

1. Maximum Permissible Exposure (MPE)

Standard Applicable

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Mobile device, the MPE is required.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time			
(MHz)	Strength (V/m)	Strength (A/m) (mW/cm^2) (n		(minute)			
Limits for General Population/Uncontrolled Exposure							
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	F/1500	30			
1500-15000	/	/	1.0	30			

F = frequency in MHz

^{* =} Plane-wave equipment power density

Maximum Permissible Exposure (MPE) Evaluation

2.4GHz mode:

The worst case: refer to FCC test report for detail measurement date.

Power measurement:

BDR Mode

Frequency (MHz)	Peak Reading Power (dBm)	Cable Loss	Output Power (dBm)	Output Power (W)	Limit (W)
2402.00	-4.84	0.00	-4.84	0.00033	0.125
2441.00	1.67	0.00	1.67	0.00147	0.125
2480.00	3.47	0.00	3.47	0.00222	0.125

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S=PG/4 \pi R^2$

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum output power at antenna input terminal:	3.47	(dBm)
Maximum output power at antenna input terminal:	2.223309891	(mW)
Tune-Up power Tolerance:	2	dB
Duty cycle:	76	(%)
Maximum Pav :	(mW)	
Antenna gain (typical):	2.1	(dBi)
Maximum antenna gain:	1.621810097	(numeric)
Prediction distance:	20	(cm)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm^2)
Power density at predication frequency at 20 (cm)	0.0008645	(mW/cm^2)

Measurement Result:

The predicted power density level at 20 cm is $0.0008645 \text{ mW/cm}^2$. This is below the uncontrolled exposure limit of 1 mW/cm^2 .

~ End of Report ~