

Partial FCC RF Test Report

APPLICANT	:	Getac Technology Corporation.
EQUIPMENT	:	WLAN module
BRAND NAME	:	Intel
MODEL NAME	:	7260HMW
FCC ID	:	QYL7260NGW
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter

This is a partial report which is included the RF output power and AC conducted emission test item. The product was received on Sep. 17, 2013 and testing was completed on Oct. 07, 2013. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Lune Tsar

TAF Tac-MRA Testing Laboratory 1190

Approved by: Jones Tsai / Manager

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : QYL7260NGW Page Number: 1 of 15Report Issued Date: Nov. 12, 2013Report Version: Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1	GEN	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	
	1.5	Modification of EUT	.6
	1.6	Testing Site	.6
	1.7	Applied Standards	.6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.7
	2.1	Descriptions of Test Mode	.7
	2.2	Test Mode	.7
	2.3	Connection Diagram of Test System	.8
	2.4	Support Unit used in test configuration and system	.8
3	TEST	RESULT	.9
	3.1	AC Conducted Emission Measurement	.9
	3.2	Antenna Requirements	13
4	LIST	OF MEASURING EQUIPMENT	14
5	UNC	ERTAINTY OF EVALUATION	15

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR391715A	Rev. 01	Initial issue of report	Nov. 12, 2013

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.207	RSS-Gen 7.2.4	AC Conducted Emission	15.207(a)	Pass	Under limit 1.20 dB at 13.558 MHz
3.2	15.203 & 15.247(b)	RSS-210 A8.4	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Getac Technology Corporation.

5F., Building A, No. 209, Sec. 1, Nangang Rd., Nangang Dist., Taipei City 11568, Taiwan, R.O.C.

1.2 Manufacturer

Getac Technology (Kunshan) Co., LTD.

No. 269, No. 2 Avenue, Kunshan Comprehensive Free Trade Zone, Jiangsu Province, P.R.C

1.3 Feature of Equipment Under Test

	Product Feature
Equipment	WLAN module
Brand Name	Intel
Model Name	7260HMW
FCC ID	QYL7260NGW
installed into Tablet	Brand Name: Getac Model Name: V110 Marketing Name: V110
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n (HT20/HT40) WLAN 5GHz 802.11a/n (HT20/HT40) WLAN 5GHz 11ac (VHT20/VHT40/VHT80) Bluetooth v3.0+EDR/v4.0-LE
EUT Stage	Production Unit

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Spec	ification subjective to this standard
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz
Number of Channels	79
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 5.15 dBm (0.0033 W) Bluetooth EDR (2Mbps) : 5.27 dBm (0.0034 W) Bluetooth EDR (3Mbps) : 3.81 dBm (0.0024 W)
Antenna Type	PIFA Antenna type with gain 2.2 dBi
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Site

Test Site	SPORTON INTERNATIONAL INC.	
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Techn	ology Park,
Test Site Location	Kwei-Shan Hsiang, Tao Yuan Hsien, Ta	aiwan, R.O.C.
	TEL: +886-3-3273456 / FAX: +886-3-3	284978
Test Site Ne	Sporton	Site No.
Test Site No.	TH02-HY	CO05-HY

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC Public Notice DA 00-705
- ANSI C63.4-2003

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- **2.** This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

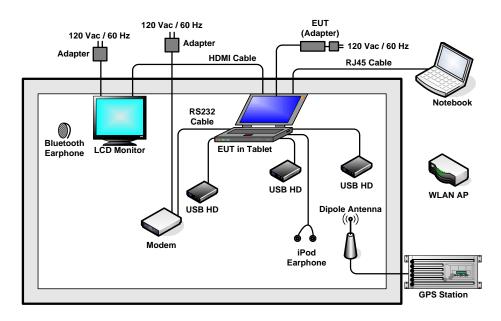
2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

		В	luetooth RF Output Powe	er
Channel	Fraguanau		Data Rate / Modulation	
Channel	Frequency	GFSK	π /4-DQPSK	8-DPSK
		1Mbps	2Mbps	3Mbps
Ch00	2402MHz	3.92 dBm	3.98 dBm	2.33 dBm
Ch39	2441MHz	4.62 dBm	4.71 dBm	3.13 dBm
Ch78	2480MHz	5.15 dBm	<mark>5.27</mark> dBm	3.81 dBm

Remark: The data rate was set in 2Mbps for all the test items due to the highest RF output power.


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz).
- b. AC power line Conducted Emission was tested under maximum output power.

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

		Summary table of Test Cases
A	C Conducted Emission	Mode 1 :WLAN (2.4GHz) Link + TF + TC
Re	mark:	
1.	TC stands for	Test Configuration, and consists of Earphone, Adapter 1, USB HD, RJ45 Link, RS232
	(Load with Mo	odem), and LCD Monitor.
2.	TF stands for	Test Function, and consists of GPS Rx, Camera, MPEG4, H-Pattern, NFC on, and
	Bluetooth Link	ς.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude E6320	FCC DoC	Unshielded, 3.0m	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	LCD Monitor	DELL	U2410	FCC DoC	Shielded, 1.6 m	Unshielded, 1.8 m
6.	USB HD	WD	WDBAAR320 0ABK-PESN	FCC DoC	Unshielded, 0.5 m	N/A
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
8.	NFC Card	N/A	N/A	N/A	N/A	N/A
9.	MODEM	ACEEX	DM1414	IFAXDM141	D-Shielded, 1.15 m	Unshielded, 1.8 m
10.	iPod Earphone	Apple	N/A	Verification	Shielded, 1.0 m	N/A

3 Test Result

3.1 AC Conducted Emission Measurement

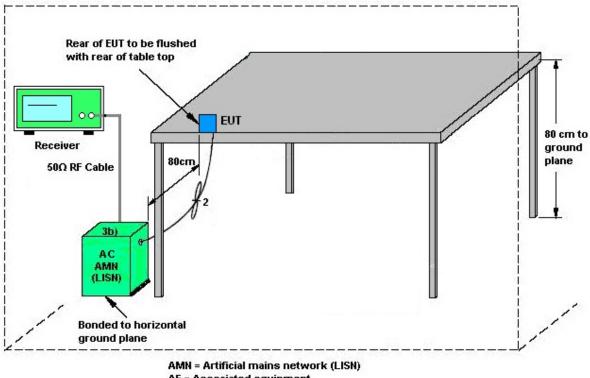
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.1.4 Test Setup

AE = Associated equipment EUT = Equipment under test

ISN = Impedance stabilization network

3.1.5 Test Result of AC Conducted Emission

t Mode : t Enginee		/lode 1			Tempe	erature :		20~22 ℃
	r : K	ai-Chun Chu			Relati	ve Humi	dity :	45~47%
t Voltage :	: 1	20Vac / 60Hz	2		Phase	:		Line
ction Typ	e: V	VLAN (2.4GH	z) Link	+ TF +	ТС			
	100 .							
	+							
	90-							
	80							
	70-							
2	60						CISPI	R <u>22-QP Limit at Main</u> Po
Level in dBµV	-						CISPR	22-Ave Limit at Main Po
elin	50	A	.					
Lev	40	Ann	man	manution	•	T MANU	Martin J	
	30							
		V	l		- • •			
	20							
	10							
	0							
	150	k 300 4005			Frequen	cyin Hz		
Freque	esult _{ency}	: Quasi-Peal Quasi-Peak			Corr.	Margin	Limit]
Freque (MH	esult ency Iz)	: Quasi-Peal Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	(dBµV)	
Freque (MH 0.190	esult ency iz) 1000	: Quasi-Peak Quasi-Peak (dBµV) 47.9	Filter Off	Line L1	Corr. (dB) 19.4	Margin (dB) 16.1	(dBµV) 64.0	
Freque (MH 0.190 1.718	esult ency iz) 000	: Quasi-Peak Quasi-Peak (dBµV) 47.9 38.8	Filter Off Off	Line L1 L1	Corr. (dB) 19.4 19.5	Margin (dB) 16.1 17.2	(dBµV) 64.0 56.0	
Freque (MH 0.190 1.718 2.118	esult ency iz) 0000 0000	: Quasi-Peak Quasi-Peak (dBµV) 47.9 38.8 39.3	Filter Off Off Off	Line L1 L1 L1	Corr. (dB) 19.4 19.5 19.5	Margin (dB) 16.1 17.2 16.7	(dBµV) 64.0 56.0 56.0	
Freque (MH 0.190 1.718	esult ency iz) 0000 0000 0000	: Quasi-Peak Quasi-Peak (dBµV) 47.9 38.8	Filter Off Off	Line L1 L1	Corr. (dB) 19.4 19.5	Margin (dB) 16.1 17.2	(dBµV) 64.0 56.0	
Freque (MH 0.190 1.718 2.118 2.774	esult ency iz) 0000 000 000 000	: Quasi-Peak Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6	Filter Off Off Off Off	Line L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6	Margin (dB) 16.1 17.2 16.7 17.4	(dBµV) 64.0 56.0 56.0 56.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022	esult ency iz) 0000 0000 0000 0000	: Quasi-Peak Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5	Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6	Margin (dB) 16.1 17.2 16.7 17.4 18.5	(dBµV) 64.0 56.0 56.0 56.0 56.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550	esult ency iz) 0000 0000 0000 0000 0000	: Quasi-Peak Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6 19.6	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9	(dBµV) 64.0 56.0 56.0 56.0 56.0 56.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558	esult ency iz) 0000 0000 0000 0000 0000 0000 8000	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0	Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6 19.6 19.7	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5	(dBµV) 64.0 56.0 56.0 56.0 56.0 56.0 56.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558 Final Re	esult ency iz) 0000 0000 0000 0000 0000 0000 80000 esult	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average	Filter Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.6 19.6 19.6 19.6 19.7 19.8	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0	(dBµV) 64.0 56.0 56.0 56.0 56.0 56.0 60.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558 Final Re Freque	esult ency iz) 0000 0000 0000 0000 0000 0000 0000	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average Average	Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6 19.6 19.7	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0 Margin	(dBµV) 64.0 56.0 56.0 56.0 56.0 56.0 56.0 60.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558 Final Re	esult ency iz) 0000 0000 0000 0000 0000 0000 0000	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average	Filter Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6 19.6 19.7 19.8 Corr.	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0	(dBµV) 64.0 56.0 56.0 56.0 56.0 56.0 60.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.555 Final Re Freque (MH	esult ency iz) 0000 0000 0000 0000 0000 0000 8000 esult ency iz) 0000	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average (dBµV)	Filter Off Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6 19.6 19.6 19.7 19.8 Corr. (dB)	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0 Margin (dB)	(dBμV) 64.0 56.0 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBμV)	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558 Final Re Freque (MH 0.190	esult ency iz) 0000 0000 0000 0000 0000 0000 esult ency iz) 0000 0000	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average (dBµV) 36.1	Filter Off Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6 19.6 19.7 19.8 Corr. (dB) 19.4 19.5	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0 Margin (dB) 17.9	(dBμV) 64.0 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBμV) 54.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558 Final Re Freque (MH 0.190 1.718 2.118 2.774	esult ency iz) 0000 0000 0000 0000 0000 0000 esult ency iz) 0000 0000 0000 0000	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average (dBµV) 36.1 26.0 28.5 29.9	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.6 19.6 19.6 19.7 19.8 Corr. (dB) 19.4 19.5 19.5 19.6	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0 Margin (dB) 17.9 20.0 17.5 16.1	(dBμV) 64.0 56.0 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBμV) 54.0 46.0 46.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558 Final Re Freque (MH 0.190 1.718 2.118 2.774 3.022	esult ency iz) 0000 0000 0000 0000 0000 esult ency iz) 0000 0000 0000 0000 0000 0000	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average (dBµV) 36.1 26.0 28.5 29.9 28.2	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.5 19.6 19.6 19.6 19.7 19.8 Corr. (dB) 19.4 19.5 19.5 19.5 19.6	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0 Margin (dB) 17.9 20.0 17.5 16.1 17.8	(dBμV) 64.0 56.0 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBμV) 54.0 46.0 46.0 46.0	
Freque (MH 0.190 1.718 2.118 2.774 3.022 3.550 4.974 13.558 Final Re Freque (MH 0.190 1.718 2.118 2.774	esult ency iz) 0000 0000 0000 0000 0000 8000 8000 80	: Quasi-Peak (dBµV) 47.9 38.8 39.3 38.6 37.5 36.1 39.5 49.0 : Average (dBµV) 36.1 26.0 28.5 29.9	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.4 19.5 19.6 19.6 19.6 19.7 19.8 Corr. (dB) 19.4 19.5 19.5 19.6	Margin (dB) 16.1 17.2 16.7 17.4 18.5 19.9 16.5 11.0 Margin (dB) 17.9 20.0 17.5 16.1	(dBμV) 64.0 56.0 56.0 56.0 56.0 56.0 56.0 60.0 Limit (dBμV) 54.0 46.0 46.0	

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : QYL7260NGW

est Mode :		Mode 1			Temperature :			20~22 ℃	
Test Engineer : Test Voltage :		Kai-Chun Chu 120Vac / 60Hz			Relative Humidity : Phase :			45~47% Neutral	
	100	T iiii							
90		+							
		+							
	80								
	70	+							
	≩ 60						CISP	<u>R22-QP Limit at Main_</u> Ports	
q	ġ						CISPE	R22-Ave Limit at Main Ports	
	And 60 50 50 40								
	ھ 40 ∟		nm	man		THE REAL PROPERTY OF			
	30		1 -						
		+				•			
	20								
	10	_							
	0		500 80	D01M	2M Frequer	3M 4M ncyin Hz	1 5M 6	8 10M 20M 30M	
	0 1 Resu	50k 300 4005		001M	Frequer	ncyin Hz		8 10M 20M 30M	
Frequ	0 1 Resu uency	50k 300 4005		D01M	Frequer	ncy in Hz Margin	Limit		
Frequ (MI	0 1 Resu uency Hz)	50k 300 4005	Filter	Line	Frequer Corr. (dB)	Margin (dB)	Limit (dBµV)		
Frequ (MI 0.190	0 1 Resu uency Hz) 0000	50k 300 4005 It : Quasi-Peak (dBμV) 47.5	Filter	Line N	Frequer Corr. (dB) 19.4	Margin (dB) 16.5	Limit (dBµV) 64.0		
Frequ (MI 0.190 1.84	0 1 Resu uency Hz) 0000 6000	50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5	Filter	Line	Frequer Corr. (dB) 19.4 19.5	Margin (dB) 16.5 17.5	Limit (dBµV) 64.0 56.0		
Frequ (Mi 0.19 1.844 2.24	0 1 Resu uency Hz) 0000	50k 300 4005 It : Quasi-Peak (dBμV) 47.5	Filter Off Off	Line N N	Frequer Corr. (dB) 19.4 19.5 19.6	Margin (dB) 16.5	Limit (dBµV) 64.0		
Frequ (MI 0.19 1.84 2.24 2.89	0 1 Resu uency Hz) 0000 6000	50k 300 4005 It : Quasi-Peak Quasi-Peak (dBμV) 47.5 38.5 38.9	Filter Off Off Off	Line N N N	Frequer Corr. (dB) 19.4 19.5	Margin (dB) 16.5 17.5 17.1	Limit (dBµV) 64.0 56.0 56.0		
Frequ (MI 0.190 1.840 2.240 2.890 4.990	0 1 Resu uency Hz) 0000 6000 6000 4000	50k 300 4005 t: Quasi-Peak Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 38.3	Filter Off Off Off Off	Line N N N N	Frequer (dB) 19.4 19.5 19.6 19.7	Margin (dB) 16.5 17.5 17.1 19.1	Limit (dBµV) 64.0 56.0 56.0 56.0		
Frequ (MI 0.19 1.84 2.24 2.89 4.99 13.55	0 1 Resu uency Hz) 0000 6000 6000 4000 8000	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 38.3 49.3	Filter Off Off Off Off	Line N N N N	Frequer Corr. (dB) 19.4 19.5 19.6 19.7 19.7	Margin (dB) 16.5 17.5 17.1 19.1 17.7	Limit (dBµV) 64.0 56.0 56.0 56.0 56.0		
Frequ (MI 0.190 1.844 2.244 2.894 4.996 13.55 25.23	0 1 Resu uency Hz) 0000 6000 6000 6000 6000 8000 8000 800	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 38.3 49.3	Filter Off Off Off Off Off Off	Line N N N N N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.9	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7	Limit (dBµV) 64.0 56.0 56.0 56.0 56.0 60.0		
Frequ (MI 0.190 1.844 2.244 2.899 4.999 13.55 25.23 Final R Frequ	0 1 Resu uency Hz) 0000 6000 6000 6000 6000 6000 6000 60	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 36.9 38.3 49.3 36.8 36.8 It : Average	Filter Off Off Off Off Off Off Off	Line N N N N N N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.9 20.1	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7 23.2 Margin	Limit (dBµV) 64.0 56.0 56.0 56.0 56.0 60.0		
Frequ (MI 0.190 1.840 2.240 4.990 13.55 25.23 Final R Frequ (MI	0 1 Resu uency Hz) 0000 6000 6000 6000 6000 8000 8000 800	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 47.5 38.5 38.9 36.9 38.3 49.3 36.8 36.8 It : Average (dBμV) 47.5	Filter Off Off Off Off Off Off Off Filter	Line N N N N N N Line	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.7 20.1 Corr. (dB)	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7 23.2 Margin (dB)	Limit (dBµV) 64.0 56.0 56.0 56.0 60.0 60.0 Limit (dBµV)		
Frequ (MI 0.190 1.840 2.244 2.894 4.996 13.55 25.23 Final R Frequ (MI 0.190	0 1 Resu uency Hz) 0000 6000 6000 6000 8000 8000 8000 800	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.5 38.9 36.9 38.3 49.3 36.8 36.8 It : Average (dBμV) 35.1	Filter Off Off Off Off Off Off Off Filter	Line N N N N N N Line N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.9 20.1 Corr. (dB) 19.4	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7 23.2 Margin (dB) 18.9	Limit (dBµV) 64.0 56.0 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 54.0		
Frequ (Mi 0.190 1.844 2.244 2.890 4.990 13.55 25.23 Final R Frequ (Mi 0.190 1.844	0 1 Resu uency Hz) 0000 6000 4000 8000 58000 80000 80000 80000 Resu uency Hz) 0000 6000	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 38.3 49.3 36.8 It : Average (dBμV) 47.5 35.1 25.8	Filter Off Off Off Off Off Off Off Filter	Line N N N N N N Line N N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.7 20.1 20.1 Corr. (dB) 19.4 19.5	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7 23.2 Margin (dB) 18.9 20.2	Limit (dBµV) 64.0 56.0 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 54.0 46.0		
Frequ (Mi 0.190 1.844 2.244 2.899 4.990 13.55 25.23 Final R Frequ (Mi 0.190 1.844 2.244	0 1 Resu uency Hz) 0000 6000 80000 80000 80000 80000 80000 Resu uency Hz) 0000 6000 6000	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 36.9 38.3 49.3 36.8 36.8 It : Average (dBμV) 35.1 25.8 28.8	Filter Off Off Off Off Off Off Off Filter Off Off Off	Line N N N N N N Line N N N N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.7 20.1 Corr. (dB) 19.4 19.5 19.6	Margin (dB) 16.5 17.5 17.1 19.1 17.7 23.2 Margin (dB) 18.9 20.2 17.2	Limit (dBµV) 64.0 56.0 56.0 56.0 60.0 60.0 Limit (dBµV) 54.0 46.0		
Frequ (Mi 0.190 1.844 2.244 2.899 4.999 13.55 25.23 Final R Frequ (Mi 0.190 1.844 2.244 2.899	0 1 Resu uency Hz) 0000 6000 6000 80000 80000 80000 80000 80000 6000 6000 4000	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 38.3 39.3 36.9 38.3 49.3 36.8 36.8 It : Average (dBμV) 35.1 25.8 28.8 27.7	Filter Off Off Off Off Off Off Filter	Line N N N N N N Line N N N N N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.7 20.1 20.1 Corr. (dB) 19.4 19.5 19.6 19.7	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7 23.2 Margin (dB) 18.9 20.2 17.2 18.3	Limit (dBµV) 64.0 56.0 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 54.0 46.0 46.0		
Frequ (M) 0.190 1.840 2.240 4.990 13.55 25.23 Final R Frequ (M) 0.190 1.840 2.240 2.890 4.990	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 38.5 38.9 36.9 38.3 39.3 36.9 38.3 49.3 36.8 36.8 It : Average (dBμV) 35.1 25.8 28.8 27.7 31.6	Filter Off Off Off Off Off Off Filter	Line N N N N N N Line N N N N N N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.7 20.1 20.1 Corr. (dB) 19.4 19.5 19.6 19.7 19.7	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7 23.2 Margin (dB) 18.9 20.2 17.2 18.3 14.4	Limit (dBµV) 64.0 56.0 56.0 56.0 60.0 60.0 60.0 60.0 60		
Frequ (MI 0.190 1.844 2.244 2.894 4.996 13.55 25.23 Final R Frequ (MI 0.190 1.844 2.244 2.894 4.996 13.55	0 1 Resu uency Hz) 0000 6000 6000 80000 80000 80000 80000 80000 6000 6000 4000	50k 300 4005 50k 300 4005 It : Quasi-Peak (dBμV) 47.5 47.5 38.5 38.9 36.9 38.3 49.3 36.8 36.8 It : Average (dBμV) 35.1 25.8 28.8 27.7 31.6 48.8 48.8	Filter Off Off Off Off Off Off Filter	Line N N N N N N Line N N N N N	Frequer (dB) 19.4 19.5 19.6 19.7 19.7 19.7 20.1 20.1 Corr. (dB) 19.4 19.5 19.6 19.7	Margin (dB) 16.5 17.5 17.1 19.1 17.7 10.7 23.2 Margin (dB) 18.9 20.2 17.2 18.3	Limit (dBµV) 64.0 56.0 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 54.0 46.0 46.0		

3.2 Antenna Requirements

3.2.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.2.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.2.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB41292344	300MHz~40GHz	Feb. 05, 2013	Oct. 07, 2013	Feb. 04, 2014	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US40441548	300MHz~40GHz	Feb. 05, 2013	Oct. 07, 2013	Feb. 04, 2014	Conducted (TH02-HY)
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100356	9kHz ~ 2.75GHz	Nov. 13, 2012	Oct. 03, 2013	Nov. 12, 2013	Conduction (CO05-HY)
Two-LISN (for auxiliary equipment)	Rohde & Schwarz	ENV216	100081	9kHz ~ 30MHz	Dec. 12, 2012	Oct. 03, 2013	Dec. 11, 2013	Conduction (CO05-HY)
Two-LISN	Rohde & Schwarz	ENV216	100080	9kHz ~ 30MHz	Dec. 06, 2012	Oct. 03, 2013	Dec. 05, 2013	Conduction (CO05-HY)
AC Power Source	APC	APC-1000W	N/A	N/A	N/A	Oct. 03, 2013	N/A	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.26
of 95% (U = 2Uc(y))	2.20