	FCC Test Report	
Report No.:	RF180612C09-1	
FCC ID:	QYL8265VB	
Test Model:	V110G4	
Received Date:	Jun. 12, 2018	
Test Date:	Jul. 21, 2018 ~ Aug. 01, 2018	
Issued Date:	Aug. 03, 2018	
Applicant:	Getac Technology Corporation.	
Address:	5F., Building A, No. 209, Sec.1, Nangang Rd 11568, Taiwan, R.O.C.	.,Nangang Dist., Taipei City
Issued By:	Bureau Veritas Consumer Products Services	(H.K.) Ltd., Taoyuan Branch
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou D (R.O.C)	ist., New Taipei City, Taiwan
Test Location:	No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei 33383, Taiwan, R.O.C.	Shan Dist., Taoyuan City
FCC Registration /	788550 / TW0003	
Designation Number:		
		Testing Laboratory 2021
only with our prior written permission. The report are not indicative or representative unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptare mention, the uncertainty of measurement	copying or replication of this report to or for any other person or e his report sets forth our findings solely with respect to the test sar e of the quality or characteristics of the lot from which a tests ar Our report includes all of the tests requested by you and the re date of issuance of this report to notify us of any material error ing and shall specifically address the issue you wish to raise. A fa ice of the completeness of this report, the tests conducted and the t has been explicitly taken into account to declare the compliance roduct certification, approval, or endorsement by TAF or any gove	nples identified herein. The results set forth in this nple was taken or any similar or identical product sults thereof based upon the information that you or omission caused by our negligence, provided, illure to raise such issue within the prescribed time correctness of the report contents. Unless specific or non-compliance to the specification. The report
Report No.: RF180612C09-1	Page No. 1 / 33	Report Format Version: 6.1.1

Table of Contents

Re	Release Control Record 4						
1	Cer	tificate of Conformity	5				
2	Sun	nmary of Test Results	6				
		Measurement Uncertainty					
		Modification Record					
2		neral Information					
ა							
		General Description of EUT					
	3.2	Description of Test Modes.					
	33	3.2.1 Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal					
		Description of Support Units					
		3.4.1 Configuration of System under Test					
	3.5	General Description of Applied Standards	.11				
4	Test	t Types and Results	. 12				
		Radiated Emission and Bandedge Measurement					
		4.1.1 Limits of Radiated Emission and Bandedge Measurement					
		4.1.2 Test Instruments					
		4.1.3 Test Procedures					
		4.1.4 Deviation from Test Standard					
		4.1.5 Test Set Up					
		4.1.6 EUT Operating Conditions4.1.7 Test Results					
	42	Conducted Emission Measurement					
		4.2.1 Limits of Conducted Emission Measurement					
		4.2.2 Test Instruments					
		4.2.3 Test Procedures					
		4.2.4 Deviation from Test Standard					
		4.2.5 Test Setup4.2.6 EUT Operating Conditions					
		4.2.7 Test Results					
	4.3	6 dB Bandwidth Measurement					
	-	4.3.1 Limits of 6 dB Bandwidth Measurement					
		4.3.2 Test Setup	25				
		4.3.3 Test Instruments					
		4.3.4 Test Procedure4.3.5 Deviation from Test Standard					
		4.3.6 EUT Operating Conditions					
		4.3.7 Test Results					
	4.4	Conducted Output Power Measurement					
		4.4.1 Limits of Conducted Output Power Measurement	. 27				
		4.4.2 Test Setup					
		4.4.3 Test Instruments					
		4.4.4 Test Procedures4.4.5 Deviation from Test Standard					
		4.4.6 EUT Operating Conditions					
		4.4.7 Test Results					
	4.5	Power Spectral Density Measurement	28				
		4.5.1 Limits of Power Spectral Density Measurement	. 28				
		4.5.2 Test Setup					
		4.5.3 Test Instruments					
		4.5.4 Test Procedure4.5.5 Deviation from Test Standard					
		4.5.6 EUT Operating Condition					

	 4.6 Conducted Out of Band Emis 4.6.1 Limits of Conducted Out 4.6.2 Test Setup 4.6.3 Test Instruments 4.6.4 Test Procedure 4.6.5 Deviation from Test State 4.6.6 EUT Operating Condition 	sion Measurement ut of Band Emission Measurement undard on	30 30 30 30 30 30 30 30 30 30
	4.6.7 Test Results		31
5	5 Pictures of Test Arrangements		
Ар	Appendix – Information on the Test	ting Laboratories	

Release Control Record Issue No. Description Date Issued Original Release Aug. 03, 2018 RF180612C09-1

Certificate of Conformity 1

Product:	Industial Tablet
Brand:	Getac
Test Model:	V110G4
Sample Status:	Identical Prototype
Applicant:	Getac Technology Corporation.
Test Date:	Jul. 21, 2018 ~ Aug. 01, 2018
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Gina Liu / Specialist , Date: Aug. 03, 2018

Approved by :

Date: Aug. 03, 2018

Dylan Chiou / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Test Item Result					
15.207	15.207AC Power Conducted EmissionPA15.205 & 209 & 15.247(d)Radiated Emissions & Band Edge MeasurementPA		Meet the requirement of limit. Minimum passing margin is -18.54dB at 0.19305MHz.				
			Meet the requirement of limit. Minimum passing margin is -5.0dB at 2483.50MHz.				
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.				
15.247(a)(2)	15.247(a)(2) 6dB bandwidth		Meet the requirement of limit.				
15.247(b)	15.247(b) Conducted power		Meet the requirement of limit.				
15.247(e)	15.247(e) Power Spectral Density		Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	No antenna connector is used.				

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.93 dB
	200 MHz ~ 1000 MHz	2.95 dB
Padiated Emissions above 1 CHz	1 GHz ~ 18 GHz	2.26 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Industial Tablet
Brand	Getac
Test Model	V110G4
Status of EUT	Identical Prototype
Power Supply Poting	19 Vdc (adapter)
Power Supply Rating	11.1 Vdc (Li-ion battery)
Modulation Type	GFSK
Transfer Rate	1 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	40
Output Power	8.091 mW
Antonno Tuno	PIFA antenna with 2.06 dBi gain (Main Antenna)
Antenna Type	PIFA antenna with -0.14 dBi gain (Aux Antenna)
Antenna Connector	N/A
Accessory Device	Refer to Note as below
Data Cable Supplied	N/A

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter	Chicony		I/P: 100-240 Vac, 50-60 Hz, 1.7 A O/P: 19 Vdc, 3.42 A 1.8m shielded cable with 1 core
Battery	Getac Technology Corp.	BP3S1P2100-S	11.1 Vdc, 2100 mAh
Digitizer	Microchip	PIC32MX270	
LCD Panel	AUO	B116XAN05.0	11.6 inch
GPS	GlobalSat	MC1010	

2. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To	Description			
Mode	RE≥1G	RE<1G	PLC	APCM	Description		
-		\checkmark	\checkmark	\checkmark	-		
Where RE>1G: Radiated Emission above 1 GHz RE<1G: Radiated Emission below 1 GHz							

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note: "-"means no effect.

Radiated Emission Test (Above 1 GHz):

 \boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. \boxtimes

EUT Configure Mode Available Channel		Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	0, 19, 39	GFSK	1

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
-	0 to 39	0	GFSK	1

Power Line Conducted Emission Test:

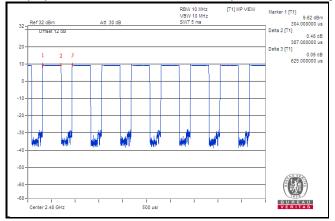
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
- 0 to 39		0	GFSK	1

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Type	Data Rate (Mbps)
- 0 to 39		0, 19, 39	GFSK	1


Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by	
RE≥1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Willy Cheng	
RE<1G	25 deg. C, 65 % RH	120 Vac, 60 Hz	Adair Peng	
PLC	25 deg. C, 65 % RH	120 Vac, 60 Hz	Jisyong Wang	
APCM	25 deg. C, 65 % RH	11.1 Vdc	Frank Chiu	

3.3 Duty Cycle of Test Signal

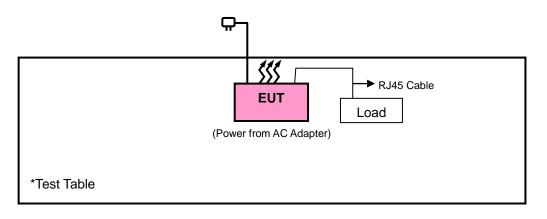
Duty cycle of test signal is < 98 %, duty factor shall be considered.

Duty cycle = 0.387/0.625 = 0.619, Duty factor = $10 \times \log(1/0.619) = 2.08$

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
1.	Load	N/A	N/A	N/A	N/A	


Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ45 Cable	1	1	Ν	0	

Note: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1.705	24000/F (kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESIB7	100187	May 29, 2018	May 28, 2019
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100041	Dec. 12, 2017	Dec. 11, 2018
BILOG Antenna SCHWARZBECK	VULB9168	9168-171	Dec. 11, 2017	Dec. 10, 2018
HORN Antenna SCHWARZBECK	9120D	209	Dec. 13, 2017	Dec. 12, 2018
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Dec. 01, 2017	Nov. 30, 2018
Loop Antenna EMCI	EM-6879	269	Aug. 11, 2017	Aug. 10, 2018
Preamplifier EMCI	EMC001340	980201	Nov. 01, 2017	Oct. 31, 2018
Preamplifier EMCI	EMC 184045	980116	Oct. 20, 2017	Oct. 19, 2018
Preamplifier Agilent (Below 1GHz)	8447D	2944A10738	Aug. 21, 2017	Aug. 20, 2018
Preamplifier Agilent (Above 1GHz)	8449B	3008A02465	Apr. 03, 2018	Apr. 02, 2019
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (223653/4)	Aug. 21, 2017	Aug. 20, 2018
RF signal cable HUBER+SUHNER& EMCI	SUCOFLEX 104&EMC104-SM- SM-8000	Cable-CH3-03 (309224+170907)	Sep.11, 2017	Sep. 10, 2018
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
High Speed Peak Power Meter	ML2495A	0824012	Aug. 18, 2017	Aug. 17, 2018
Power Sensor	MA2411B	0738171	Aug. 18, 2017	Aug. 17, 2018

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Designation Number is TW0003. The number will be varied with the Lab location and scope as attached.
- 5. The IC Site Registration No. is IC 7450F-3.

4.1.3 Test Procedures

For Radiated Emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

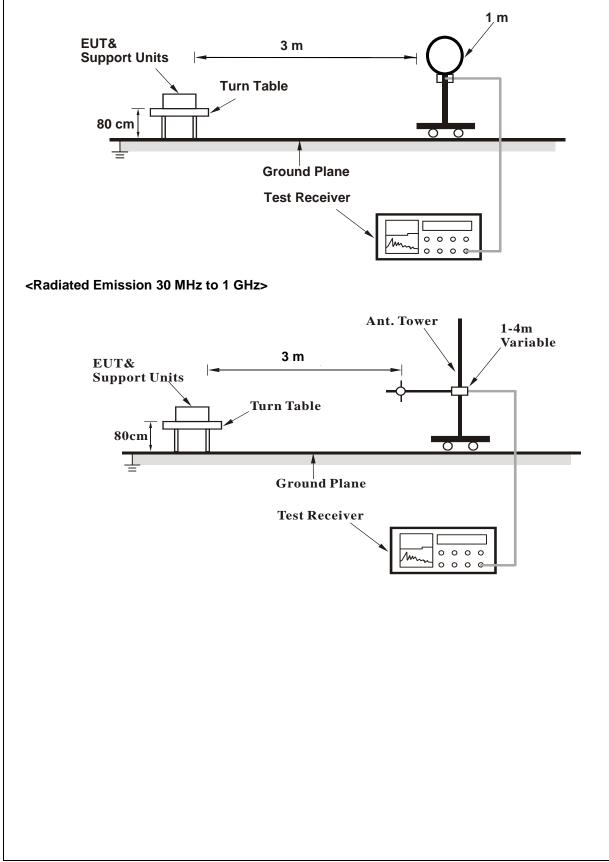
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz at frequency below 30 MHz.

For Radiated Emission above 30 MHz

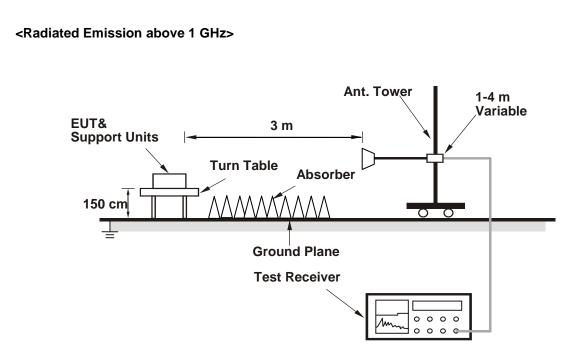
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30 MHz ~ 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Set Up

<Radiated Emission below 30 MHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.1.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1 GHz Data:

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	60.1 PK	74.0	-13.9	1.92 H	254	26.60	33.50
2	2390.00	48.2 AV	54.0	-5.8	1.92 H	254	14.70	33.50
3	*2402.00	99.6 PK			1.86 H	285	66.20	33.40
4	*2402.00	98.1 AV			1.86 H	285	64.70	33.40
5	4804.00	46.1 PK	74.0	-27.9	2.78 H	203	42.20	3.90
6	4804.00	33.1 AV	54.0	-20.9	2.78 H	203	29.20	3.90
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	60.4 PK	74.0	-13.6	1.98 V	164	26.90	33.50
2	2390.00	48.3 AV	54.0	-5.7	1.98 V	164	14.80	33.50
3	*2402.00	98.7 PK			2.05 V	169	65.30	33.40
4	*2402.00	97.2 AV			2.05 V	169	63.80	33.40
5	4804.00	45.7 PK	74.0	-28.3	2.06 V	277	41.80	3.90
6	4804.00	33.1 AV	54.0	-20.9	2.06 V	277	29.20	3.90
L I	ADKC.		1	1	1			1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	100.1 PK			1.97 H	283	66.70	33.40
2	*2440.00	98.4 AV			1.97 H	283	65.00	33.40
3	4880.00	46.3 PK	74.0	-27.7	1.78 H	271	42.60	3.70
4	4880.00	33.9 AV	54.0	-20.1	1.78 H	271	30.20	3.70
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2440.00	99.4 PK			3.32 V	139	66.00	33.40
2	*2440.00	97.8 AV			3.32 V	139	64.40	33.40
3	4880.00	46.9 PK	74.0	-27.1	2.21 V	183	43.20	3.70
4	4880.00	33.6 AV	54.0	-20.4	2.21 V	183	29.90	3.70

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	100.3 PK			3.90 H	287	67.10	33.20	
2	*2480.00	98.6 AV			3.90 H	287	65.40	33.20	
3	2483.50	60.6 PK	74.0	-13.4	4.00 H	293	27.40	33.20	
4	2483.50	49.0 AV	54.0	-5.0	4.00 H	293	15.80	33.20	
5	4960.00	46.3 PK	74.0	-27.7	2.31 H	254	42.60	3.70	
6	4960.00	33.4 AV	54.0	-20.6	2.31 H	254	29.70	3.70	
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2480.00	99.8 PK			1.92 V	138	66.60	33.20	
2	*2480.00	98.1 AV			1.92 V	138	64.90	33.20	
3	2483.50	61.4 PK	74.0	-12.6	1.78 V	161	28.20	33.20	

REMARKS:

2483.50

4960.00

4960.00

4

5 6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-5.0

-27.4

-20.1

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.78 V

2.05 V

2.05 V

161

301

301

15.80

42.90

30.20

33.20

3.70

3.70

3. The other emission levels were very low against the limit.

54.0

74.0

54.0

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

49.0 AV

46.6 PK

33.9 AV

9 kHz ~ 30 MHz Data:

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz Worst-Case Data:

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	57.12	27.3 QP	40.0	-12.7	2.00 H	15	36.80	-9.50	
2	94.06	24.6 QP	43.5	-18.9	1.00 H	118	38.90	-14.30	
3	158.22	29.5 QP	43.5	-14.0	1.50 H	126	38.20	-8.70	
4	253.49	27.8 QP	46.0	-18.2	1.00 H	256	36.70	-8.90	
5	409.04	25.5 QP	46.0	-20.5	2.00 H	345	30.50	-5.00	
6	568.47	26.9 QP	46.0	-19.1	2.00 H	11	28.50	-1.60	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	41.57	26.0 QP	40.0	-14.0	1.00 V	224	35.70	-9.70	
2	99.89	25.1 QP	43.5	-18.4	1.49 V	159	38.70	-13.60	
3	160.17	28.4 QP	43.5	-15.1	1.00 V	257	37.10	-8.70	
4	187.39	36.7 QP	43.5	-6.8	1.00 V	17	47.60	-10.90	
5	467.36	25.0 QP	46.0	-21.0	1.00 V	202	28.60	-3.60	
6	683.18	28.7 QP	46.0	-17.3	1.49 V	15	27.90	0.80	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted I	Limit (dBuV)
Frequency (MHz)	Quasi-Peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

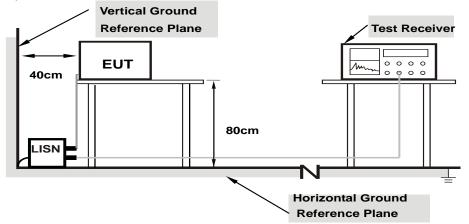
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 23, 2017	Nov. 22, 2018
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2017	Sep. 04, 2018
LISN/AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 26, 2018	Feb. 25, 2019
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 15, 2017	Aug. 14, 2018
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz - 30 MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

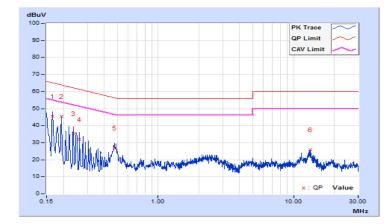
Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

- 4.2.6 EUT Operating Conditions
- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.2.7 Test Results

CONDUCTED WORST-CASE DATA

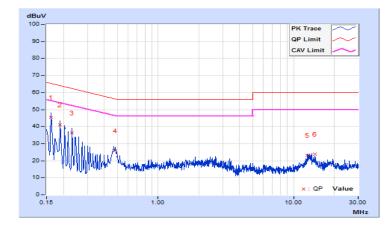

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang	Test Date	2018/7/24

	Phase Of Power : Line (L)									
	Frequency	Correction	Readin	g Value	Emissic	on Level	Lir	nit	Mai	gin
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16569	9.67	35.74	19.06	45.41	28.73	65.17	55.17	-19.76	-26.44
2	0.19305	9.67	35.69	14.61	45.36	24.28	63.90	53.90	-18.54	-29.62
3	0.23602	9.67	25.79	7.13	35.46	16.80	62.24	52.24	-26.78	-35.44
4	0.26339	9.67	22.34	3.84	32.01	13.51	61.32	51.32	-29.31	-37.81
5	0.47453	9.67	17.25	2.18	26.92	11.85	56.43	46.43	-29.51	-34.58
6	13.22504	9.90	15.89	1.48	25.79	11.38	60.00	50.00	-34.21	-38.62

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

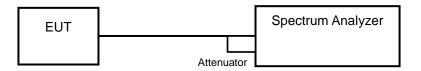


Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Jisyong Wang	Test Date	2018/7/24

	Phase Of Power : Neutral (N)									
	Frequency	Correction	Readin	g Value	Emissic	on Level	Lir	nit	Mai	gin
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16181	9.68	35.72	19.67	45.40	29.35	65.37	55.37	-19.97	-26.02
2	0.18903	9.68	31.38	14.31	41.06	23.99	64.08	54.08	-23.02	-30.09
3	0.23216	9.68	26.77	6.10	36.45	15.78	62.37	52.37	-25.92	-36.59
4	0.48235	9.68	16.25	8.52	25.93	18.20	56.30	46.30	-30.37	-28.10
5	12.72456	9.93	13.16	0.57	23.09	10.50	60.00	50.00	-36.91	-39.50
6	14.40977	9.96	13.91	-0.56	23.87	9.40	60.00	50.00	-36.13	-40.60

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 6 dB Bandwidth Measurement

4.3.1 Limits of 6 dB Bandwidth Measurement

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

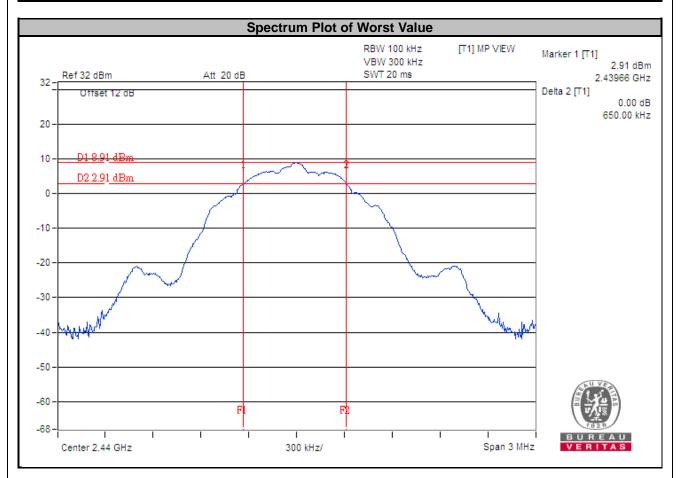
Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 Deviation from Test Standard

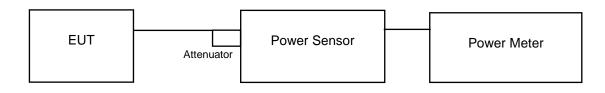
No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.63	0.5	Pass
19	2440	0.65	0.5	Pass
39	2480	0.65	0.5	Pass



4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30 dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

4.4.5 Deviation from Test Standard

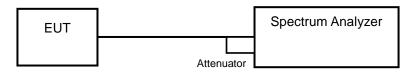
No deviation.

4.4.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.7 Test Results

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass / Fail
0	2402	6.668	8.24	30	Pass
19	2440	7.621	8.82	30	Pass
39	2480	8.091	9.08	30	Pass



4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8 dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

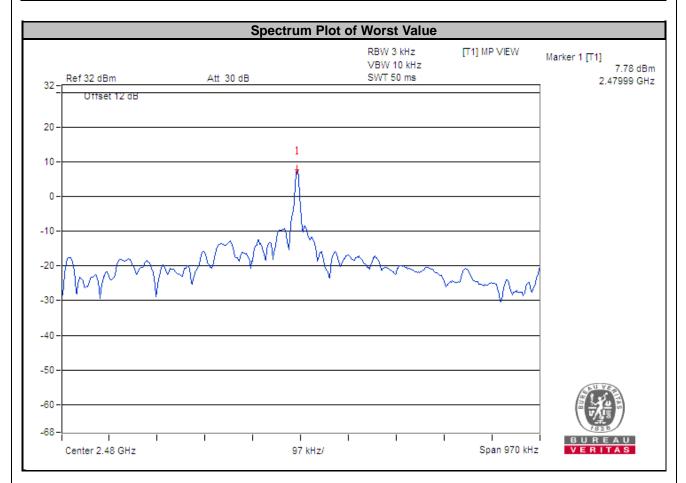
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

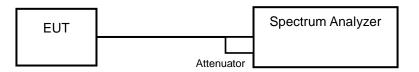
No deviation.


4.5.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	PSD (dBm/3 kHz)	Limit (dBm/3 kHz)	Pass / Fail
0	2402	7.01	8	Pass
19	2440	7.59	8	Pass
39	2480	7.78	8	Pass



4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

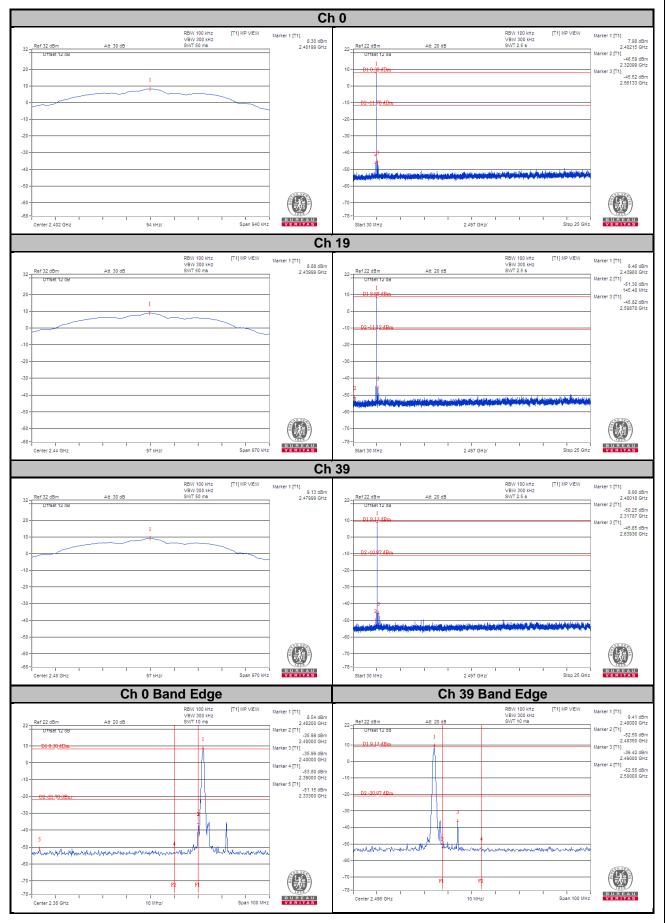
4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.6.5 Deviation from Test Standard


No deviation.

4.6.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.7 Test Results

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---