

TEST REPORT

Applicant: FlightScope (Pty) Ltd

Address: 1 Quantum Street Stellenbosch Western Cape 7600 South Africa

Manufacturer: FlightScope (Pty) Ltd

Address: 1 Quantum Street Stellenbosch Western Cape 7600 South Africa

E.U.T.: Flightscope Laser Golf Rangefinder

Model Number: i4

Trade mark: N/A

FCC ID: QXP-FSI4

Date of Receipt: Oct 08, 2024 | Date of Test: Oct 08 – Oct 25, 2024

Test Specification: FCC 47 CFR Part 15, Subpart C

Test Result: The equipment under test was found to be compliance with the

requirements of the standards applied.

Prepared by: Approved & Authorized Signer:

Jerry Hu/ Engineer

Issue Date: December 5, 2024

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Dongguan Lepont Service Co., Ltd.

TABLE OF CONTENTS

1. GENERAL PRODUCT INFORMATION	4
1.1. PRODUCT FUNCTION	4
1.2. EUT TECHNICAL DESCRIPTION	4
1.3. INDEPENDENT OPERATION MODES	
1.4. TEST SOFTWARE	
1.5. GENERAL CONDITION	
1.6. SUPPORT EQUIPMENT	6
2. TEST STANDARDS AND SITES	7
2.1. DESCRIPTION OF STANDARDS AND RESULTS	7
2.2. LIST OF TEST AND MEASUREMENT INSTRUMENTS	8
2.3. MEASUREMENT UNCERTAINTY	9
2.4. TEST FACILITY	9
3. SETUP OF EQUIPMENT UNDER TEST	10
3.1. RADIO FREQUENCY TEST SETUP 1	10
3.2. RADIO FREQUENCY TEST SETUP 2	10
	10
3.3. CONDUCTED EMISSION TEST SETUP	12
3.3. CONDUCTED EMISSION TEST SETUP	
	12
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	12
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 4. TEST RESULTS AND MEASUREMENT DATA	12 13 13
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	12 13 13
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	12 13 17 19
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	12 13 17 19
3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	121317192228

Revision History of This Test Report			
Report Number	Description	Issued Date	
LP23080282C01-41	Initial Issue	2024-12-5	

1. GENERAL PRODUCT INFORMATION

1.1. PRODUCT FUNCTION

Refer to Technical Construction Form and User Manual.

1.2. EUT TECHNICAL DESCRIPTION

Product Name:	Flightscope Laser Golf Rangefinder
Model No.:	i4
Test Model No:	i4
Test sample(s) ID:	LP23080282C01-41-S001
Sample(s) Status	Engineer sample
Operation Frequency:	2402MHz-2480MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation type:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	2.0 dBi
Power supply:	DC 3.7V From Battery
i ower suppry.	DC 5V From Charging

1.3. INDEPENDENT OPERATION MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Test mode	Low channel	Middle channel	High channel
GFSK(TX)	2402MHz	2440MHz	2480MHz
GFSK(RX)	2402MHz	2440MHz	2480MHz

Note: For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report except the RF output power test was shown all conditions.

Frequency and Channel list

Channel No.	Frequency (MHz)	Channel No.	Frequency(MHz)
1	2402	21	2442
2	2404	22	2444
3	2406	23	2446
4	2408	24	2448
5	2410	25	2450
6	2412	26	2452
7	2414	27	2454
8	2416	28	2456
9	2418	29	2458
10	2420	30	2460
11	2422	31	2462
12	2424	2424 32	
13	2426	33 246	
14	2428	34	2468
15	2430	35	2470
16	2432	36	2472
17	2434 37		2474
18	2436		
19	2438	39 247	
20	2440	40	2480

1.4. TEST SOFTWARE

Software		Description
SmartSnippets_Toolbox_v5.0.10.2434_		Set the COM Port Test Tool to set the
windows		corresponding Test conditions

1.5. GENERAL CONDITION

	Temperature	Humidity
Ambient Condition:	22.4 ℃	51.2 %RH

1.6. SUPPORT EQUIPMENT

EUT Cable List and Details					
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite					

Auxiliary Cable List and Details						
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite						
/						

Auxiliary Equipment List and Details					
Description Manufacturer Model Serial Number					
Laptop computer	Lenovo	Xiaoxin Pro IA5HR	PF490VB0		

Notes:

- 1.All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2.Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

2. TEST STANDARDS AND SITES

2.1. DESCRIPTION OF STANDARDS AND RESULTS

The EUT have been tested according to the applicable standards as referenced below.

FCC Part Clause	Test Parameter	Verdict	Remark
15.247(a)(2)	DTS (6dB) Bandwidth	PASS	
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS	
15.247(e)	Maximum Power Spectral Density Level	PASS	
15.247(d)	Unwanted Emission Into Non-Restricted	PASS	
	Frequency Bands(conducted)		
15.247(d)	Radiated Spurious Emission	PASS	
15.209			
15.207	Conducted Emission Test	PASS	
15.247(b)	Antenna Requirement		
15.203			

NOTE1: N/A (Not Applicable)

NOTE2: The report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

2.2. LIST OF TEST AND MEASUREMENT INSTRUMENTS

For conducted emission at the mains terminals test(Shielded Room 1)								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark	
EMI Test Receiver	Rohde & Schwarz	ESHS30	8290501003	Jan. 24, 2024	1 Year	LEP-E002	\checkmark	
Artificial Mains Network	Baluelec	LSN016	BL0411220501 21	Nov. 15, 2023	1 Year	LEP-E067	\checkmark	
Shielded Room 1	MR	MR-L05	LEP-E053	Nov. 17, 2022	3 Year	LEP-E053	\checkmark	
Test software	EZ-EMC	Fala	LEPONT-03A2	N/A	N/A	N/A	V	
	For radiated(9K-30M) emission test(966 Chamber 1)							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark	
EMI Test Receiver	Rohde & Schwarz	ESR 3	101849	Jan. 31, 2024	1 Year	LEP-E006	$\overline{\mathbf{V}}$	
Active Loop Antenna	Schwarzbeck	FMZB 1519C	80000	Jan. 24, 2024	3 Year	LEP-E068	\checkmark	
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	\checkmark	
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	\checkmark	
	For radiated(30M-1G) emis	sion test(966 C	hamber 1)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark	
EMI Test Receiver	Rohde & Schwarz	ESR 3	101849	Jan. 31, 2024	1 Year	LEP-E006	\checkmark	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	743	Nov. 20, 2022	3 Year	LEP-E005	V	
Signal Amplifier	HP	8447D	1726A01222	Jan. 24, 2024	1 Year	LEP-E007	\checkmark	
6dB Attenuator	RswTech	5W 6dB	LEP-E084	Jan. 24, 2024	1 Year	LEP-E084	\checkmark	
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	V	
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	\checkmark	
	For radiated	(1-18G) emiss	ion test(966 Cl	hamber 1)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark	
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024	1 Year	LEP-E076	\checkmark	
Spectrum analyzer	Agilent	N9020A	MY49100060	Jan. 24, 2024	1 Year	LEP-E020	\checkmark	
Horn antenna	Schwarzbeck	BBHA 9120D	01875	Nov. 20, 2022	3 Year	LEP-E024	\checkmark	
Preamplifier	Schwarzbeck	BBN 9718B	00010	Jan. 24, 2024	1 Year	LEP-E025	\checkmark	
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	\checkmark	
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	V	
	For radiated	(18-40G) emiss	sion test(966 C	hamber 1)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark	
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024		LEP-E076		
Horn antenna+Preamplifier	COM-POWER	AH840	10100020	Sep. 05, 2022	3 Year	LEP-E075	V	
966 Chamber 1	MR	MR-L02	LEP-E051	Nov. 17, 2022	3 Year	LEP-E051	V	
Test software	EZ-EMC	Fala	EMEC-3A1	N/A	N/A	N/A	\checkmark	
		For RF	test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	Lab No.	Remark	
Spectrum analyzer	Rohde & Schwarz	FSV40	101412	Jan. 24, 2024	1 Year	LEP-E076	V	
Spectrum analyzer	Agilent	N9020A	MY49100060	Jan. 24, 2024	1 Year	LEP-E020	V	
Vector source	Agilent	N5182A	MY47420382	Jan. 24, 2024	1 Year	LEP-E021	\checkmark	
Analog signal source	Agilent	N5171B	MY51350292	Jan. 24, 2024	1 Year	LEP-E022	\checkmark	
All instrument	Rohde & Schwarz	CMW 500	1201.002K50	Jan. 24, 2024	1 Year	LEP-E019	\checkmark	
High and low temperature chamber	Math-mart	MT-1202-40	LEP-E041	Jan. 24, 2024	1 Year	LEP-E041	V	
control unit	Tonscend	JS0806-2	10165	Jan. 24, 2024	1 Year	LEP-E034	\checkmark	
Testing software	Tonscend	JSTS1120-3	Ver 2.6.77.0518	N/A	N/A	N/A	\checkmark	

2.3. MEASUREMENT UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power	±1.0%
Test	
Conducted Emissions Test	±3.08dB
Radiated Emission Test	±4.60dB
Power Density	±0.9%
Occupied Bandwidth Test	±2.3%
Band Edge Test	±1.2%
Antenna Port Emission	±3dB
Temperature	±3.2%
Humidity	±2.5%
Measurement Uncertainty for a level of Co	onfidence of 95%

2.4. TEST FACILITY

EMC Lab. : The Laboratory has been assessed and proved to be in

compliance with CNAS/CL01

The Certificate Registration Number is L10100.

The Laboratory has been assessed and proved to be in

compliance with A2LA

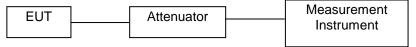
The Certificate Registration Number is 6901.01

FCC Designation No.: CN1351 Test Firm Registration No.: 397428

ISED CAB identifier: CN0151 Test Firm Registration No.: 20133

Test Location: Dongguan Lepont Testing Service Co., Ltd.

Address Room 102, Building 11, No.7, Houjie Science And Technology


Avenue, Houjie, Dongguan, Guangdong, China

3. SETUP OF EQUIPMENT UNDER TEST

3.1. RADIO FREQUENCY TEST SETUP 1

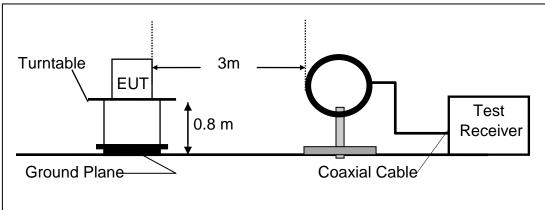
The Bluetooth V5.1 component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

3.2. RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 32.

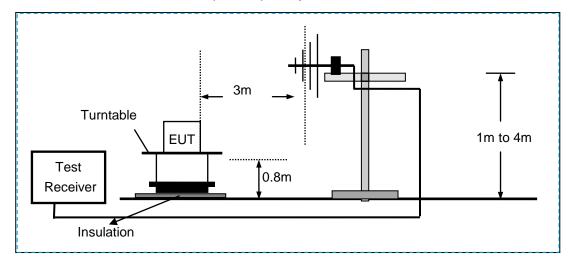
Below 30MHz:

The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

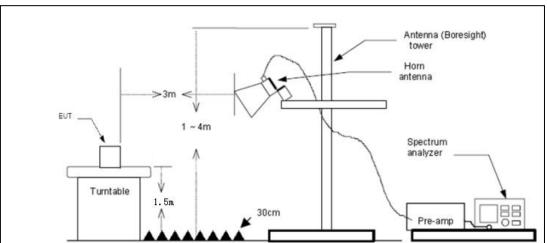

Above 30MHz:

The EUT is placed on a turntable 0.8meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

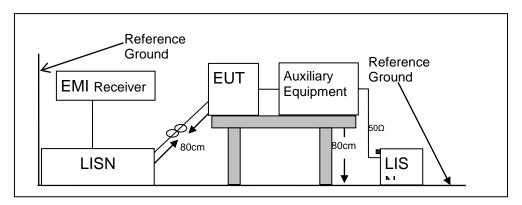

(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

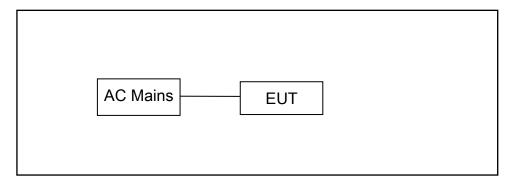


(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



3.3. CONDUCTED EMISSION TEST SETUP


The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

3.4. BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

4. TEST RESULTS AND MEASUREMENT DATA

4.1. DTS 6DB BANDWIDTH TEST

4.1.1. Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.1.2. Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz

4.1.3. Test Configuration

Test according to clause 3.1 radio frequency test setup 1

4.1.4. Test Procedure

The EUT was operating in BLE mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

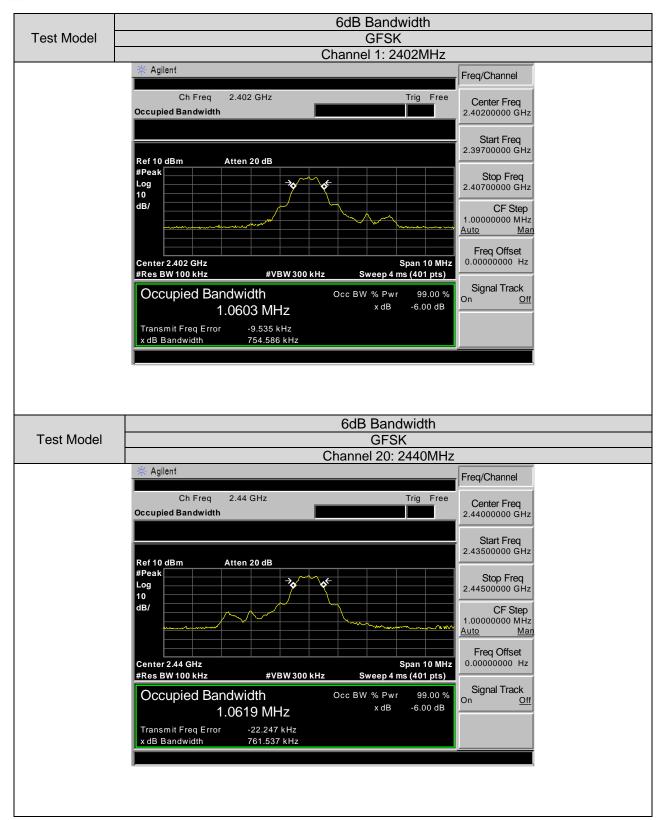
Set Span=2 times OBW

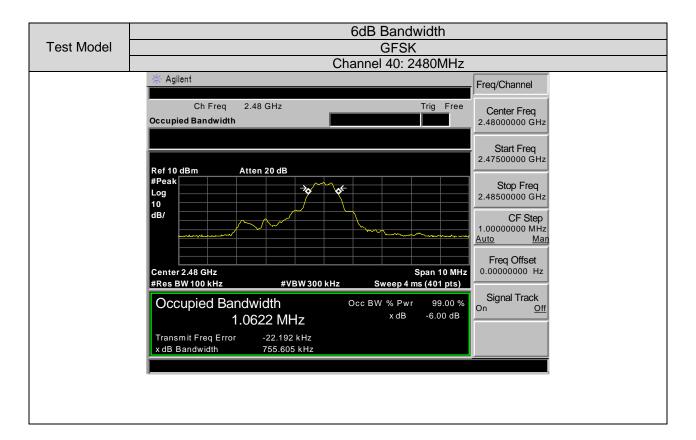
Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

Allow the trace to stabilize.


Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report.

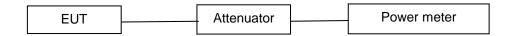

Test Results:

Modulation Mode	Channel Number	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Limit (KHz)	Verdict
	1	2402	0.755	>500	PASS
BLE(GFSK)	20	2440	0.762	>500	PASS
	40	2480	0.756	>500	PASS
Note: N/A (No	t Applicable	<u>+)</u>			

4.2. MAXIMUM PEAK CONDUCTED OUTPUT POWER

4.2.1. Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02


4.2.2. Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

4.2.3. Test Configuration

Test according to clause 3.1 radio frequency test setup 1

4.2.4. Test Procedure

■ According to FCC Part15.247(b)(3)

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. For smart system, Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Set the RBW \geq DTS bandwidth(about 1MHz).

Set VBW =3*RBW(about 3MHz)

Set the span ≥ 3*RBW

Set Sweep time = auto couple.

Set Detector = peak.

Set Trace mode = max hold.

Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

■ Place the EUT on the desktop and set it to launch mode. Remove the antenna from the EUT and connect the low-loss RF cable from the antenna port to the power meter. Measure the peak power of each channel.

Test Mode	Channel Number	Channel Frequency (MHz)	PEResult (dBm)	Limit (dBm)
	1	2402	1.29	30
BLE(GFSK)	20	2440	1.27	30
	40	2480	2.01	30

4.3. MAXIMUM POWER SPECTRAL DENSITY

4.3.1. Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.3.2. Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.3. Test Configuration

Test according to clause 3.1 radio frequency test setup 1

4.3.4. Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

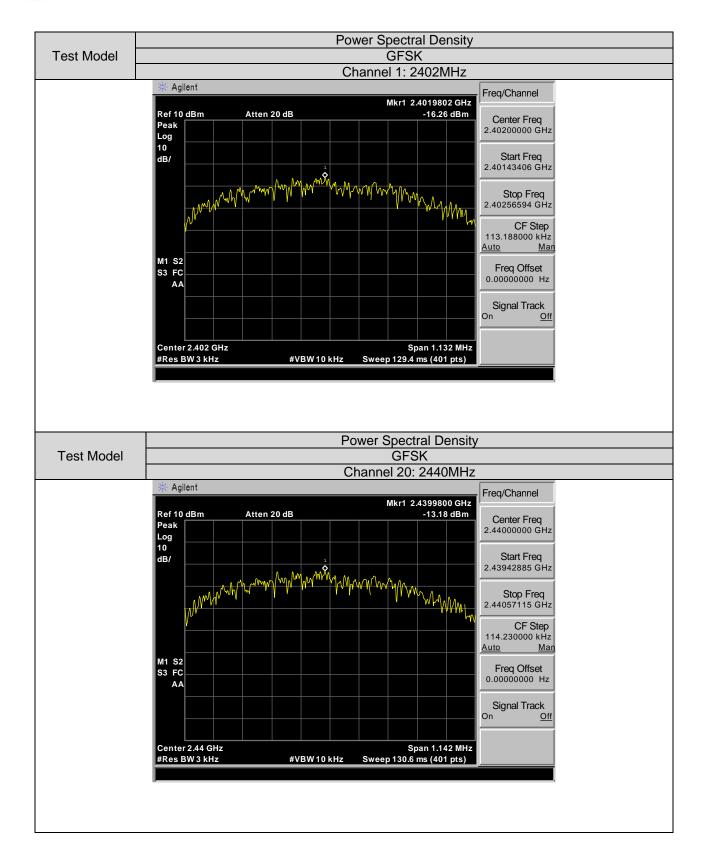
The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

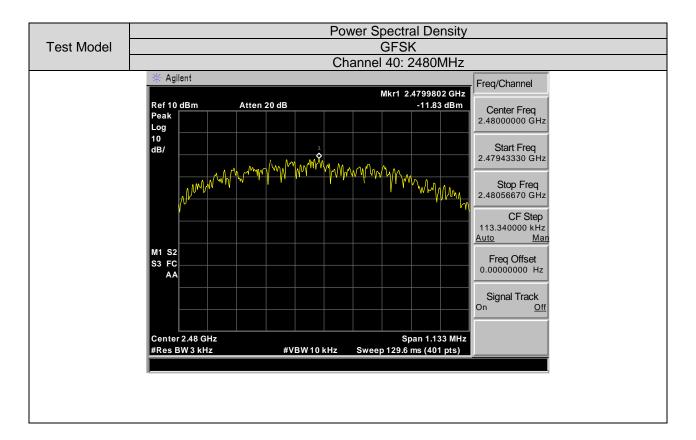
Set the RBW to: 3 kHz Set the VBW to: 10 kHz. Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.


Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.


Operation Mode	Channel Number	Channel Frequency (MHz)	Power density (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	2402	-16.26	8	PASS
BLE(GFSK)	20	2440	-13.18	8	PASS
	40	2480	-11.83	8	PASS

Note: the test RF cable loss is 0.5 dB that had added the result.

4.4. UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

4.4.1. Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

4.4.2. Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.4.3. Test Configuration

Test according to clause 3.1 radio frequency test setup 1

4.4.4. Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to = 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

■ Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

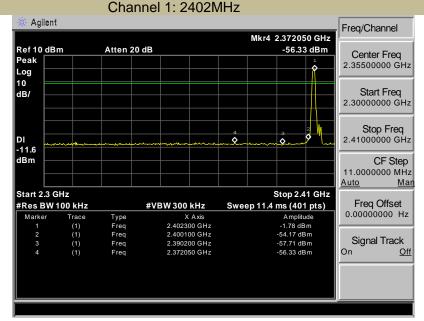
Set the VBW =300 kHz.

Set Detector = peak

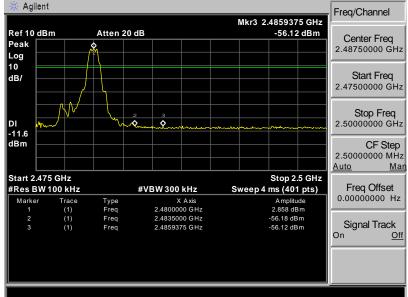
Sweep time = auto couple.

Trace mode = max hold.

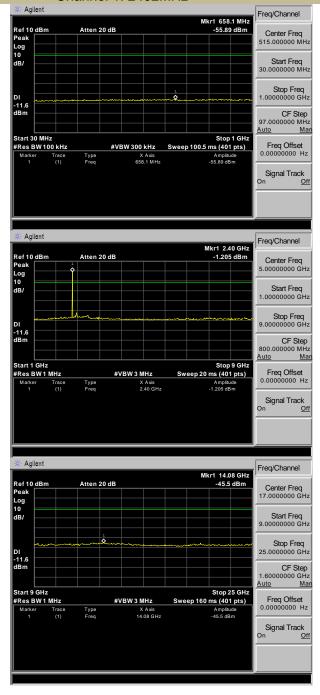
Allow trace to fully stabilize.


Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.


Note: the test RF cable loss is 0.5 dB, we checked all test conducted spurious test data with this loss that complied with FCC rule requirement.

Test Model BLE

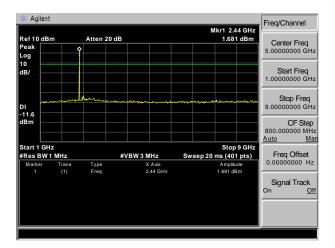


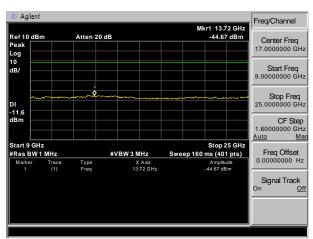
Test Model

Unwanted Emissions in non-restricted frequency bands BLE

Channel 1: 2402MHz

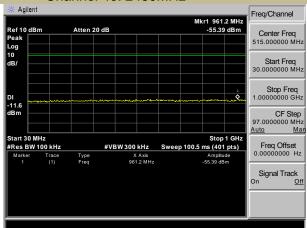


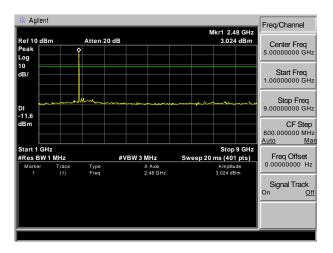


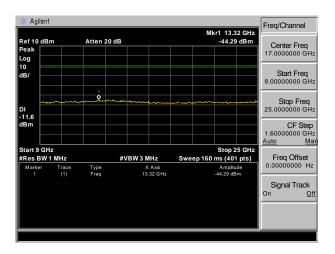

Test Model

Unwanted Emissions in non-restricted frequency bands BLE

Channel 20: 2440MHz






Test Model

Unwanted Emissions In Non-Restricted Frequency Bands BLE

Channel 40: 2480MHz

4.5. RADIATED SPURIOUS EMISSION

4.5.1. Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02

4.5.2. Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

According to FCC Part15.205. Restricted bands

According to 1 00 1 art 15.205, Restricted bands						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.5252 5	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µ V/m)	Field Strength (dBµ V/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

4.5.3. Test Configuration

Test according to clause 3.2 radio frequency test setup 2

4.5.4. Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz)

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data. Repeat above procedures until all frequency measured was complete.

Test Results:

Spurious Emission below 30MHz (9KHz to 30MHz)

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

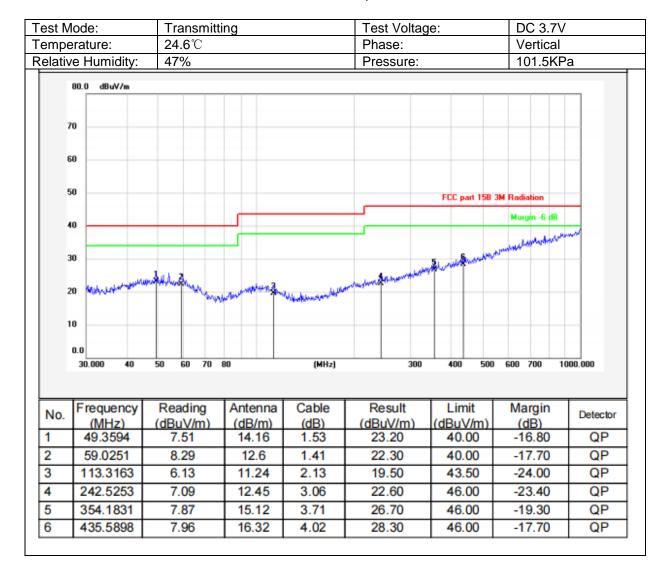
Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

Worse case	mode:	GFSK		Test channel:		Lowest	
	Meter		Emission			Detector	Ant.
Frequency	Reading	Factor	Level	Limits	Over	Type	Pol.
			(dBµV/m	(dBµV/m			H/V
(MHz)	(dBµV)	(dB)))	(dB)		
4804	53.04	-4.33	48.71	74	-25.29	Peak	Н
7206	50.58	1.01	51.59	74	-22.41	Peak	Н
4804	52.35	-4.33	48.02	74	-25.98	Peak	V
7206	49.47	1.01	50.48	74	-23.52	Peak	V

Worse case	mode:	GFSK		Test channel:		Middle	
	Meter		Emission			Detector	Ant.
Frequency	Reading	Factor	Level	Limits	Over	Type	Pol.
			(dBµV/m	(dBµV/m			H/V
(MHz)	(dBµV)	(dB)))	(dB)		
4880	50.69	-4.11	46.58	74	-27.42	peak	Η
7320	48.89	1.51	50.40	74	-23.60	peak	Η
4880	51.75	-4.11	47.64	74	-26.36	peak	V
7320	49.94	1.51	51.45	74	-22.55	peak	V

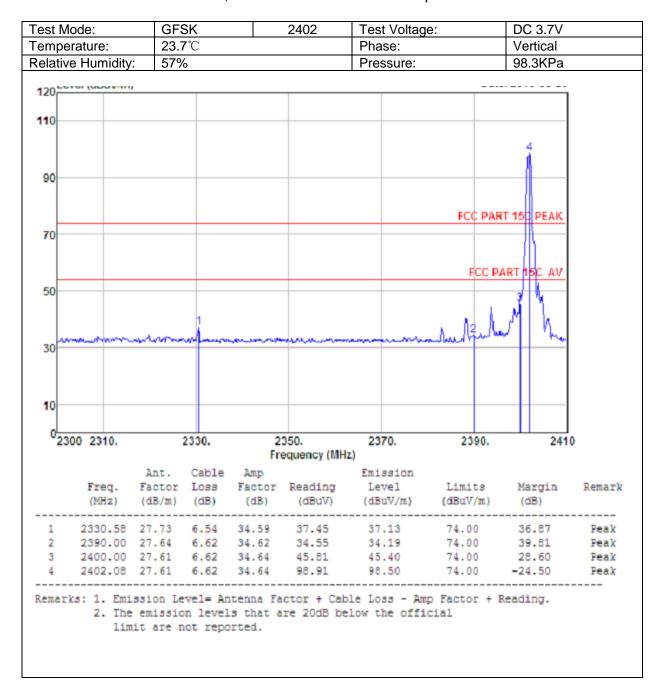
Worse case	mode:	GFSK		Test chann	nel:	Highest	
	Meter		Emission			Detector	Ant.
Frequency	Reading	Factor	Level	Limits	Over	Type	Pol.
			(dBµV/m	(dBµV/m			H/V
(MHz)	(dBµV)	(dB)))	(dB)		
4960	49.80	-4.04	45.76	74	-28.24	Peak	Η
7440	49.60	1.57	51.17	74	-22.83	Peak	Ι
4960	49.16	-4.04	45.12	74	-28.88	Peak	V
7440	48.97	1.57	50.54	74	-23.46	Peak	V


Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

- (2) Emission Level= Reading Level+Probe Factor +Cable Loss.
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

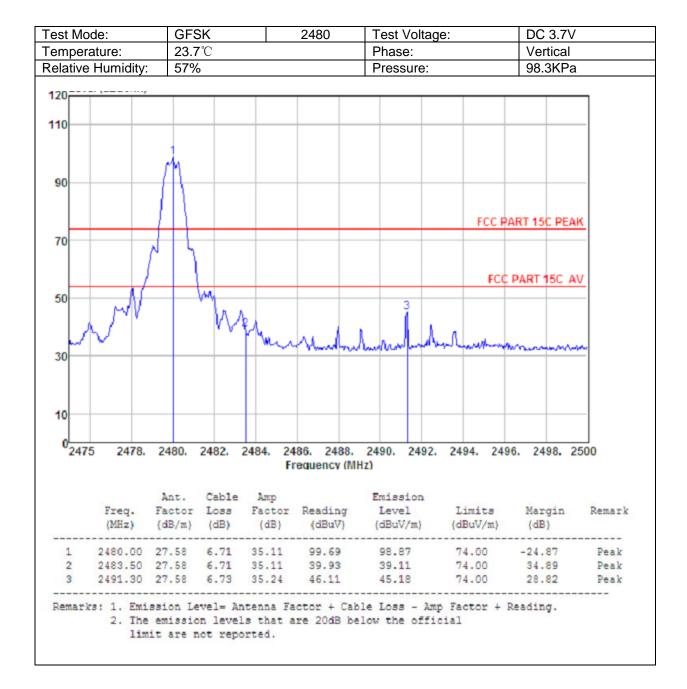
■ Spurious Emission below 1GHz (30MHz to 1GHz):

BLE mode have been tested, and the worst result was report as below:

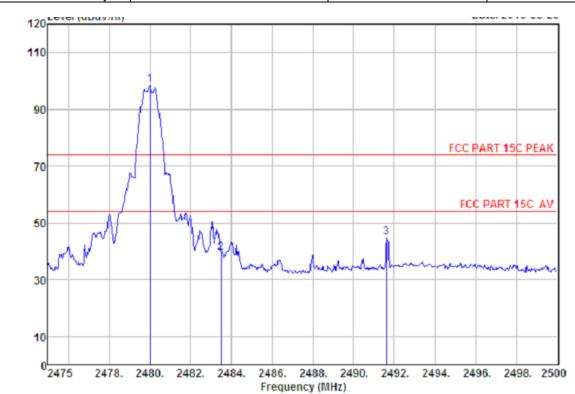


	ode:	Transmitti	ng		Test Voltag	e:	DC 3.7	DC 3.7V	
	rature:	24.6℃			Phase:			ntal	
elativ	e Humidity:	47%			Pressure:	101.5K	101.5KPa		
	80.0 dBuV/m								
7	70								
6	50								
5	50					FCC part 158 :	3M Radiation		
	10						Margin -6 dB		
							and a supplement	it-later	
							Physican		
3	30	,			and the state of	- diversion discording			
2	00	A was a second to second	and the same	الرادود الإيكار المساول	A STATE OF THE STA	Send of the State of			
2	00 manipulation	50 60 70		(MHz)	300	400 500		000.000	
2	0.0 30.000 40 Frequency (MHz)	Reading (dBuV/m)							
1	eo 40	Reading (dBuV/m) 6.91	Antenna	(MHz)	Result (dBuV/m) 22.60	Limit (dBuV/m) 40.00	Margin (dB) -17.40	Detector QP	
No. 1 2	Frequency (MHz) 46.9948 105.6415	Reading (dBuV/m) 6.91 6.78	Antenna (dB/m) 14.2 11.9	(MHz) Cable (dB) 1.49 2.12	Result (dBuV/m) 22.60 20.80	Limit (dBuV/m) 40.00 43.50	Margin (dB) -17.40 -22.70	Detector QP QP	
No. 1 2 3	Frequency (MHz) 46.9948 105.6415 207.8501	Reading (dBuV/m) 6.91 6.78 7.20	Antenna (dB/m) 14.2 11.9 11.14	Cable (dB) 1.49 2.12 2.86	Result (dBuV/m) 22.60 20.80 21.20	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -17.40 -22.70 -22.30	Detector QP QP QP	
No. 1 2 3 4	Frequency (MHz) 46.9948 105.6415 207.8501 246.8149	Reading (dBuV/m) 6.91 6.78 7.20 6.00	Antenna (dB/m) 14.2 11.9 11.14 12.57	(MHz) Cable (dB) 1.49 2.12 2.86 3.03	Result (dBuV/m) 22.60 20.80 21.20 21.60	Limit (dBuV/m) 40.00 43.50 43.50 46.00	Margin (dB) -17.40 -22.70 -22.30 -24.40	Detector QP QP QP QP	
No. 1 2 3	Frequency (MHz) 46.9948 105.6415 207.8501	Reading (dBuV/m) 6.91 6.78 7.20	Antenna (dB/m) 14.2 11.9 11.14	Cable (dB) 1.49 2.12 2.86	Result (dBuV/m) 22.60 20.80 21.20	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -17.40 -22.70 -22.30	Detector QP QP QP	

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz BLE mode have been tested, and the worst result was report as below:



est Mode:	GFSK	2402	Test Voltage:		DC 3.7V	
emperature:	23.7℃		Phase:		Horizonta	l
Relative Humidity:	57%		Pressure:		98.3KPa	
110						
90					1	
70					T 15C PEAK	
50				FCC PA	RT ISC AV	
30	nagen and and an and an and an and an and an and an an and an	worden der between week voor	And was on the same	many made	5 N	
10						
o ²³⁰⁰ 2310.	2330.	2350. Frequency (MHz)	2370.	2390.	241	0
	Ant. Cable	Amp Factor Reading	Emission Level	Limits	Margin	Remark
Freq. (MHz)	(dB/m) (dB)	(dB) (dBuV)	(dBuV/m)	(dBuV/m)	(dB)	


limit are not reported.

Test Mode:	GFSK	2480	Test Voltage:	DCC 3.7V
Temperature:	23.7℃		Phase:	Horizontal
Relative Humidity:	57%		Pressure:	98.3KPa

	Freq.	Ant. Factor (dB/m)		-	Reading (dBuV)	Emission Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)	Remark
1 2 3	2480.00 2483.50 2491.63	27.58	6.71	35.11	99.23 40.32 45.85	98.41 39.50 44.92	74.00 74.00 74.00	-24.41 34.50 29.08	Peak Peak Peak

Remarks: 1. Emission Level= Antenna Factor + Cable Loss - Amp Factor + Reading.

The emission levels that are 20dB below the official limit are not reported.

4.6. CONDUCTED EMISSION TEST

4.6.1. Applicable Standard

According to FCC Part 15.207(a)

4.6.2. Conformance Limit

Conducted Emission Limit								
Frequency(MHz)	Quasi-peak	Average						
0.15-0.5	66-56	56-46						
0.5-5.0	56	46						
5.0-30.0	60	50						

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Remark: Test results were obtained from the following equation:

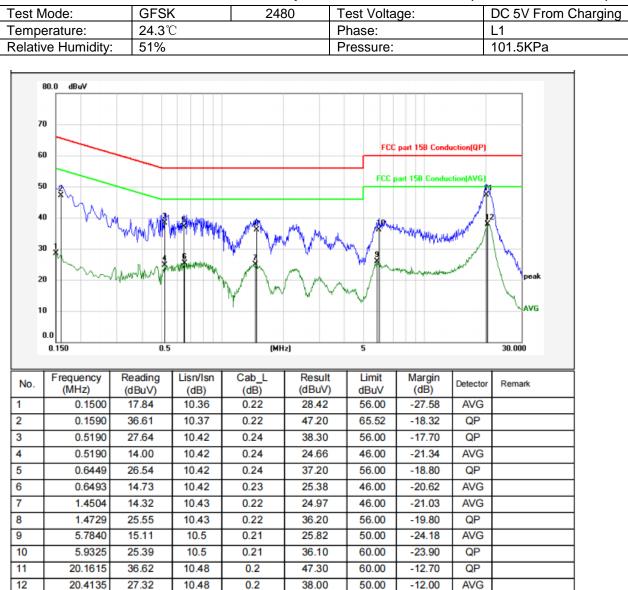
Measurement (dB μ V) = LISN Factor (dB) + Cable Loss (dB) + Reading (dB μ V) Margin (dB) = Measurement (dB μ V) - Limit (dB μ V)

4.6.3. Test Configuration

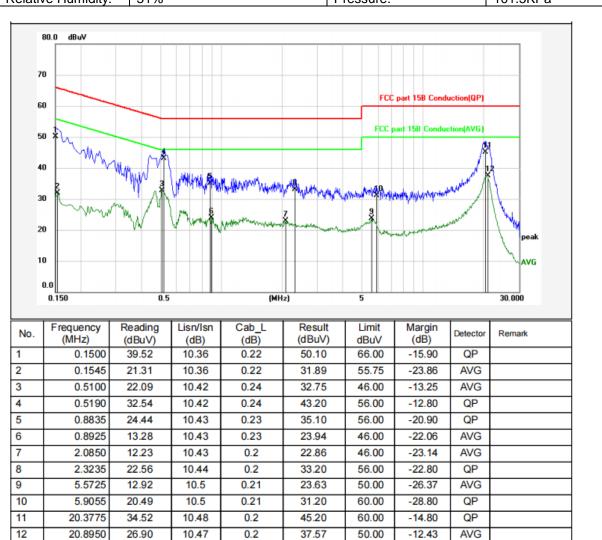
Test according to clause 3.3 conducted emission test setup

4.6.4. Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.


Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Repeat above procedures until all frequency measured were complete.


Test Results:

All BLE modes have been tested and only the worst modes are represented in the report:

Test Mode:	GFSK	2480	Test Voltage:	DC 5V From Charging
Temperature:	24.3℃		Phase:	N
Relative Humidity:	51%		Pressure:	101.5KPa

4.7. ANTENNA APPLICATION

4.7.1. Antenna Requirement

Standard

Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

FCC CRF Part 15.203

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

4.7.2.Result:

PASS.

The EUT has 1 antennas: an PCB Antenna for BLE, antenna has a gain of 2.0 dBi;

Note: which in accordance to section 15.203, please refer to the internal photos.

----- END OF REPORT -----