; SAR(10 g) = 4.82 mW/gMaximum value of SAR (measured) = 13.2 W/kg ## **System Check_B2450_120917** **DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: B2450_0917 Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ mho/m; $\varepsilon_r = 52.8$; $\rho = 1000$ Date: 2012/09/17 kg/m^3 Ambient Temperature: 22.4 °C; Liquid Temperature: 21.7 °C ## DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.49, 7.49, 7.49); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Pin=250mW/Area Scan (61x61x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 19.9 mW/g **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 98.3 V/m; Power Drift = -0.020 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 12.5 mW/g; SAR(10 g) = 5.78 mW/gMaximum value of SAR (measured) = 18.8 mW/g # **Appendix B. SAR Plots of SAR Measurement** The plots for SAR measurement are shown as follows. Report Format Version 5.0.0 Issued Date : Oct. 12, 2012 Report No. : SA120629C20 ## P01 GSM850_GSM_Right Cheek Ch251 #### **DUT: 120629C20** Communication
System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium: H835_0911 Medium parameters used: f = 849 MHz; $\sigma = 0.929$ mho/m; $\varepsilon_r = 42.571$; $\rho =$ Date: 2012/09/11 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch251/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.415 W/kg Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.531 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.468 mW/g SAR(1 g) = 0.324 mW/g; SAR(10 g) = 0.223 mW/g Maximum value of SAR (measured) = 0.395 W/kg ## P02 GSM850_GSM_Right Tilted_Ch251 #### **DUT: 120629C20** Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium: H835_0911 Medium parameters used: f = 849 MHz; $\sigma = 0.929$ mho/m; $\varepsilon_r = 42.571$; $\rho =$ Date: 2012/09/11 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch251/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.319 W/kg Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.366 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.359 mW/g SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.166 mW/g Maximum value of SAR (measured) = 0.303 W/kg ## P03 GSM850_GSM_Left Cheek_Ch251 #### **DUT: 120629C20** Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium: H835_0911 Medium parameters used: f = 849 MHz; $\sigma = 0.929$ mho/m; $\varepsilon_r = 42.571$; $\rho =$ Date: 2012/09/11 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch251/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.331 W/kg #### Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.352 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.353 mW/g SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.195 mW/g Maximum value of SAR (measured) = 0.314 W/kg #### Ch251/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.352 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.232 mW/g SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.106 mW/g Maximum value of SAR (measured) = 0.211 W/kg ## P04 GSM850_GSM_Left Tilted_Ch251 #### **DUT: 120629C20** Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium: H835_0911 Medium parameters used: f = 849 MHz; $\sigma = 0.929$ mho/m; $\varepsilon_r = 42.571$; $\rho =$ Date: 2012/09/11 1000 kg/m^3 Ambient Temperature: 22.1 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch251/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.229 W/kg Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.793 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.244 mW/g SAR(1 g) = 0.177 mW/g; SAR(10 g) = 0.125 mW/g Maximum value of SAR (measured) = 0.211 W/kg #### P05 GSM1900 GSM Right Cheek Ch810 #### **DUT: 120629C20** Communication System: GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium: H1900_0912 Medium parameters used: f = 1910 MHz; $\sigma = 1.446$ mho/m; $\varepsilon_r = 39.704$; $\rho $\varepsilon_r = 39.704$; $\varepsilon_r = 39.704$; $\varepsilon_r = 1.446$ mho/m; $\varepsilon_r = 39.704$; 39.7$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch810/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.413 W/kg ## Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.575 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.482 mW/g SAR(1 g) = 0.290 mW/g; SAR(10 g) = 0.175 mW/g Maximum value of SAR (measured) = 0.384 W/kg ## P06 GSM1900_GSM_Right Tilted_Ch810 #### **DUT: 120629C20** Communication System: GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium: H1900_0912 Medium parameters used: f = 1910 MHz; $\sigma = 1.446$ mho/m; $\varepsilon_r = 39.704$; $\rho $\varepsilon_r = 39.704$; $\varepsilon_r = 39.704$; $\varepsilon_r = 1.446$ mho/m; $\varepsilon_r = 39.704$; 39.7$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch810/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.255 W/kg Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.261 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.313 mW/g SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.115 mW/g Maximum value of SAR (measured) = 0.249 W/kg ## P07 GSM1900_GSM_Left Cheek_Ch810 #### **DUT: 120629C20** Communication System: GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium: H1900_0912 Medium parameters used: f = 1910 MHz; $\sigma = 1.446$ mho/m; $\varepsilon_r = 39.704$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch810/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.220 W/kg #### Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.656 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.254 mW/g SAR(1 g) = 0.165 mW/g; SAR(10 g) = 0.107 mW/g Maximum value of SAR (measured) = 0.206 W/kg #### Ch810/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.656 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.214 mW/g SAR(1 g) = 0.138 mW/g; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.181 W/kg ## P08 GSM1900_GSM_Left Tilted_Ch810 #### **DUT: 120629C20** Communication System: GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium: H1900_0912 Medium parameters used: f = 1910 MHz; $\sigma = 1.446$ mho/m; $\varepsilon_r = 39.704$; $\rho $\varepsilon_r = 39.704$; $\varepsilon_r = 39.704$; $\varepsilon_r = 1.446$ mho/m; $\varepsilon_r = 39.704$; 39.7$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch810/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.163 W/kg Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.943 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.190 mW/g SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.074 mW/g Maximum value of SAR (measured) = 0.153 W/kg ## P09 WCDMA V_RMC12.2K_Right Cheek_Ch4182 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: H835_0912 Medium parameters used : f = 836.4 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.324$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.2 °C; Liquid Temperature: 21.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Ch4182/Area Scan (71x111x1):** Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.391 W/kg
Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.528 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.447 mW/g SAR(1 g) = 0.300 mW/g; SAR(10 g) = 0.205 mW/gMaximum value of SAR (measured) = 0.372 W/kg ## P10 WCDMA V_RMC12.2K_Right Tilted_Ch4182 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: H835_0912 Medium parameters used : f = 836.4 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.324$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.2 °C; Liquid Temperature: 21.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch4182/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.272 W/kg #### Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.097 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.320 mW/g SAR(1 g) = 0.218 mW/g; SAR(10 g) = 0.144 mW/g Maximum value of SAR (measured) = 0.267 W/kg ## P11 WCDMA V_RMC12.2K_Left Cheek_Ch4182 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: H835_0912 Medium parameters used : f = 836.4 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.324$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.2 °C; Liquid Temperature: 21.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Ch4182/Area Scan (71x111x1):** Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.280 W/kg Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.380 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.310 mW/g SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.172 mW/g Maximum value of SAR (measured) = 0.276 W/kg ## P12 WCDMA V_RMC12.2K_Left Tilted_Ch4182 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: H835_0912 Medium parameters used : f = 836.4 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42.324$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.2 °C; Liquid Temperature: 21.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(8.87, 8.87, 8.87); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) **Ch4182/Area Scan (71x111x1):** Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.165 W/kg Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.171 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.179 mW/g SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.095 mW/g Maximum value of SAR (measured) = 0.156 W/kg ## P13 WCDMA II_RMC12.2K_Right Cheek_Ch9400 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: H1900_0912 Medium parameters used: f = 1880 MHz; $\sigma = 1.416$ mho/m; $\epsilon_r = 39.834$; $\rho = 1.416$ mho/m; $\epsilon_r = 39.834$; Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) Ch9400/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.523 W/kg Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.308 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.619 mW/g SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.226 mW/g Maximum value of SAR (measured) = 0.497 W/kg ## P14 WCDMA II RMC12.2K Right Tilted Ch9400 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: H1900_0912 Medium parameters used: f = 1880 MHz; $\sigma = 1.416$ mho/m; $\epsilon_r = 39.834$; $\rho = 1.416$ mho/m; $\epsilon_r = 39.834$; Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch9400/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.330 W/kg ## Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.675 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.390 mW/g SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.145 mW/g Maximum value of SAR (measured) = 0.314 W/kg ## P15 WCDMA II_RMC12.2K_Left Cheek_Ch9400 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: H1900_0912 Medium parameters used: f = 1880 MHz; $\sigma = 1.416$ mho/m; $\varepsilon_r = 39.834$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch9400/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.325 W/kg #### Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.449 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.362 mW/g SAR(1 g) = 0.243 mW/g; SAR(10 g) = 0.158 mW/g Maximum value of SAR (measured) = 0.308 W/kg #### Ch9400/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.449 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.258 mW/g SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.00581 mW/g Maximum value of SAR (measured) = 0.117 W/kg ## P16 WCDMA II RMC12.2K Left Tilted Ch9400 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: H1900_0912 Medium parameters used: f = 1880 MHz; $\sigma = 1.416$ mho/m; $\varepsilon_r = 39.834$; $\rho =$ Date: 2012/09/12 1000 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.4, 7.4, 7.4); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch9400/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.412 W/kg ## Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.450 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.252 mW/g SAR(1 g) = 0.160 mW/g; SAR(10 g) = 0.099 mW/g Maximum value of SAR (measured) = 0.208 W/kg ## P32 802.11b_Right Cheek_Ch11_ANT 0 #### **DUT: 120629C20** Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: H2450_0918 Medium parameters used: f = 2462 MHz; $\sigma = 1.8$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ Date: 2012/09/18 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.5 °C #### DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.28, 7.28, 7.28); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 # Ch11/Area Scan (61x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.102 mW/g ## Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.28 V/m; Power Drift = 0.181 dB Peak SAR (extrapolated) = 0.154 W/kg SAR(1 g) = 0.082 mW/g; SAR(10 g) = 0.044 mW/g Maximum value of SAR (measured) = 0.117 mW/g #### Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.28 V/m; Power Drift = 0.181 dB Peak SAR (extrapolated) = 0.066 W/kg SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.051 mW/g ## P33 802.11b_Right Tilted_Ch11_ANT 0 #### **DUT: 120629C20** Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: H2450_0918 Medium parameters used: f = 2462 MHz; $\sigma = 1.8$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ Date: 2012/09/18 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.5 °C #### DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.28, 7.28, 7.28); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 # Ch11/Area Scan (61x111x1):
Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.050 mW/g Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.03 V/m; Power Drift = -0.175 dB Peak SAR (extrapolated) = 0.035 W/kg SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.011 mW/g Maximum value of SAR (measured) = 0.033 mW/g ## P34 802.11b_Left Cheek_Ch11_ANT 0 #### **DUT: 120629C20** Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: H2450_0918 Medium parameters used: f = 2462 MHz; $\sigma = 1.8$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ Date: 2012/09/18 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.5 °C #### DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.28, 7.28, 7.28); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 # Ch11/Area Scan (61x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.163 mW/g #### Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.27 V/m; Power Drift = 0.112 dB Peak SAR (extrapolated) = 0.207 W/kg #### SAR(1 g) = 0.116 mW/g; SAR(10 g) = 0.059 mW/g Maximum value of SAR (measured) = 0.161 mW/g ## P35 802.11b_Left Tilted_Ch11_ANT 0 #### **DUT: 120629C20** Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: H2450_0918 Medium parameters used: f = 2462 MHz; $\sigma = 1.8$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ Date: 2012/09/18 kg/m^3 Ambient Temperature: 22.3 °C; Liquid Temperature: 21.5 °C #### DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.28, 7.28, 7.28); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 # Ch11/Area Scan (61x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.032 mW/g #### Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.84 V/m; Power Drift = 0.183 dB Peak SAR (extrapolated) = 0.043 W/kg SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.00902 mW/g Maximum value of SAR (measured) = 0.028 mW/g #### Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.84 V/m; Power Drift = 0.183 dB Peak SAR (extrapolated) = 0.026 W/kg SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00515 mW/g Maximum value of SAR (measured) = 0.019 mW/g ## P17 GSM850 GSM Front Face 1.5cm Ch251 #### **DUT: 120629C20** Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium: B835_0913 Medium parameters used: f = 849 MHz; $\sigma = 0.993$ mho/m; $\varepsilon_r = 55.705$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.5 °C; Liquid Temperature: 20.1 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(9.12, 9.12, 9.12); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch251/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.117 W/kg #### Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.555 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.137 mW/g SAR(1 g) = 0.100 mW/g; SAR(10 g) = 0.071 mW/g Maximum value of SAR (measured) = 0.120 W/kg #### Ch251/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.555 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.082 mW/g SAR(1 g) = 0.064 mW/g; SAR(10 g) = 0.049 mW/g Maximum value of SAR (measured) = 0.0740 W/kg ## P18 GSM850_GSM_Rear Face_1.5cm_Ch251 #### **DUT: 120629C20** Communication System: GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium: B835_0913 Medium parameters used: f = 849 MHz; $\sigma = 0.993$ mho/m; $\varepsilon_r = 55.705$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.5°C; Liquid Temperature: 20.1°C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(9.12, 9.12, 9.12); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch251/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.283 W/kg Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.524 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.320 mW/g SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.167 mW/g Maximum value of SAR (measured) = 0.283 W/kg ## P19 GSM1900_GSM_Front Face_1.5cm_Ch810 #### **DUT: 120629C20** Communication System: GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium: B1900_0913 Medium parameters used: f = 1910 MHz; $\sigma = 1.555$ mho/m; $\epsilon_r = 52.797$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.8°C; Liquid Temperature: 20.2°C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.46, 7.46, 7.46); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch810/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.0645 W/kg #### Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.596 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.079 mW/g SAR(1 g) = 0.052 mW/g; SAR(10 g) = 0.035 mW/g Maximum value of SAR (measured) = 0.0657 W/kg #### Ch810/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.596 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.075 mW/g SAR(1 g) = 0.050 mW/g; SAR(10 g) = 0.033 mW/g Maximum value of SAR (measured) = 0.0628 W/kg ## P20 GSM1900_GSM_Rear Face_1.5cm_Ch810 #### **DUT: 120629C20** Communication System: GSM; Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium: B1900_0913 Medium parameters used: f = 1910 MHz; $\sigma = 1.555$ mho/m; $\epsilon_r = 52.797$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.8°C; Liquid Temperature: 20.2°C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.46, 7.46, 7.46); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch810/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.329 W/kg ## Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.824 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.412 mW/g SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.158 mW/g Maximum value of SAR (measured) = 0.340 W/kg ## P21 WCDMA V_RMC12.2K_Front Face_1.5cm_Ch4182 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: B835_0913 Medium parameters used: f = 836.4 MHz; $\sigma = 0.981$ mho/m; $\varepsilon_r = 55.83$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.5 °C; Liquid Temperature: 20.1 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(9.12, 9.12, 9.12); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch4182/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.103 W/kg #### Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.293 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.114 mW/g SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.059 mW/g Maximum value of SAR (measured) = 0.100 W/kg #### Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.293 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.088 mW/g #### SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.052 mW/g Maximum value of SAR (measured) = 0.0789 W/kg ## P22 WCDMA V_RMC12.2K_Rear Face_1.5cm_Ch4182 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: B835_0913 Medium parameters used: f = 836.4 MHz; $\sigma = 0.981$ mho/m; $\varepsilon_r = 55.83$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.5°C; Liquid Temperature: 20.1°C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(9.12, 9.12, 9.12); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Front; Type: SAM V4.0; Serial: TP 1485 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch4182/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.280 W/kg Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.308 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.324 mW/g SAR(1 g) = 0.238 mW/g; SAR(10 g) = 0.169 mW/g Maximum value of SAR (measured) = 0.285 W/kg ## P23 WCDMA II_RMC12.2K_Front Face_1.5cm_Ch9400 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: B1900_0913 Medium parameters
used: f = 1880 MHz; $\sigma = 1.521$ mho/m; $\varepsilon_r = 52.861$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.8 °C; Liquid Temperature: 20.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.46, 7.46, 7.46); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) ## Ch9400/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.0992 W/kg #### Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.238 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.112 mW/g SAR(1 g) = 0.077 mW/g; SAR(10 g) = 0.052 mW/g Maximum value of SAR (measured) = 0.0951 W/kg #### Ch9400/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.238 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.098 mW/g SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.046 mW/g Maximum value of SAR (measured) = 0.0830 W/kg ## P24 WCDMA II_RMC12.2K_Rear Face_1.5cm_Ch9400 #### **DUT: 120629C20** Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: B1900_0913 Medium parameters used: f = 1880 MHz; $\sigma = 1.521$ mho/m; $\varepsilon_r = 52.861$; $\rho =$ Date: 2012/09/13 1000 kg/m^3 Ambient Temperature: 21.8°C; Liquid Temperature: 20.2°C #### DASY5 Configuration: - Probe: EX3DV4 SN3650; ConvF(7.46, 7.46, 7.46); Calibrated: 2011/10/26; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn861; Calibrated: 2012/08/23 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1202 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824) # Ch9400/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.475 W/kg ## Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.751 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.571 mW/g SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.220 mW/g Maximum value of SAR (measured) = 0.476 W/kg ## P30 802.11b_Front Face_1.5 cm_Ch11_ANT 0 #### **DUT: 120629C20** Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: B2450_0917 Medium parameters used: f = 2462 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r = 52.8$; $\rho = 1000$ Date: 2012/09/17 kg/m^3 Ambient Temperature: 22.4 °C; Liquid Temperature: 21.7 °C ## DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.49, 7.49, 7.49); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 ## Ch11/Area Scan (71x111x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.060 mW/g ## Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.64 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 0.039 W/kg SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.00892 mW/g Maximum value of SAR (measured) = 0.031 mW/g ## Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.64 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 0.030 W/kg SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.00725 mW/g Maximum value of SAR (measured) = 0.023 mW/g ## P31 802.11b_Rear Face_1.5 cm_Ch11_ANT 0 #### **DUT: 120629C20** Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: B2450_0917 Medium parameters used: f = 2462 MHz; $\sigma = 2.04$ mho/m; $\varepsilon_r = 52.8$; $\rho = 1000$ Date: 2012/09/17 kg/m^3 Ambient Temperature: 22.4 °C; Liquid Temperature: 21.7 °C ## DASY4 Configuration: - Probe: EX3DV4 SN3864; ConvF(7.49, 7.49, 7.49); Calibrated: 2012/07/19 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1277; Calibrated: 2012/07/19 - Phantom: SAM Phantom Left; Type: SAM V4.0; Serial: TP 1652 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 # **Ch11/Area Scan (71x111x1):** Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.062 mW/g Waximum value of SAR (interpolated) = 0.002 mw/g Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.02 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.054 W/kg SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.014 mW/g Maximum value of SAR (measured) = 0.044 mW/g # Appendix C. Calibration Certificate for Probe and Dipole The SPEAG calibration certificates are shown as follows. Report Format Version 5.0.0 Issued Date : Oct. 12, 2012 Report No. : SA120629C20 Revision : R01 ## **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland C S Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates **B.V. ADT (Auden)** Client Certificate No: D835V2-4d021_Apr12 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d021 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz April 20, 2012 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | | | | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Irraa Elnaoug | | | | | 25 | | Approved by: | Katja Pokovic | Technical Manager | Sollits. | Issued: April 20, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d021_Apr12 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d021_Apr12 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.37 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.46 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.55 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.19 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | ***** | | ## **SAR** result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.48 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.60 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.63 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.35 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-4d021_Apr12 Page 3 of 8 ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.0 Ω - 2.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.9 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.7 Ω - 3.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.4 dB | ## **General Antenna Parameters and Design** | Flacking Dalay (and allow Alay) | 1 000 | |----------------------------------|----------| | Electrical Delay (one direction) | 1.392 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 22, 2004 | Certificate No: D835V2-4d021_Apr12 ## **DASY5 Validation Report for Head TSL** Date: 20.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d021 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.325 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.488 mW/g SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.76 mW/g 0 dB = 2.76 mW/g = 8.82 dB mW/g ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 19.04.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d021 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.287 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.590 mW/g SAR(1 g) = 2.48 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.88 mW/g 0 dB = 2.88 mW/g = 9.19 dB mW/g ## Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V.ADT (Auden) Certificate No: D1900V2-5d036_Jan12 Accreditation No.: SCS 108 ## CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d036 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 26, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 29-Mar-11 (No. 217-01368) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | Calibrated by: | Dimce Illev | Laboratory Technician | D. Rice | | Approved by: | Katja Pokovic | Technical Manager | 221 | Issued: January 26, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d036_Jan12 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to
measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | r | 9 1 9 | | |------------------------------|------------------------|-------------| | DASY Version | DASY5 | V52.8.0 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5$ mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.65 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 38.9 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.05 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 9.74 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 38.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.10 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.4 mW / g ± 16.5 % (k=2) | ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0 Ω + 4.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.1 dB | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.3 Ω + 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | ## **General Antenna Parameters and Design** | | p | |----------------------------------|----------| | Electrical Delay (one direction) | 1.195 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------| | Manufactured on | May 08, 2003 | ## **DASY5 Validation Report for Head TSL** Date: 26.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d036 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.850 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 17.7040 SAR(1 g) = 9.65 mW/g; SAR(10 g) = 5.05 mW/g Maximum value of SAR (measured) = 12.055 mW/g 0 dB = 12.060 mW/g = 21.63 dB mW/g ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 26.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d036 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.423 V/m; Power Drift = -0.0044 dB Peak SAR (extrapolated) = 17.2700 SAR(1 g) = 9.74 mW/g; SAR(10 g) = 5.1 mW/g Maximum value of SAR (measured) = 12.419 mW/g 0 dB = 12.420 mW/g = 21.88 dB mW/g ## Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V.ADT (Auden) Certificate No: D2450V2-737_Jan12 Accreditation No.: SCS 108 ## CALIBRATION CERTIFICATE Object D2450V2 - SN: 737 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 24, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 29-Mar-11 (No. 217-01368) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house
check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Deraa El Jaong | | Approved by: | Katja Pokovic | Technical Manager | 20/14 | Issued: January 24, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-737_Jan12 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.2 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.4 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.9 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.18 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.6 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | # TV 10 40 | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 12.8 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.91 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-737_Jan12 Page 3 of 8 ## **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3 Ω + 4.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.6 Ω + 5.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.161 ns | |----------------------------------|----------| | 1 | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 26, 2003 | Certificate No: D2450V2-737_Jan12 Page 4 of 8 ## DASY5 Validation Report for Head TSL Date: 24.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 737 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 39.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.933 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.6400 SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.18 mW/g Maximum value of SAR (measured) = 17.183 mW/g 0 dB = 17.180 mW/g = 24.70 dB mW/g ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 23.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 737 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 50.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.889 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.6520 SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.91 mW/g Maximum value of SAR (measured) = 17.026 mW/g 0 dB = 17.030 mW/g = 24.62 dB mW/g ## Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V. ADT (Auden) Certificate No: EX3-3650 Oct11 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3650
Calibration procedure(s) QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: October 26, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | | |----------------------------|---------------------------------|-----------------------------------|------------------------|--|--| | Power meter E4419B | GB41293874 | 31-Mar-11 (No. 217-01372) | Apr-12 | | | | Power sensor E4412A | MY41498087 | 31-Mar-11 (No. 217-01372) | Apr-12 | | | | Reference 3 dB Attenuator | SN: S5054 (3c) | 29-Mar-11 (No. 217-01369) | Apr-12 | | | | Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367) | Apr-12 | | | | Reference 30 dB Attenuator | SN: S5129 (30b) | 29-Mar-11 (No. 217-01370) | Apr-12 | | | | Reference Probe ES3DV2 | Reference Probe ES3DV2 SN: 3013 | | Dec-11 | | | | DAE4 SN: 654 | | 3-May-11 (No. DAE4-654_May11) | May-12 | | | | • | _ | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Calibrated by: Deton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 27, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ A. B. C φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., 9 = 0 is normal to probe axis ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 ## Methods Applied and Interpretation of Parameters: - *NORMx,y,z:* Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3650 Oct11 Page 2 of 11 # Probe EX3DV4 SN:3650 Manufactured: March 18, 2008 Calibrated: October 26, 2011 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--|----------|----------|----------|-----------|--| | Norm (μV/(V/m) ²) ^A | 0.36 | 0.37 | 0.46 | ± 10.1 % | | | DCP (mV) ^B | 98.5 | 94.0 | 98.2 | | | ### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |-------|---------------------------|------|---|---------|---------|---------|----------|---------------------------| | 10000 | CW | 0.00 | Х | 0.00 | 0.00 | 1.00 | 94.9 | ±2.5 % | | | | | Υ | 0.00 | 0.00 | 1.00 | 90.7 | | | | | | Z | 0.00 | 0.00 | 1.00 | 114.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 9.20 | 9.20 | 9.20 | 0.79 | 0.69 | ± 12.0 % | | 835 | 41.5 | 0.90 | 8.87 | 8.87 | 8.87 | 0.79 | 0.69 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.32 | 8.32 | 8.32 | 0.79 | 0.65 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.92 | 7.92 | 7.92 | 0.70 | 0.63 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 7.40 | 7.40 | 7.40 | 0.79 | 0.54 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.80 | 6.80 | 6.80 | 0.59 | 0.62 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.68 | 6.68 | 6.68 | 0.50 | 0.74 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.05 | 5.05 | 5.05 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.71 | 4.71 | 4.71 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.56 | 4.56 | 4.56 | 0.45 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.42 | 4.42 | 4.42 | 0.45 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.30 | 4.30 | 4.30 | 0.50 | 1.80 | ± 13.1 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity (S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|---------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 9.21 | 9.21 | 9.21 | 0.78 | 0.69 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.12 | 9.12 | 9.12 | 0.79 | 0.67 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.09 | 8.09 | 8.09 | 0.79 | 0.63 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.49 | 7.49 | 7.49 | 0.79 | 0.64 | ± 12.0 % | | 1950 | 53.3 | 1.52 | 7.46 | 7.46 | 7.46 | 0.79 | 0.65 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.89 | 6.89 | 6.89 | 0.79 | 0.60 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.79 | 6.79 | 6.79 | 0.72 | 0.58 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.28 | 4.28 | 4.28 | 0.50 | 1.95 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.11 |
4.11 | 4.11 | 0.50 | 1.95 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.73 | 3.73 | 3.73 | 0.60 | 1.95 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.57 | 3.57 | 3.57 | 0.60 | 1.95 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.81 | 3.81 | 3.81 | 0.60 | 1.95 | ± 13.1 % | ^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:3650 October 26, 2011 # **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|----------------| | Connector Angle (°) | Not applicable | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: EX3-3864_Jul12 Accreditation No.: SCS 108 S C S ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3864 Calibration procedure(s) QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: July 19, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | |----------------------------|-----------------|--|------------------------|--| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-11 (No. ES3-3013_Dec11) | Dec-12 | | | DAE4 | SN: 660 | 20-Jun-12 (No. DAE4-660_Jun12) | Jun-13 | | | | | | | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-11) In house check: Oct-12 | | | Issued: July 20, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3864_Jul12 Page 2 of 11 # Probe EX3DV4 SN:3864 Manufactured: February 2, 2012 Calibrated: July 19, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3864_Jul12 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--------------------------|----------|----------|----------|-----------|--| | Norm $(\mu V/(V/m)^2)^A$ | 0.47 | 0.44 | 0.49 | ± 10.1 % | | | DCP (mV) ^B | 97.6 | 98.0 | 97.9 | | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc [±]
(k=2) | |-----|---------------------------|------|---|---------|---------|---------|----------|---------------------------| | 0 | CW | 0.00 | X | 0.00 | 0.00 | 1.00 | 154.8 | ±4.1 % | | | | | Υ | 0.00 | 0.00 | 1.00 | 146.9 | | | | | | Z | 0.00 | 0.00 | 1.00 | 162.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------
---------|---------|---------|-------|---------------|----------------| | 835 | 41.5 | 0.90 | 9.80 | 9.80 | 9.80 | 0.58 | 0.65 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.56 | 8.56 | 8.56 | 0.43 | 0.82 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.13 | 8.13 | 8.13 | 0.42 | 0.79 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.28 | 7.28 | 7.28 | 0.43 | 0.80 | ± 12.0 % | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS Certificate No: EX3-3864_Jul12 Page 5 of 11 of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 835 | 55.2 | 0.97 | 9.94 | 9.94 | 9.94 | 0.58 | 0.72 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.45 | 8.45 | 8.45 | 0.41 | 0.87 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.88 | 7.88 | 7.88 | 0.48 | 0.77 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.49 | 7.49 | 7.49 | 0.80 | 0.50 | ± 12.0 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to Certificate No: EX3-3864_Jul12 Page 6 of 11 ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. July 19, 2012 EX3DV4-SN:3864 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) July 19, 2012 EX3DV4-SN:3864 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz July 19, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 63.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | # Appendix D. Photographs of EUT and Setup Report Format Version 5.0.0 Issued Date : Oct. 12, 2012 Report No. : SA120629C20 Revision: R01