

802.11A SUPER RATE WIRELESS LAN PC CARD Model No.: RBTBF-AX

Tested For

ENTRASYS NETWORKS 35 Industrial Way Rochester, NH 03867 USA

In Accordance With

SAR (Specific Absorption Rate) Requirements using guidelines established in IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)

UltraTech's File No.: ENEN-001-SAR

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: February 20, 2003

Report Prepared by: Jaewook Choi

Tested by: Jaewook Choi

Issued Date: February 20, 2003

Test Dates: February 10, 2003

The results in this Test Report apply only to the sample(s) tested, which has been randomly selected.

<u>UltraTech</u>

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Telephone (905) 829-1570 Facsimile (905) 829-8050 Website: <u>www.ultratech-labs.com</u> Email: vic@ultratech-labs.com

ישישישישישישי

TABLE OF CONTENTS

EXHIBIT	1. INTRODUCTION	4
1.1.	SCOPE	4
	REFERENCES	
EXHIBIT	2. PERFORMANCE ASSESSMENT	5
2.1.	CLIENT AND MANUFACTURER INFORMATION	5
2.2.	DEVICE UNDER TEST (D.U.T.) DESCRIPTION	5
	JIST OF D.U.T.'S ACCESSORIES:	
	SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES	
2.5.	ANCILLARY EQUIPMENT	6
	GENERAL TEST CONFIGURATIONS	
2.6.1	$1 1 \cdots j \delta$	
2.6.2. 2.7.	Exercising Equipment	
2.7.	SLOCK DIAGRAM OF TEST SETUP	0 7
EXHIBIT		
	LOCATION OF TESTS	
3.2.	APPLICABILITY & SUMMARY OF SAR RESULTS	
EXHIBIT	4. MEASUREMENTS, EXAMINATIONS & TEST DATA	9
	TEST SETUP	
4.2.	PHOTOGRAPH OF D.U.T. AND ALL ACCESORIES	10
	PHOTOGRAPHS OF D.U.T. POSITION	
4.3.1		
	1.1. Keyboard faced outward from the phantom shell	
	1.3. Left-End-On	
	1.4. DUT in contact with the phantom.	
4.4.	MAXIMUM PEAK SPATIAL-AVERAGE SAR	
4.4.1	1 0	
4.4.2	1 0	
	SAR MEASUREMENT DATA	
4.5.1		
4.5 <i>4.5.2</i>	1.1. Keyboard faced inward to the phantom	
4.3.2		
EXHIBIT	5. SAR SYSTEM CONFIGURATION & TEST METHODOLOGY	20
	MEASUREMENT SYSTEM SPECIFICATIONS	20
	Test Procedures	
	PHANTOM	
	SIMULATED TISSUE	
5.4.1	T	
5.5. 5.5.1	MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE	
	Slotted Coaxial Waveguide	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA) •

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

File #: ENEN-001-SAR

SPECIFIC ABSORPTION RATIO (SAR)

5.5.2. IIP Dielectric Strength Probe System (open-ended couxial transmission-line probe/sensor) 23 5.5.2.1. Equipment set-up 23 5.5.2.1. Equipment set-up 23 5.5.2.1. Measurement procedure 26 5.6.1. Probe linearity 26 5.6.2. Messarement procedure 26 5.6.3. Method 26 5.6.4. Messarement procedure 27 5.6.5.2. Messarement procedure 29 5.6.3. Thermal Transfer Calibration 29 5.6.4.1. Evicit Messarement procedure 29 5.6.5.2. Destinition of Conversion Factor (γ) in the simulated tissue 31 5.6.4.1. Evicit Messarement procedure 33 5.6.4.2. Detat Acquisition Methodology 33 5.6.4.3. SAR Measurement 33 5.6.5.4. Data Extrapolation and boundary effect 34 5.6.5.5. Metator Capacity of Simulated Tissue 37 5.6.5.6.5. Determining the Heat Capacity of Simulated Tissue 37 5.6.5.7. Standard Source Input Power Measurement 39	5.5.1.2.	Measurement procedure	23
5.5.1. Faginpment set-up. 23 5.5.2. Measurement procedure. 25 5.6.1. Probe linearity. 26 5.6.2. Free Space Calibration 26 5.6.3. Free Space Calibration 26 5.6.2.1. Metod. 26 5.6.2.1. Metod. 26 5.6.3. Thermal Transfer Calibration 29 5.6.3. Thermal Transfer Calibration 29 5.6.3. Determination of Conversion Factor (r) in the simulated tissue. 31 5.6.4. Data Acquisition Methodology. 33 5.6.4.1. Fried Measurement. 33 5.6.4.2. Sensitivity(\zeta) of probe in the simulated tissue. 33 5.6.4.3. SAR Measurement. 36 5.6.4.3. SAR Measurement. 36 5.6.4.1. Data Extrapolition and boundary effect 36 5.6.5.1. Instruments and Materials. 37 5.6.5.2. Method. 37 5.6.5.3. Rational Materials. 39 5.7.1. Standard Source 39 5.7.2. Standard S			
5.5.2.2 Measurement procedure 25 5.6. SYSTEM CALIBRATION 26 5.6.1 Probe linearity. 26 5.6.2 Pree Space Calibration 26 5.6.3 There Space Calibration 26 5.6.4 Method 26 5.6.5 Definition of Amplifer Settings 28 5.6.3 Thermal Transfer Calibration 29 5.6.4.1 Detata Acquisition of Conversion Factor (γ) in the simulated tissue 31 5.6.4 Data Acquisition Methodology. 33 5.6.4.2 Sensitivity(2) of probe in the simulated tissue 33 5.6.4.3 SAR Measurement 34 5.6.4.4 Data Extrapolation and boundary effect 36 5.6.5 Determining the Heat Capacity of Simulated Tissue 37 5.6.5.1 Instruments and Materials. 37 5.6.5.2 Methodian Procedure 39 5.7.3 System Vialidation Procedure 39 5.7.1 Standard Source Input Power Measurement. 39 5.7.2 Standard Source Input Power Measurement. 39 5.7.3 System Viali	5521	Fauinment set-un	23
5.6 SYSTEM CALIBRATION 26 5.6.1. Probe linearity 26 5.6.2. Free Space Calibration 26 5.6.2.1 Method 26 5.6.2.1 Method 26 5.6.2.1 Method 26 5.6.3.1 Description of Amplifier Settings 28 5.6.3.1 Measurement procedure 29 5.6.3.1 Determiniation of Conversion Factor (γ) in the simulated tissue 31 5.6.4.1 Data Interpolation of Conversion Factor (γ) in the simulated tissue 33 5.6.4.2 Benetimistic of Conversion Factor (γ) in the simulated tissue 33 5.6.4.3 SAR Measurement 33 5.6.4.4 Data Extrapolation and boundary effect 36 5.6.5.1 Determining the Heat Capacity of Simulated Tissue 37 5.6.5.2 Method 37 5.6.5.3 Rationale 38 5.7.4 Standard Source 39 5.7.5 Sattemolation Procedure 39 5.7.1 Standard Source 39 5.7.2 Standard Source 39 5.7.3<			
5.6.1 Prote linearity. 26 5.6.2.1 Method. 26 5.6.2.1 Method. 26 5.6.2.2 Messurement procedure. 27 5.6.3 Definition of Amplifer Settings 28 5.6.4.1 Messurement procedure. 29 5.6.3 Thermal Transfer Calibration 29 5.6.4.1 Messurement procedure. 29 5.6.4.2 Sensitivin Methodogog. 33 5.6.4.3 SAR Messurement. 33 5.6.4.4 Bata Acquisition Methodogog. 34 5.6.5.1 Instruments and Materials. 37 5.6.5.2 Method. 37 5.6.5.3 Rationale 37 5.6.5.1 Instruments and Materials. 37 5.6.5.3 Rationale 38 5.7.3 Standard Source Input Power Measurement. 39 5.7.1 Standard Source Input Power Measurement. 39 5.7.3 Standard Source Input Power Measurement. 39 5.7.1 Standard Source Input Power Measurement. 39 5.7.3 Standard Source Input Power Me			
5.6.2. Free Space Calibration 26 5.6.3. Method 27 5.6.3. Thermal Transfer Calibration 29 5.6.3. Thermal Transfer Calibration 29 5.6.3. Determination of Conversion Factor (y) in the simulated tissue 29 5.6.3. Determination of Conversion Factor (y) in the simulated tissue 21 5.6.4. Data Acquisition Methodology. 33 5.6.4. Data Acquisition Methodology. 33 5.6.4.3. SAR Measurement. 33 5.6.4.4. Data Extrapolation and boundary effect. 34 5.6.5. Determining the Heat Capacity of Simulated Tissue 37 5.6.5. Instruments and Materials 37 5.6.5. Sart Methodology. 39 5.7. Standard Source 39 5.7.1. Standard Source Input Power Measurement. 39 5.7.2. System Validation Procedure 40 5.8. PONTR MEASUREMENT. 41 5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 42 5.10. SAR PRESCAND			
5.6.2.1 Media 25 5.6.3.1 Thermal Transfer Calibration 29 5.6.3.1 Measurement procedure 29 5.6.3.1 Measurement procedure 29 5.6.4.1 Hesterment procedure 29 5.6.5.2 Determination of Conversion Factor (r) in the simulated tissue 31 5.6.4.1 E-Field Measurement 33 5.6.4.2 Sensitivity(C) of probe in the simulated tissue 33 5.6.4.3 SAR Measurement 33 5.6.4.4 Data Acquisition Methodology 33 5.6.5.1 Determining the Heat Capacity of Simulated Tissue 37 5.6.5.1 Instruments and Materials 37 5.6.5.2 Method 37 5.6.5.3 Rationale 37 5.6.5.1 Instruments and Materials 37 5.6.5.2 Method 37 5.6.5.3 Rationale 37 5.6.5.3 Rationale 37 5.6.5.3 Rationale 37 5.6.5.3 Rationale 37 5.7.5.3 Standard Source 39			
5.6.2. Measurement procedure. 27 5.6.3. Thermal Transfer Calibration 28 5.6.3. Thermal Transfer Calibration 29 5.6.3.1. Measurement procedure. 29 5.6.3.1. Measurement procedure. 31 5.6.4. Data Acquisition Methodology. 33 5.6.4. Data Acquisition of Conversion Factor (γ) in the simulated tissue. 33 5.6.4.1. E-Frield Measurement. 33 5.6.4.2. Sensitivity(ζ) of probe in the simulated tissue. 33 5.6.4.3. SAR Measurement. 34 5.6.4.4. Data Extrapolation and boundary effect. 36 5.6.5. Determining the Heat Capacity of Simulated Tissue. 37 5.6.5.1. Instruments and Materials. 37 5.6.5.2. Method. 37 5.6.5.3. Rationale. 38 5.7. Standard Source Input Power Measurement. 39 5.7.1. Standard Source Input Power Measurement. 39 5.7.2. Standard Source Input Power Measurement. 40 5.9. POSITIONING OF D.U.T. 42			
5.6.3. Definition of Åmplifter Settings 28 5.6.3. Thermal Transfer Calibration 29 5.6.3.1. Measurement procedure. 39 5.6.4.2. Determination of Conversion Factor (7) in the simulated tissue 31 5.6.4.1. E-Field Measurement 33 5.6.4.1. E-Field Measurement 33 5.6.4.2. Sensitivity(2) of probe in the simulated tissue 33 5.6.4.3. SAR Measurement 34 5.6.4.4. Data Extrapolation and boundary effect 36 5.6.5. Determining the Heat Capacity of Simulated Tissue 37 5.6.5.3. Method. 37 5.6.5.3. Netsionale 38 5.7.1. Istandard Source 39 5.7.2. Standard Source Input Power Measurement. 39 5.7.3. System Validation Procedure. 40 5.8. POWER MEASUREMENT 41 5.9. POSITIONING OF D.U.T. 42 5.10.1.1. Measurement Uncertainty evaluation for handset SAR test. 45 5.10.1.2. Measurement Uncertainty evaluation for handset SAR test. 45 <tr< td=""><td></td><td></td><td></td></tr<>			
5.6.3. Thermal Transfer Calibration 29 5.6.3.1. Measurement procedure 29 5.6.3.2. Determination of Conversion Factor (γ) in the simulated tissue 31 5.6.4. Data Acquisition Methodology 33 5.6.4. Data Nethodology 33 5.6.4. SAR Measurement 33 5.6.4.1. E-Field Measurement 34 5.6.4.2. Sensitivity(ζ) of probe in the simulated tissue 33 5.6.4.3. SAR Measurement 34 5.6.4.4. Data Extrapolation and boundary effect 36 5.6.5. Determining the Heat Capacity of Simulated Tissue 37 5.6.5.1. Instruments and Materials 37 5.6.5.2. Method 38 5.7. Standard Source 39 5.7.1. Standard Source 39 5.7.2. Standard Source Input Power Measurement. 39 5.7.3. System Validation Procedure 40 5.8. POWER MEASUREMENT 41 5.9. Stintol Measurement Uncertainty evaluation for handset SAR test. 45 5.10.1.1. Measure			
5.6.3.2. Determination of Conversion Factor (y) in the simulated tissue 31 5.6.4.7. Data Acquisition Methodology 33 5.6.4.1. E-Field Measurement. 33 5.6.4.2. Sensitivity(C) of probe in the simulated tissue. 33 5.6.4.3. SAR Measurement. 34 5.6.4.4. Data Extrapolation and boundary effect. 36 5.6.5. Determining the Heat Capacity of Simulated Tissue. 37 5.6.5.7. Determining the Heat Capacity of Simulated Tissue. 37 5.6.5.8. Nethod 37 5.6.5.7. Standard Source			
5.6.4. Data Acquisition Methodology. 33 5.6.4.1. E-Field Measurement. 33 5.6.4.2. Sensitiviy(C) of probe in the simulated tissue. 33 5.6.4.3. SAR Measurement. 34 5.6.4.4. Data Extrapolation and boundary effect. 36 5.6.5. Determining the Heat Capacity of Simulated Tissue. 37 5.6.5. Determining the Heat Capacity of Simulated Tissue. 37 5.6.5. Method. 37 5.6.5. Method. 37 5.6.5.1. Instruments and Materials. 37 5.6.5.3. Rationale 38 5.7. SAR MEASUREMENT SYSTEM VERIFICATION 39 5.7.1. Standard Source 39 5.7.2. Standard Source Input Power Measurement. 39 5.7.3. System Validation Procedure. 40 5.8. POWER MEASUREMENT 41 5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 42 5.10.1. Measurement Uncertainty evaluation for handset SAR test. 43 5.10.1.1. Measurement Uncertai	5.6.3.1.	Measurement procedure	29
5.6.4.1 E-Field Measurement. 33 5.6.4.2 Sensitivity(\zeta) of probe in the simulated tissue. 33 5.6.4.3 SAR Measurement. 34 5.6.4.4 Data Extrapolation and boundary effect. 36 5.6.5 Determining the Heat Capacity of Simulated Tissue. 37 5.6.5.1 Instruments and Materials. 37 5.6.5.2 Method. 37 5.6.5.3 Rationale. 37 5.6.5.4 Rebauxement Vicentiantonale. 39 5.7.1 Standard Source. 40 5.8 Power Measurement Uncertainty 42 5.10.1 Measurement Uncertainty 42 5.10.1.1 Measurement Uncertainty of System Performance Check. 46	5.6.3.2.	Determination of Conversion Factor (γ) in the simulated tissue	
5.6.4.2. Sensitivity(ζ) of probe in the simulated tissue	5.6.4. Da	ta Acquisition Methodology	
56.4.3 SAR Measurement. 34 56.4.4 Date Extrapolation and boundary effect 36 5.6.5.0 Determining the Heat Capacity of Simulated Tissue 37 56.5.1 Instruments and Materials. 37 56.5.2 Method. 37 56.5.3 Rationale. 37 56.5.3 Rationale. 38 57. SAR MEASUREMENT SYSTEM VERIFICATION 39 57.1. Standard Source Input Power Measurement. 39 5.7.3. System Validation Procedure 40 5.8. POWER MEASUREMENT 41 5.9. POSITIONING OF D.U.T. 42 5.10.1 Measurement Uncertainty 44 5.10.1.1 Measurement Uncertainty 44 5.10.1.1 Measurement Uncertainty evaluation for handset SAR test. 45 5.10.1.2 Measurement Uncertainty evaluation for handset SAR test. 47 6.1.1. Body-Worn Configuration. 47 6.1.1. Body-Worn Configuration. 47 6.1.1. Extended Configurations used 47 6.1.1. Extended Configuration on FF Exposure </td <td></td> <td></td> <td></td>			
5.6.4. Data Extrapolation and boundary effect 36 5.6.5. Determining the Heat Capacity of Simulated Tissue 37 5.6.5.1. Instruments and Materials 37 5.6.5.2. Method 37 5.6.5.3. Rationale 38 5.7. SAR MEASUREMENT SYSTEM VERIFICATION 39 5.7.1. Standard Source 39 5.7.2. Standard Source 39 5.7.3. System Validation Procedure 40 5.9. POWER MEASUREMENT 41 5.9. POSITIONING OF D.U.T 42 5.10.1. Measurement Uncertainty 44 5.10.1. Measurement Uncertainty 44 5.10.1.1. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.2. Measurement Uncertainty for System Performance Check 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1. Body-Worn Configuration 47 6.1.2. Equipment permutation investigated for each orientation 47 6.1.1.1. Test configuration investigated for each orientation 47 6.1.1.3. C			
5.6.5. Determining the Heat Capacity of Simulated Tissue 37 5.6.5. Determining the Heat Capacity of Simulated Tissue 37 5.6.5.1. Instruments and Materials 37 5.6.5.2. Method 37 5.6.5.3. Rationale 38 5.7. SAR MEASUREMENT SYSTEM VERIFICATION 39 5.7.1. Standard Source 39 5.7.2. Standard Source Input Power Measurement 39 5.7.3. System Validation Procedure 40 5.8. POWER MEASUREMENT 41 5.9. POWER MEASUREMENT 41 5.10. SAR MEASUREMENT UNCERTAINTY 42 5.10. SAR MEASUREMENT UNCERTAINTY 44 5.10.1.1. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.2. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.2. Measurement Uncertainty of System Performance Check. 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1. Body-Worn Configurations used 47 6.1.2. Equipment permutation investigated for each orientation 47 <td></td> <td></td> <td></td>			
5.6.5.1. Instruments and Materials. 37 5.6.5.2. Method. 37 5.6.5.3. Rationale. 38 5.7. SAR MEASUREMENT SYSTEM VERIFICATION. 39 5.7.1. Standard Source 39 5.7.2. Standard Source Input Power Measurement. 39 5.7.3. System Validation Procedure 40 5.8. POWER MEASUREMENT 41 5.9. POSITIONING OF D.U.T. 42 5.10.1 Measurement Uncertainty 44 5.10.1. Measurement Uncertainty evaluation for handset SAR test. 45 5.10.1.1. Measurement Uncertainty for System Performance Check. 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1. Test configuration. 47 6.1.1. Test configuration sused 47 6.1.1.1. Test configurations used 47 6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.3. Comments on non-tested configuration. 47 6.1.1. Test configuration. 47 6.3.1. Body-Worn Configuration.			
5.6.5.2 Method. 37 5.6.5.3 Rationale 38 5.7 SAR MEASUREMENT SYSTEM VERIFICATION. 39 5.7.1 Standard Source. 39 5.7.2 Standard Source Input Power Measurement. 39 5.7.3 System Validation Procedure. 40 5.8 POWER MEASUREMENT 41 5.9 POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 42 5.10.1 Measurement Uncertainty evaluation for handset SAR test. 45 5.10.1.1 Measurement Uncertainty of System Performance Check. 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1.1 Test configuration. 47 6.1.1.2 Equipment permutation investigated for each orientation 47 6.1.1.3 Configurations used 47 6.3.1 Body-Worn Configurations. 47 6.3.1 Body-Worn Configuration Statements to be Inclubed IN USERS MANUAL 48 6.3.1 Body-Worn Configuration. 49 6.3.1 Body-Worn Configuration. 47 6.3.1 Body-Worn Configuration			
5.6.5.3. Rationale. 38 5.7. SAR MEASUREMENT SYSTEM VERIFICATION 39 5.7.1. Standard Source. 39 5.7.2. Standard Source. 39 5.7.3. System Validation Procedure. 40 5.8. POWER MEASUREMENT. 40 5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 42 5.10.1. Measurement Uncertainty evaluation for handset SAR test. 43 5.10.1.1. Measurement Uncertainty for System Performance Check. 44 5.10.1.2. Measurement Uncertainty for System Performance Check. 47 6.1.1. Body-Worn Configuration. 47 6.1.1.1. Test configuration used. 47 6.1.1.2. Equipment permutation investigated for each orientation. 47 6.1.1.3. Comments on non-tested configurations. 47 6.1.1.4. GOM-WORST CONFIGURATION OF RF EXPSOSURE. 49 6.3.1. Body-Worn Configuration. 49 6.3.1. Body-Worn Configura			
5.7. SAR MEASUREMENT SYSTEM VERIFICATION 39 5.7.1. Standard Source 39 5.7.2. Standard Source Input Power Measurement. 39 5.7.3. System Validation Procedure 40 5.8. POWER MEASUREMENT. 41 5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 44 5.10.1. Measurement Uncertainty 44 5.10.1.1. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.2. Measurement Uncertainty for System Performance Check 46 EXHIBIT 6. SAR PRESCANS. 47 6.1.1. Body-Worn Configuration 47 6.1.2. Equipment permutation investigated for each orientation 47 6.1.1.2. Comments on non-tested configurations. 47 6.1.1.3. Comments on non-tested configurations. 47 6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORST CONFIGURATION OR RF EXPSOSURE. 49 6.3.1. Body-Worn Configuration 50 7.1.1. BODY-WORN CONFIGURATIO			
5.7.1. Standard Source. Input Power Measurement. 39 5.7.2. Standard Source Input Power Measurement. 39 5.7.3. System Validation Procedure 40 5.8. POWER MEASUREMENT. 41 5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 44 5.10.1. Measurement Uncertainty 44 5.10.1. Measurement Uncertainty evaluation for handset SAR test. 45 5.10.1.2. Measurement Uncertainty for System Performance Check. 46 EXHIBIT 6. SAR PRESCANS. 47 6.1.1. Body-Worn Configuration. 47 6.1.1.3. Comments on non-tested configurations. 47 6.1.1.3. Comments on non-tested configurations. 47 6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORS CONFIGURATION OF RF EXPSOSURE. 49 6.3.1. Body-Worn Configuration. 49 6.3.1. Body-Worn Configuration. 50 7.1.1. AST MEASUREMENT 50 7.1.1. Body-Worn Configuration. 50 </td <td></td> <td></td> <td></td>			
5.7.2. Standard Source Input Power Measurement			
5.7.3. System Validation Procedure 40 5.8. POWER MEASUREMENT 41 5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 44 5.10.1. Measurement Uncertainty 45 5.10.1. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.1. Measurement Uncertainty for System Performance Check 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1. Body-Worn Configuration 47 6.1.1. Test configurations used 47 6.1.1. Equipment permutation investigated for each orientation 47 6.1.1. Equipment permutation investigated for each orientation 47 6.1.1.2. Equipment permutations 47 6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE 49 6.3.1. Body-Worn Configuration. 49 6.3.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50			
5.8. POWER MEASUREMENT. 41 5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 44 5.10.1. Measurement Uncertainty 44 5.10.1.1. Measurement Uncertainty evaluation for handset SAR test. 45 5.10.1.2. Measurement Uncertainty of System Performance Check. 46 EXHIBIT 6. SAR PRESCANS. 47 6.1.1. Body-Worn Configuration. 47 6.1.1.1. Test configurations used. 47 6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.1. Test configurations used. 47 6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.3. Comments on non-tested configurations. 47 6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE 49 6.3.1. Body-Worn Configuration. 49 6.3.1. Body-Worn Configuration 50 7.1.			
5.9. POSITIONING OF D.U.T. 42 5.10. SAR MEASUREMENT UNCERTAINTY 44 5.10.1. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.1. Measurement Uncertainty for System Performance Check 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1. Body-Worn Configuration 47 6.1.1. Test configuration investigated for each orientation 47 6.1.1.1. Test configurations. 47 6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.3. Comments on non-tested configurations. 47 6.1.2. Recomments on non-tested configurations 47 6.3.1. Body-Worn Configuration 47 6.3.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE 49 6.3.1. Body-Worn Configuration 49 6.3.1. Body-Worn Configuration 50 7.1. Keyboard faced inward to the phantom 50 7.1.1. ANTI, CH 64, 5320 MHz 51 EXHIBIT 8.<			
5.10. SAR MEASUREMENT UNCERTAINTY 44 5.10.1. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.1. Measurement Uncertainty for System Performance Check. 46 EXHIBIT 6. SAR PRESCANS. 47 6.1.1. Body-Worn Configuration. 47 6.1.1. Test configuration sused. 47 6.1.1.1. Test configuration investigated for each orientation 47 6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.3. Comments on non-tested configurations. 47 6.1.2. Equipment permutation of PE Exposure. 49 6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF Exposure. 49 6.3.1. Body-Worn Configuration. 49 6.3.1. Body-Worn Configuration 49 6.3.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1.1. ASR MEASUREMENT 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1. ANTI, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBR			
5.10.1. Measurement Uncertainty 45 5.10.1.1. Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.2. Measurement Uncertainty for System Performance Check. 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1. Body-Worn Configuration 47 6.1.1. Test configurations used 47 6.1.1.1. Test configuration investigated for each orientation 47 6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.3. Comments on non-tested configurations. 47 6.1.1.3. Comments on non-tested configurations. 47 6.1.2. Recomments on Not Fested configuration Statements to BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE 49 6.3.1. Body-Worn Configuration. 49 6.3.1. Body-Worn Configuration 49 7.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1.1. ANTI of the phantom 50 7.1.1.			
5.10.1.1 Measurement Uncertainty evaluation for handset SAR test 45 5.10.1.2 Measurement Uncertainty for System Performance Check 46 EXHIBIT 6. SAR PRESCANS 47 6.1.1 Body-Worn Configuration 47 6.1.1.1 Test configuration investigated for each orientation 47 6.1.1.2 Equipment permutation investigated for each orientation 47 6.1.1.3 Comments on non-tested configurations 47 6.1.3 Comments on non-tested configuration of RF Expsosure 49 6.3 PRESCAN DATA FOR WORST CONFIGURATION OF RF Expsosure 49 6.3.1. Body-Worn Configuration 49 6.3.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1.1. ANTI, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54			
5.10.1.2. Measurement Uncertainty for System Performance Check	5.10.1. Me		
EXHIBIT 6.SAR PRESCANS.476.1.1.Body-Worn Configuration476.1.1.1.Test configurations used476.1.1.2.Equipment permutation investigated for each orientation476.1.1.3.Comments on non-tested configurations.476.1.3.Comments on non-tested configurations476.2.RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL486.3.PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE496.3.1.Body-Worn Configuration.496.3.1.Body-Worn Configuration507.1.BODY-WORN CONFIGURATION507.1.BODY-WORN CONFIGURATION507.1.1.ANTI, CH 64, 5320 MHz51EXHIBIT 8.TISSUE DIELECTRIC PARAMETER CALIBRATION53EXHIBIT 9.SAR SYSTEM CALIBRATION54			
6.1.1.Body-Worn Configuration476.1.1.1.Test configuration used476.1.1.2.Equipment permutation investigated for each orientation476.1.1.3.Comments on non-tested configurations476.2.RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL486.3.PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE496.3.1.Body-Worn Configuration49EXHIBIT 7.SAR MEASUREMENT507.1.BODY-WORN CONFIGURATION507.1.1.Keyboard faced inward to the phantom507.1.1.ANT1, CH 64, 5320 MHz51EXHIBIT 8.TISSUE DIELECTRIC PARAMETER CALIBRATION53EXHIBIT 9.SAR SYSTEM CALIBRATION54	5.10.1.2.	Measurement Uncertainty for System Performance Check	
6.1.1.1 Test configurations used 47 6.1.1.2 Equipment permutation investigated for each orientation 47 6.1.1.3 Comments on non-tested configurations 47 6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE 49 6.3.1. Body-Worn Configuration 49 6.3.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1. BODY-WORN CONFIGURATION 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1. ANT1, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54	EXHIBIT 6.	SAR PRESCANS	
6.1.1.2. Equipment permutation investigated for each orientation 47 6.1.1.3. Comments on non-tested configurations 47 6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE 49 6.3.1. Body-Worn Configuration 49 6.3.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1. Body-Worn Configuration 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1. ANTI, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54	6.1.1. Bo	dy-Worn Configuration	
6.1.1.3. Comments on non-tested configurations			
6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL 48 6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE 49 6.3.1. Body-Worn Configuration 49 6.3.1. Body-Worn Configuration 50 7.1. BODY-WORN CONFIGURATION 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1.1. ANT1, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54			
6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE. 49 6.3.1. Body-Worn Configuration. 49 EXHIBIT 7. SAR MEASUREMENT. 50 7.1. BODY-WORN CONFIGURATION. 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1.1. ANT1, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION. 54			
6.3.1. Body-Worn Configuration 49 EXHIBIT 7. SAR MEASUREMENT 50 7.1. BODY-WORN CONFIGURATION 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1. ANT1, CH 64, 5320 MHz 50 FXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54			
EXHIBIT 7. SAR MEASUREMENT 50 7.1. BODY-WORN CONFIGURATION 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1. ANT1, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54	6.3. PRESCA	N DATA FOR WORST CONFIGURATION OF RF EXPSOSURE	
7.1. BODY-WORN CONFIGURATION 50 7.1.1. Keyboard faced inward to the phantom 50 7.1.1.1. ANT1, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION EXHIBIT 9. SAR SYSTEM CALIBRATION	6.3.1. Bo	dy-Worn Configuration	
7.1.1. Keyboard faced inward to the phantom 50 7.1.1.1. ANT1, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54	EXHIBIT 7.	SAR MEASUREMENT	
7.1.1. Keyboard faced inward to the phantom 50 7.1.1.1. ANT1, CH 64, 5320 MHz 51 EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION 53 EXHIBIT 9. SAR SYSTEM CALIBRATION 54	7.1 BODY-V	JODN CONFICUDATION	50
7.1.1.1 ANT1, CH 64, 5320 MHz			
EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION			
EXHIBIT 9. SAR SYSTEM CALIBRATION			
	Exilibit 0,		
9.1. GENERAL INFORMATION OF THE PROBE	EXHIBIT 9.	SAR SYSTEM CALIBRATION	
	9.1. GENERA	L INFORMATION OF THE PROBE	

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ENEN-001-SAR February 20, 2003

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) •

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA) •

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST) •

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

SPECIFIC ABSORPTION RATIO (SAR)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation - Human Exposure) Amendment Standard 2000 (No. 1) 802.11A SUPER RATE WIRELESS LAN PC CARD

FCC	ID:	5N5-RE	STBF

9.2. Pr	OBE LINEARITY AND DYNAMIC RANGE	
9.2.1.	Channel 1	
9.2.2.	Channel 2	
9.2.3.	Channel 3	
9.3. PRO	DBE FREE SPACE CALIBRATION	
9.3.1.	Calibration Setup	
9.3.2.	Amplifier Settings	
<i>9.3.3</i> .	Isotropic response	
9.4. PR	OBE THERMAL TRANSFER CALIBRATION	
9.4.1.	Calibration Setup	
9.4.2.	Simulated Tissue	
9.4.3.	Conversion Factor	
EXHIBIT 1	0. SAR SYSTEM VERIFICATION USING DIPOLE REFERENCE	61
10.1.1.	Verification Setup	
10.1.2.	Simulated Tissue	
10.1.3.	Verification Result	
EXHIBIT 1	1. SAR CALCULATION SUMMARY	64
11.1.	Terminology	
11.1.1.	Sensor factor(η_{pd} and η_{E2}) in the air ($Z_0 = 377[\Omega]$)	
11.1.2.	Amplifier settings(AS _i) and probe output	
11.1.3.	Conversion factor (γ) in the simulated tissue	
11.1.4.	Conversion factor (γ) Calculation	
11.1.5.	Sensitivity (ζ) in the simulated tissue	
11.1.6.	SAR calculation	

ULTRATECH GROUP OF LABS

Recognized/Listed by FCC (USA)

•

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	SAR (Specific Absorption Rate) Requirements IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C) Industry Canada RSS-102 (Issue 1). ACA Radiocommunications (Electromagnetic Radiation – Human Exposure), Amendment Standard 2000 (No. 1)
Title	Safety Levels with respect to human exposure to Radio Frequency Electromagnetic Fields Guideline for Evaluating the Environmental Effects of Radio Frequency Radiation
Purpose of Test:	To verify compliance with Federal regulated SAR requirements in Canada, Australia and the US.
Method of Measurements:	IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C) and Industry Canada RSS-102 (Issue 1)
Exposure Category	General Population/Uncontrolled

1.2. REFERENCES

The methods and procedures used for the measurements contained in this report are details in the following reference standards:

Publications	Year	Title	
IEEE Std. 1528-2001	2001	Draft Recommended practice for determining the Peak Spatial-Average Specific	
Draft		Absorption rate (SAR) in the Human Body Due to Wireless Communications Devices:	
		Experimental Techniques.	
Industry Canada RSS102	1999	"Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to	
		Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields"	
ACA	2000	ACA Radiocommunications (Electromagnetic Radiation – Human Exposure)	
		Amendment Standard 2000 (No. 1)	
NCRP Report No.86	1986	"Biological Effects and Exposure Criteria for radio Frequency Electromagnetic Fields"	
FCC OET Bulletin 65	1997	"Evaluating Compliance with FCC Guidelines for Human Exposure to radio Frequency	
		Fields"	
ANSI/IEEE C95.3	1992	"Recommended Practice for the Measurement of Potentially Hazardous	
		Electromagnetic Fields - RF and Microwave"	
ANSI/IEEE C95.1	1992	"Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic	
		Fields, 3kHz to 300GHz"	
AS/NZS 2722.1	1998	Interim Australian/New Zealand Standard. "Radiofrequency fields, Part 1:Maximum	
		exposure levels – 3kHz to 300GHz "	

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. **CLIENT AND MANUFACTURER INFORMATION**

APPLICANT:		
Name:	ENTRASYS NETWORKS	
Address:	35 Industrial Way	
	Rochester, NH 03867	
	USA	
Contact Person:	John Ballew	
	Phone #: +1 978-684-1009	
Fax #: +1 978-684-1499		
	Email Address: jballew@entrasys.com	

MANUFACTURER:]	
Name:	ENTRASYS NETWORKS	
Address:	35 Industrial Way	
	Rochester, NH 03867	
	USA	
Contact Person:	John Ballew	
	Phone #: +1 978-684-1009	
	Fax #: +1 978-684-1499	
	Email Address: jballew@entrasys.com	

2.2. **DEVICE UNDER TEST (D.U.T.) DESCRIPTION**

The following is the information provided by the applicant.

Trade Name	802.11A SUPER RATE WIRELESS LAN PC CARD
Type/Model Number	RBTBF-AX
Serial Number	5-400
Type of Equipment	Wireless lan card
Frequency of Operation	5180 ~ 5320 MHz
RF Power	14.55 dBm conducted
Modulation Employed	OFDM
Antenna Type + Gain	SkyCross 5.25GHz surface-mountable monopole (M/N: SMT-5250-M)
	SkyCross 5.25GHz surface-mountable Loop (M/N: SMT-5250-U)
External Power Supply	Power supplied through the laptop computer
Primary User Functions of D.U.T.: Data Radio Communication Through Air	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

2.3. LIST OF D.U.T.'S ACCESSORIES:

N/A

2.4. SPECIAL CHANGES ON THE D.U.T.'S HARDWARE/SOFTWARE FOR TESTING PURPOSES

N/A

2.5. ANCILLARY EQUIPMENT

Laptop computer (IBM, Type: 2658-A5U, S/N: AK-VLRPY), Power adapter (IBM, P/N: 02K6753)

2.6. GENERAL TEST CONFIGURATIONS

2.6.1. Equipment Configuration

Power and signal distribution, grounding, interconnecting cabling and physical placement of equipment of a test system shall simulate the typical application and usage in so far as is practicable, and shall be in accordance with the relevant product specifications of the manufacturer.

The configuration that tends to maximize the D.U.T.'s emission or minimize its immunity is not usually intuitively obvious and in most instances selection will involve some trial and error testing. For example, interface cables may be moved or equipment re-orientated during initial stages of testing and the effects on the results observed.

Only configurations within the range of positions likely to occur in normal use need to be considered.

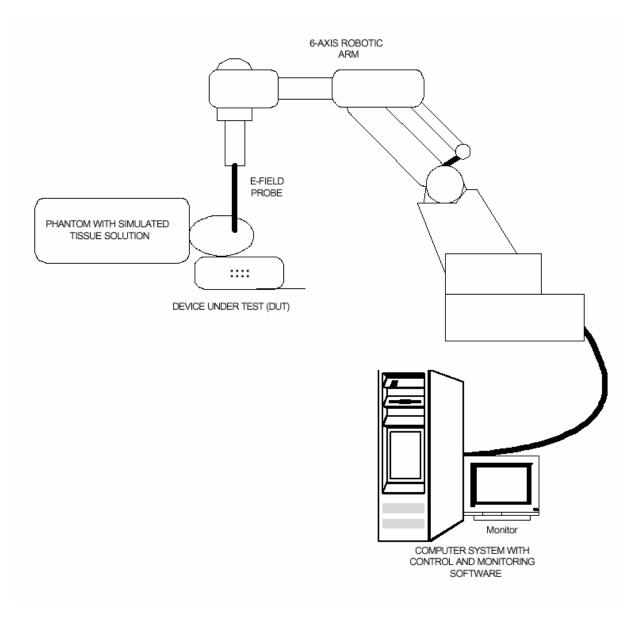
The configuration selected shall be fully detailed and documented in the test report, together with the justification for selecting that particular configuration.

2.6.2. Exercising Equipment

The exercising equipment and other auxiliary equipment shall be sufficiently decoupled from the D.U.T. so that the performance of such equipment does not significantly influence the test results.

2.7. SPECIFIC OPERATING CONDITIONS

D.U.T. was made to transmit with 100% duty cycle as a worst case consideration, instead of with its actual duty cycle, using the exclusive controlling software for SAR test provided by the manufacturer.


ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

2.8. BLOCK DIAGRAM OF TEST SETUP

The D.U.T. was configured as normal intended use. The following block diagram shows a representative equipment arrangement during tests:

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 3. SUMMARY OF TEST RESULTS

3.1. LOCATION OF TESTS

All of the measurements described in this report were performed at UltraTech Group of Labs located at:

3000 Bristol Circle, in the city of Oakville, Province of Ontario, Canada.

All measurements were performed in UltraTech's shielded chamber, 24' x 16' x 8'.

3.2. APPLICABILITY & SUMMARY OF SAR RESULTS

The maximum peak spatial - average SAR measured was found to be less than 0.062 W/Kg

Exposure Category and SAR Limits	Test Requirements	Compliance (Yes/No)
General population/Uncontrolled exposure	Requirements using guidelines established in IEEE C95.1-1991	
0.08W/kg whole body average and spatial peak SAR of 1.6W/kg, averaged over 1gram of tissue	FCC OET Bulletin 65 (Supplement C)	YES
Hands, wrist, feet and ankles have a peak SAR not to exceed 4 W/kg, averaged over 10 grams of tissue.	Industry Canada RSS-102 (Issue 1).	
	ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)	
Occupational/Controlled Exposure	Requirements using guidelines established in IEEE C95.1-1991	
0.4W/kg whole body average and spatial peak SAR of 8W/kg, averaged over 1gram of tissue Hands, wrist, feet and	FCC OET Bulletin 65 (Supplement C),	N/A
ankles have a peak SAR not to exceed 20 W/kg, averaged over 10 grams of tissue.	Industry Canada RSS-102 (Issue 1)	
	ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)	

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 4. MEASUREMENTS, EXAMINATIONS & TEST DATA

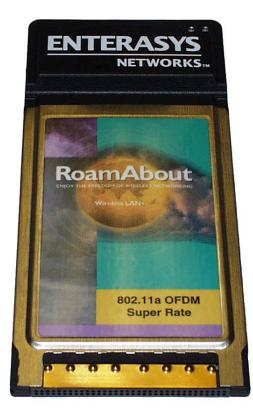
4.1. TEST SETUP

D.U.T. Information		Condition	
Product Name	802.11A SUPER RATE WIRELESS LAN PC CARD	Robot Type	6 Axis
Model Number	RBTBF-AX	Scan Type	SAR - Area/Zoom/Att Vs Depth
Serial Number	5-400	Measured Field	Е
Frequency Band [MHz]	5180 ~ 5320	Phantom Type	2 _{mm} base Flat Phantom
Frequency Tested [MHz]	5180, 5240, 5320	Phantom Position	Waist
Max. RF Output Power [dBm]	14.55 conducted	Room Temperature [°C]	21.0 ± 1
Antenna Type	Monopole (+2 _{dBi} minimum peak) Loop (>+3 _{dBi} peak)	Room Humidity [%]	30 ± 10
Modulation	OFDM	Tissue Temperature [°C]	21.0 ± 1
Duty Cycle	100 %		

Type of Tissue	Muscle
Test Frequency [MHz]	5240
Measured Dielectric Constant	47.3 (-3.5 %)
Measured Conductivity [S/m]	5.61 (+4.9 %)
Penetration Depth (Plane Wave Excitation) [mm]	6.64
Probe Model Number	E-TR
Probe Serial Number	UT-0200-1
Probe Orientation	Isotropic
Probe Offset [mm]	2.00
Probe Tip Diameter [mm]	4.00
Sensor Factor $(\eta_{pd})_{[mV/(mW/cm)]}^2$	10.8
Conversion Factor (γ)	2.721
Sensitivity (ζ) _[W/Kg/mV]	0.719

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.2. PHOTOGRAPH OF D.U.T. AND ALL ACCESORIES

< Front View >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

< Rear View >

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

< LAN PC card installed in the host laptop >

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.3. PHOTOGRAPHS OF D.U.T. POSITION

4.3.1. Body-Worn Configuration

4.3.1.1. Keyboard faced outward from the phantom shell

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

 SPECIFIC ABSORPTION RATIO (SAR)
 Page 14

 IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)
 802.11A SUPER RATE WIRELESS LAN PC CARD
 FCC ID: 5N5-RBTBF

4.3.1.2. Keyboard faced inward to the phantom shell

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.3.1.3. Left-End-On

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.3.1.4. DUT in contact with the phantom

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.4. MAXIMUM PEAK SPATIAL-AVERAGE SAR

4.4.1. Maximum Peak Spatial-average SAR Data

#	Configuration	Device Test Positions	Antenna Position	Freq. [MHz]	Channel	MAX. SAR [W/Kg]
03	Keyboard faced inward to the phantom Edge of the host laptop in contact with the phantom 8 mm separation distance between the tip of the DUT and the phantom 54 MBPS data rate ANT1	Body-worn (By stander)	Fixed	5320	CH64	0.062

4.4.2. Maximum Peak Spatial-Average SAR LOCATION

Complete area Prescans was conducted to determine the location of the highest SAR and the device was repositioned to allow the identified hot-spots to be orientated with as large an area around the hot-spots to come into contact with the phantom surface. This procedure ensured that the maximum SAR readings would be obtained from the hot-spot areas identified.

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.5. SAR MEASUREMENT DATA

4.5.1. **Body-Worn Configuration Result**

4.5.1.1. Keyboard faced inward to the phantom

#	Configuration	Device Test Positions	Antenna Position	Freq. [MHz]	Channel	MAX SAR [W/Kg]
01	54 MBPS data rate ANT1	8 mm separation		5180	CH36	less than 0.01*
02			Fixed	5240	CH48	$\begin{array}{c} \text{less than} \\ 0.01^{*} \end{array}$
03				5320	CH64	0.062

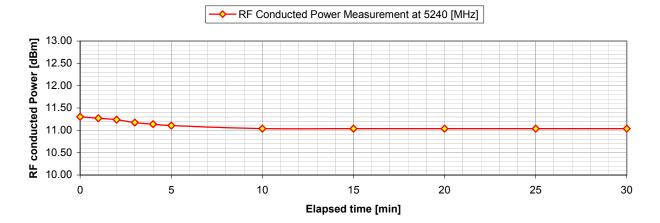
* It was found to be below the SAR measurement system's sensitivity (less than 0.01[W/Kg]).

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)


Recognized/Listed by FCC (USA) •

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.5.2. **Power Measurement**

Antenna	Channel	Frequency [MHz]	RF conducted power $[dBm]$
	CH36	5180.0	11.95
ANT1	CH48	5240.0	11.27
	CH64	5320.0	14.55
	CH36	5180.0	10.37
ANT2	CH48	5240.0	7.91
	CH64	5320.0	13.56

The conducted power was measured at the antenna fed point at 5240 [MHz] during the period of 30 minute. The power drift after 30 minutes of the continuous exposure at the maximum power level was found to be -5.92 [%]. But, afterward, the conducted power was found to be stabilized and not drifting once the DUT had been warmed up.

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 5. SAR SYSTEM CONFIGURATION & TEST METHODOLOGY

MEASUREMENT SYSTEM SPECIFICATIONS 5.1.

Positioning Equipment	Probe
Type : 3D Near Field Scanner	Sensor : E-Field
Location Repeatability : 0.1 [mm]	Spatial Resolution : 1 [mm ³]
Speed 180 [°/sec]	Isotropic Response : ±0.25 [dB]
AC motors	Dynamic Range : 0.01 to 100 [W/Kg]
Computer	Phantom
Type : Pentium III 500MHz	Tissue : Simulated Tissue with electrical characteristics similar to those
Memory : 256 MB RAM	of the human at normal body temperature.
Operating System : Windows 2000 Pro	Left/Right Head: IEEE P1528 Compliant SAM manufactured by Aprel
Operating System : windows 2000 110	Body/Frontal Head: IEEE Flat Phantom 2 [mm] Base
Monitor : 19" SVGA	

5.2. **TEST PROCEDURES**

In the SAR measurement, the positioning of the probes must be performed with sufficient accuracy to obtain repeatable measurements in the presence of rapid spatial attenuation phenomena. The accurate positioning of the E-field probe is accomplished by using a high precision robot. The robot can be taught to position the probe sensor following a specific pattern of points. In a first sweep, the sensor is positioned as close as possible to the interface, with the sensor enclosure touching the inside of the phantom shell. The SAR is measured on a grid of points, which covers the curved surface of the phantom in an area larger than the size of the D.U.T. After the initial scan, a high-resolution volume gird is used to locate the absolute maximum measured energy point and to calculate the peak spatial-average SAR. At this location, attenuation versus depth scan will be accomplished by the measurement system in order to verify the peak spatialaverage SAR measured.

5.3. PHANTOM

For Head mounted devices placed next to the ear, the phantom used in the evaluation of the RF exposure of the user of the wireless device is a IEEE P1528 compliant SAM phantom, shaped like a human head and filled with a mixture simulating the dielectric characteristics of the brain. A left sided head and a right sided head are evaluated to determine the worst case orientation for SAR. For body mounted and frontal held push-to-talk devices, a flat phantom of dimensions 70x42x20cm with a base plate thickness of 2mm is used.

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.4. SIMULATED TISSUE

Simulated Tissue: Suggested in a paper by George Hartsgrove and colleagues in University of Ottawa Ref.: Bioelectromagnetics 8:29-36 (1987)

Ingredient	Quantity
Water	40.4 %
Sugar	56.0 %
Salt	2.5 %
HEC	1.0 %
Bactericide	0.1 %

 Table 5.4. Example of composition of simulated tissue

This simulated tissue is mainly composed of water, sugar and salt. At higher frequencies, in order to achieve the proper conductivity, the solution does not contain salt. Also, at these frequencies, D.I. water and alcohol is preferred.

Target Frequency	Head		Bo	ody
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 Kg/m^{3*})

ULTRATECH GROUP OF LABS

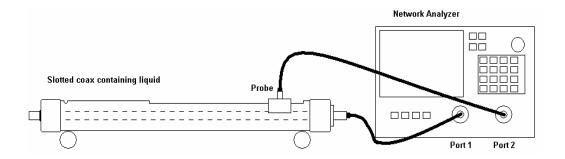
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

^{*} The actual mass density of the equivalent tissue vary based on the composition of the tissue from 990 Kg/m³ to 1,300 Kg/m³.

5.4.1. Preparation

The weight requirements is determined and measured carefully for all the components. A clean container is used where the ingredients will be mixed. A stirring paddle mounted to a drill press is used to stir the mixture. First the heat is applied to the DI water to approximately 40 °C to help the ingredients dissolve well and then the salt and the bactericide are added. It is stirred until all the ingredients are completely dissolved. It is continuously stirred slowly while adding the sugar. Rotation of stirring paddle at a high RPM is avoided to prevent air bubbles in the mixture. Later on, the HEC is added to maintain the solution homogeneous. Mixing time is approximately 2 hours.


5.5. MEASUREMENT OF ELECTRICAL CHARACTERISTICS OF SIMULATED TISSUE

- 1) Slotted Coaxial Waveguide
- 2) HP Dielectric Strength Probe System

5.5.1. Slotted Coaxial Waveguide

5.5.1.1. Equipment set-up

The test equipment consists of a slotted coaxial transmission line with a probe connected to a vector network analyzer, as shown in Figure 4.5.1.1. The log-magnitude and phase of S_{21} should be displayed simultaneously. Source power should be set to a level high enough to provide good signal-to-noise ratio. Periodically (annually or whenever the measuring scale along the line length is changed) a measurement is made on a reference liquid to validate the system. Since the measured quantities are magnitude and phase changes versus distance, the accuracy of the scale is very critical.

The network analyzer injects a signal into one end of the slotted coaxial transmission line. The probe inserted through the slot into the tissue-equivalent material detects the RF amplitude and phase for each measurement position along the length of the line. A full two-port calibration of the network analyzer should be carried out prior to connecting the sample holder, and the following precautions should be observed:

a) Fill the slotted line carefully to avoid trapping air bubbles. This operation should be performed while the slotted line is horizontal.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

- b) The probe should be inserted into the slot at the end nearest to the input connector of the slotted line, ensuring that the tissue-equivalent liquid is flush with the inside surface of the line, and aligned with a well-defined position on the distance scale of the slotted line.
- c) The probe should be inserted perpendicular to the slotted-line longitudinal axis until a stable and adequate amplitude response is achieved. Do not insert the probe too deeply into the coaxial line, because it can overly perturb the field distribution.

5.5.1.2. Measurement procedure.

- a) Configure and calibrate the network analyzer.
- b) Measure 10 to 20 log-magnitude and phase data points along the slotted line corresponding to about a 30 dB change in magnitude.
- c) Plot S_{21} log-magnitude and phase vs. measurement distance.
- d) Determine if the graphed points closely follow a straight-line approximation, based on the correlation coefficient or a similar statistical measure. The data should produce a good linear curve fit (expected correlation coefficient $r^2 > 0.99$ for lossy materials). If not, re-measure the liquid by increasing the sample points to extend the magnitude change from 30 to 40 dB. Note: for low loss materials, ensure that the slotted line is long enough to avoid reflections from the load-terminated end.
- e) Calculate the conductivity and relative permittivity of the tissue-equivalent material using Equations (5.5.1.2.) derived from

$$\overline{\alpha} = \frac{m_m \ln(10)}{20} \qquad \text{Np/cm}$$

$$\overline{\beta} = \frac{m_p \pi}{180} \qquad \text{rad/cm}$$

$$\varepsilon'_r = \frac{(\overline{\beta})^2 - (\overline{\alpha})^2}{\omega^2 \mu_0 \varepsilon_0} \qquad (5.5.1.2.)$$

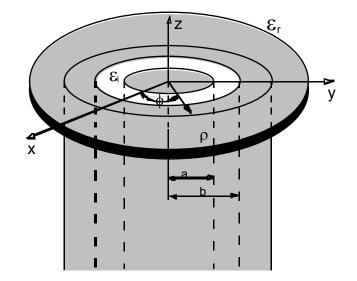
$$\sigma = \frac{2\overline{\alpha} \overline{\beta}}{\omega \varepsilon_0} \left(\frac{100 \text{ cm}}{\text{m}}\right) \qquad \text{S/m}$$

where, m_m and m_p are the slopes of the least-squares linear fits of the log-magnitude and phase plots, respectively, and $\overline{\alpha}$ and $\overline{\beta}$ are the average attenuation and propagation coefficients along the line.

5.5.2. HP Dielectric Strength Probe System (open-ended coaxial transmission-line probe/sensor)

5.5.2.1. Equipment set-up

The equipment consists of a probe connected to one port of a vector network analyzer. The probe is an open-ended coaxial line, as shown in Figure B.2. Cylindrical coordinates (ρ , ϕ , z) are used where ρ is the radial distance from the


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

axis, ϕ is the angular displacement around the axis, z is the displacement along the axis, a is the inner conductor radius, and b is the outer conductor inner radius.

The sample holder is a non-metallic container that is large compared with the size of the probe immersed in it. A probe with an outer diameter b of 2 to 4 mm is suitable for the measurement of tissue-equivalent materials in the 300 MHz to 3 GHz frequency range. This probe size is commensurate with sample volumes of 50 cc or higher. Larger probes of up to 7 mm outer diameter b may be used with larger sample volumes. A flange is typically included to better represent the infinite ground-plane assumption used in admittance calculations.

Figure 5.5.2.1. An open-ended coaxial probe with inner and outer radii a and b, respectively

The accuracy of the short-circuit measurement should be verified for each calibration at a number of frequencies. A short circuit can be achieved by gently pressing a piece of aluminum foil against the open end. For best electrical contact, the probe end should be flat and free of oxidation. Larger the sensors generally have better foil short-circuit repeatability. It is possible to obtain good contact with some commercial 4.6 mm probes using the metal-disk short-circuit supplied with the kit. For best repeatability, it may be necessary to press the disk by hand.

The network analyzer is configured to measure the magnitude and phase of the admittance. A one-port reflection calibration is performed at the plane of the probe by placing materials for which the reflection coefficient can be calculated in contact with the probe. Three standards are needed for the calibration, typically a short circuit, air, and deionized water at a well-defined temperature (other reference liquids such as methanol or ethanol may be used for calibration). The calibration is a key part of the measurement procedure, and it is therefore important to ensure that it has been performed correctly. It can be checked by re-measuring the short circuit to ensure that a reflection coefficient of $\Gamma = -1.0$ (linear units) is obtained consistently.

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.5.2.2. Measurement procedure

- a) Configure and calibrate the network analyzer and probe system.
- b) Place the sample in a non-metallic container and immerse the probe. A fixture or clamp is recommended to stabilize the probe, mounted such that the probe face is at an angle with respect to the liquid surface to minimize trapped air bubbles beneath the flange.
- c) Measure the complex admittance with respect to the probe aperture.
- d) Compute the complex relative permittivity $\varepsilon_r = \varepsilon'_r j \sigma / \omega \varepsilon_0$.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.6. SYSTEM CALIBRATION

The SAR measurement system has two main components:

- a) the probe, which is connected to the inputs of
- b) the instrumentation amplifier whose outputs are connected through the optical transmission line to
- c) the computer.

The system is calibrated as one unit not as individual components. If any components is modified or replaced, the system must be re-calibrated.

The system calibration is performed by two steps:

- 1) determination of the sensitivity of the probe in the air by introducing it into the well-defined RF field, and
- 2) correlation of the measured E-field in the dielectric medium to the temperature rise in a dielectric medium.

5.6.1. Probe linearity

Detector diodes at the dipole feed-point are used to rectify the sensor voltage output. The rectified signal is transmitted through resistive (RF-transparent) lines to the sensor amplifier. At low field strength levels the output voltage is proportional to the square of the amplitude of the incident field; at higher signal levels, the output voltage is not linearly proportional to $|E|^2$, but becomes proportional to E. The compensation for diode compression is carried out for the each detector diode using the 3-rd order polynomial least-square fit algorithm before any further evaluation.

5.6.2. Free Space Calibration

Note: Equipment must be regularly calibrated.

- RF Signal Generator frequency range to at least 6 GHz,
- RF Amplifier if needed to generate the required power density in the test cell,
- Test Cell TEM (Crawford) cell, waveguide, or other device capable of maintaining a uniform field,
- RF Power Meter capable of measuring at least 5 Watts (current calibration is mandatory!) if possible traceable to the National Institute of Standards and Technology (NIST).
- E-Field Probe (under calibration)
- Probe Support Fixture
- Instrumentation Amplifier
- Transmission Line
- Computer Program with the Automated Calibration System Program

5.6.2.1. Method

Due to impedance variations in the diodes and the transmission line, and slight differences in gain among the channels of the instrumentation amplifier, a normalization method had been designed. The calibration method actually used is to

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

determine the factors necessary adjust each channel of the system so it's indicated output can then be equated to the well-defined RF field. These factors are referred to as "Amplifier Settings".

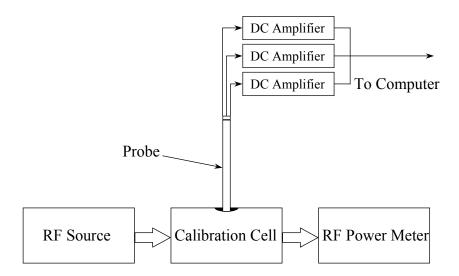


Figure 5.6.2.1. Free Space Calibration Setup for Amplifier Setting

5.6.2.2. Measurement procedure

Free Space Calibration of E-field probes can be performed using a TEM cell manufactured by IFI (Instrumentation for Industry, Farmingdale, NY 11735) with operating frequency at or below 1 GHz. Above 1 GHz, waveguides are used to calibrate the probes in free space.

- Connect the equipments as shown in Figure 5.6.2.1;
- Adjust the RF generator output so that the power density at the calibration point inside the TEM cell is well-defined. (For the IFI model CC-110 cell, the uniform power density of 1.0 [mW/cm²] requires the power level of 271.0 [mW]);
- Mount the probe of the system to calibrate in the support fixture. Insert the probe through the aperture of the TEM cell. The probe handle should be at the geometric center of the aperture, i.e. midway between the septum and the upper surface, and orthogonal to the side of the cell. The sensing portion of the probe should be located at a point halfway across the depth of the cell (volumetric center).

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

- Once the prescribed position is obtained, it must be maintained during the rest of the measurement. The only movement of the probe allowed is rotation on its axis to position the dipole in the plane of the E-field and, for channel 3 only, parallel to the vertical uniform field (max./min. output).
- Verify that the RF power level remains constant throughout the measurement. While the probe is being rotated through 360 degrees, software indicators will show the maximum measured on each channel.

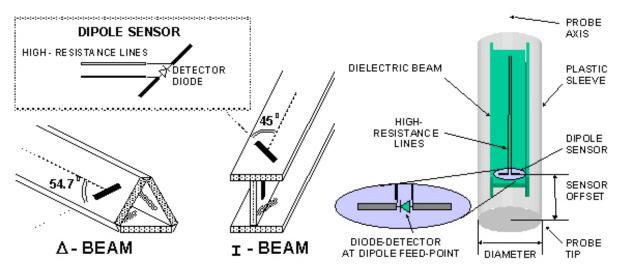


Figure 5.6.2.2. E-field probe construction

5.6.2.3. Definition of Amplifier Settings

The initial sequence of probe calibrations steps performed with SAR determinations produces the factors used in scaling probe output voltage to RF power density. For historical reasons all probes factors are compared to a factor 10.8 [mV] per [mW/cm²] that was typical of a prototype probe, but is in fact an arbitrary number used as an intermediately constant. The factor of 10.8 [mV/(mW/cm²)] is known as the sensor factor to the uniform power density (η_{pd}), but does not change. Also we can derive 10.8/3,770 [mV/(V/m)²] of the sensor factor to the |E|² (η_{E2}), providing 377 [Ω] as free space impedance.

$$\eta_{Pd} = 10.8[mV/(mW/cm^2)] \equiv \eta_{E2} = \frac{10.8}{3770}[mV/(V/m)^2]$$

$$Pd[mW/cm^{2}] = \frac{PO_{tot}}{\eta_{Pd}}, |E|^{2}[(V/m)^{2}] = \frac{PO_{tot}}{\eta_{E2}} \text{ and } SAR = \frac{\sigma \times \frac{PO_{tot}}{\eta_{E2}}}{\rho}$$

ULTRATECH GROUP OF LABS

1

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

To calibrate a probe, each channel is assigned an amplifier setting. This factor is obtained from the maximum probe output voltage measured during probe calibration. This probe output voltage is corrected for any DC offset of the instrumentation amplifier, usually a very small amount.

During calibration, the sensitivity for the E-field tangential to the dipole axis caused by the geometry of the probe construction is carefully considered to obtain the correct amplifier setting for each channel. Thus, the amplifier settings for each channel are as follows:

$$AS_{i} = \frac{\eta_{Pd}}{V_{\max_{i}} - DC_{i}} \times \cos^{2}(\varphi - \theta_{i}) \times Pd$$

Where,

,	
AS _i	Amplifier Setting for channel i
η_{pd}	Sensor Factor to the uniform power density, an arbitrary value 10.8 [mV/(mW/cm ²)]
V _{maxi}	Maximum probe raw output recorded for channel i by rotation about the probe axis with the probe in a test cell
DCi	Ambient DC offset of channel i (the voltage output of the transmission line with the
	instrumentation amplifier on and RF power off, recorded at the beginning of the probe calibration)
φ	Smaller angle between the probe axis and the direction of the E-field (90° providing the probe axis is parallel to the plane of the septum inside TEM cell)
θ_{i}	Smaller angle between the probe axis and the dipole sensor axis of the channel i ($\theta_1 = \theta_2 = 45^\circ, \theta_3 = 90^\circ$ for I-beam probe, and $\theta_1 = \theta_2 = \theta_3 = 54.7^\circ$ for triangular-beam probe)
Pd	Well-defined power density [mW/cm ²] at the calibration point in a test cell

5.6.3. Thermal Transfer Calibration

5.6.3.1. Measurement procedure

An RF transparent thermistor-based temperature probe and a isotropic E-field probe are placed side-by-side in a planar phantom while both are exposed to RF energy from a half wave dipole antenna located below the phantom The E-field probe and amplifiers were previously calibrated.

First, the location of the maximum E-field close to the phantom's bottom is determined as a function of power into the dipole

Then, the E-field probe is moved sideways so that the temperature probe, while affixed to the E-field probe is placed at the previous location of the E-field probe.

Finally, temperature changes for a certain amount of time (generally 10 to 30 seconds) exposures at the same RF power levels used for the E-field are recorded. Care is taken to allow cooling down to the original temperature and temperature stabilization between tests.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

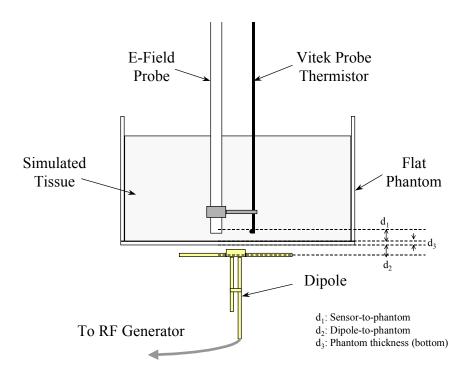


Figure 5.6.3.1. Flat Phantom, Thermistor and E-Field Probe

The following simple equation relates SAR to the initial temperature slope:

$$SAR_t = \frac{c \cdot \Delta T}{\Delta t} \tag{Eq. 1}$$

In (Eq.1) Δt is the exposure time [sec], c is the specific heat capacity of the simulated tissue [J/Kg/°C] and ΔT is the temperature increase [°C] due to the RF exposure. SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place.

From (Eq.1) it is possible to quantify the electric field in the simulated tissue by equating the thermally-derived SAR to the E-field:

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho} \tag{Eq. 2}$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

where σ is the simulated tissue conductivity [S/m] and ρ its mass density [Kg/m³]; The actual mass density of the simulated tissue is required during the thermal transfer calibration, while mass density of 1,000 [Kg/m³] is conventionally chosen during the SAR measurements.

5.6.3.2. Determination of Conversion Factor (γ) in the simulated tissue

The sensitivity of the probe in the dielectric media compared to its sensitivity in the air, is different. Conversion Factor (γ) is defined to determine the degree of the enhancement of sensitivity in the different dielectric media and relate it to its sensitivity in the air.

$$PO_{tot \ tissue} \equiv PO_{tot \ air} \times \gamma$$

Thus,

$$\left|E_{tissue}\right|^{2} = \frac{PO_{tot_tissue}}{\eta_{E2}} \times \frac{1}{\gamma} \quad \text{,and} \quad SAR_{tissue} = \frac{\sigma \times \frac{PO_{tot_tissue}}{\eta_{E2}} \times \frac{1}{\gamma}}{\rho}$$

where,

$ E_{tissue} ^2$	RMS E-field level $[(V/m)^2]$ induced within the exposed tissue
PO _{tot tissue}	Probe voltage output measured in the simulated tissue [mV]
PO _{tot} air	Probe voltage output measured in the air $(Z_{air} = 377[\Omega])$ [mV]
η_{E2}	Sensor Factor to the $ E ^2$, an arbitrary value 10.8/3,770 [mV/(V/m) ²]
γ	Conversion factor; ratio of sensor response in air to response in the dielectric media

The conversion factor (γ) can be used to scale the E-field in terms of the thermally-derived SAR. It is the quotient of SAR_t, the SAR determined from temperature measurements in the flat phantom, and PO_{tot_tissue}, the E-field prove output voltage obtained at the same location in the phantom

$$SAR_{t} = SAR_{tissue}$$

$$\frac{c \cdot \Delta T}{\Delta t} = \frac{\sigma_{@cal} \times |E_{tissue}|^{2}}{\rho}$$

$$= \frac{\sigma_{@cal} \times \frac{PO_{tot_tissue}}{\eta_{E2}} \times \frac{1}{\gamma}}{\rho}$$

Thus,

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation – Human Exposure) Amendment Standard 2000 (No. 1)
802.11A SUPER RATE WIRELESS LAN PC CARD FCC ID: 5N5-RBTBF

$$\gamma = \frac{\sigma_{@cal}}{\eta_{E2} \times \rho} \times \frac{PO_{tot_tissue}}{SAR_t} = \frac{\sigma_{@cal} \times 3,770}{10.8 \times c \times \rho} \times \frac{PO_{tot_tissue}}{\Delta T/\Delta t}$$
(Eq. 3)

where,

γ	Conversion factor; ratio of sensor response in air to response in the dielectric media
SAR _t	Thermally-derived SAR [W/Kg] (Eq. 1)
$ E_{tissue} ^2$	RMS E-field level $[(V/m)^2]$ induced within the exposed tissue
PO _{tot_tissue}	Probe voltage output measured in the simulated tissue [mV]
η_{E2}	Sensor Factor to the $ E ^2$, an intermediately constant, 10.8/3,770 $[mV/(V/m)^2]$
c	Specific heat capacity of the simulated tissue [J/Kg/°C]
$\sigma_{@cal}$	Conductivity of the simulated tissue during the calibration procedure [S/m]
ρ	Actual mass density of the simulated tissue [Kg/m ³]
$\Delta T/\Delta t$	Initial rate of tissue heating, before thermal diffusion takes place [°C /sec]

The temperature E-field correlation is illustrated below (for simulated brain tissue) for an example in which the thermal quantities were,

RF power input = 0.5 [W] $\Delta T = 0.0163$ [°C] (from thermistor-base temperature probe) $\sigma_{@cal} = 0.97$ [S/m] $\rho = 1,200$ [Kg/m³] c = 2,700 [J/Kg/°C] $\Delta t = 30$ [sec]

The resulting SAR_t was (Eq. 1)

$$SAR_{t} = \frac{2,700 \times 0.0163}{30} = 1.467 \, [W/Kg]$$

In this case the output of the E-field probe when at the same position as the thermistor probe was

 $PO_{tot_{tissue}} = 28.5 [mV]$

The calculation of conversion factor (γ) from (Eq. 3) follows:

$$\gamma = \frac{0.97}{\frac{10.8}{3,770} \times 1,200} \times \frac{28.5}{1.467} = 5.482$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.6.4. Data Acquisition Methodology

5.6.4.1. E-Field Measurement

The probe calibration must be current before starting measurements. Instrumentation amplifier batteries must be charged. This can be monitored by observing DC offset voltages. A daily log of the DC offset voltages should be kept for this purpose.

Measurements in the phantom are automatically calculated for each location by summation of the three dipole outputs. Because each dipole produces an output voltage proportional to the square of the electric field component along the dipole, the sum of dipole voltages represents the RMS values for the total electric field. Thus, taking into consideration the amplifier settings and the DC offset voltages, the total electric field strength at a measurement location is as follows. See Appendix C. PO_{tot} is labeled by the software as measure of values (voltages). The SAR for calculations that are derived from the measure of values are discussed below.

At each measurement point, the program records the output of the three channels:

$$PO_{1} = (V_{1} - DC_{1}) \times AS_{1} \equiv |E_{1}|^{2} \times \eta_{E2}$$

$$PO_{2} = (V_{2} - DC_{2}) \times AS_{2} \equiv |E_{2}|^{2} \times \eta_{E2}$$

$$PO_{3} = (V_{3} - DC_{3}) \times AS_{3} \equiv |E_{3}|^{2} \times \eta_{E2}$$

$$PO_{tot} \equiv |E|^{2} \times \eta_{E2} = (|E_{1}|^{2} + |E_{2}|^{2} + |E_{3}|^{2}) \times \eta_{E2} = |E_{1}|^{2} \times \eta_{E2} + |E_{2}|^{2} \times \eta_{E2} + |E_{3}|^{2} \times \eta_{E2}$$

$$\equiv PO_{1} + PO_{2} + PO_{3}$$

Where,

Vi	Actual raw reading of channel i at a measurement point
DCi	Ambient DC offset of channel i at a measurement point
AS _i	Amplifier setting of channel i
η_{E2}	Sensor Factor to the $ E ^2$, an arbitrary value 10.8/3,770 [mV/(V/m) ²]
POi	Probe output of channel i at a measurement point [mV]
PO _{tot}	Total probe output at a measurement point [mV]

5.6.4.2. Sensitivity(ζ) of probe in the simulated tissue

The sensitivy(ζ) of the probe in the simulated tissue is rendered in terms of Sensor Enhancement Factor in the simulated tissue.

$$\zeta = \frac{\sigma_{@meas}}{\eta_{E2} \times \rho \times \gamma} = \frac{\sigma_{@meas}}{\frac{10.8}{3,770} \times 1,000 \times \gamma} = \frac{3,770 \times \sigma_{@meas}}{10,800 \times \gamma}$$
(Eq. 5)

Where,

Sensitivity of the probe in the simulated tissue [W/Kg/mV]

ULTRATECH GROUP OF LABS

ζ

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

γ	Conversion factor; ratio of sensor response in air to response in the dielectric media
η_{E2}	Sensor Factor to the $ E ^2$, an arbitrary value 10.8/3,770 [mV/(V/m) ²]
σ_{a} meas	Conductivity of the simulated tissue during the measurement [S/m]
ρ	Mass density of the simulated tissue [Kg/m ³]; 1,000 [Kg/m3] is conventionally chosen.

Therefore, SAR can be yielded from

$$SAR = \zeta \times PO_{tot_tissue}$$
(Eq. 6)

Where,

ζ	Sensitivity of the probe in the simulated tissue [W/Kg/mV]
PO _{tot_tissue}	Probe voltage output measured in the simulated tissue [mV]

To continue the example illustrated above,

$$\sigma_{@meas} = 0.99 \text{ [S/m]} \\ \text{PO}_{\text{tot_tissue}} = 11.5 \text{ [mV]} \\ \zeta = \frac{3,770 \times \sigma_{@meas}}{10,800 \times \eta} = \frac{3,770 \times 0.99}{10,800 \times 5.482} = 0.063 \text{ [W/Kg/mV]} \\ \text{SAR} = \zeta \times \text{PO}_{\text{tot tissue}} = 0.063 \times 11.5 = 0.725 \text{ [W/Kg]}$$

5.6.4.3. SAR Measurement

The goal of the measurement process is to scan the phantom over a selected area in order to find the region of highest levels of RF energy and then to obtain a single value for the peak spatial-average of SAR over a volume that would contain one gram (in the shape of a cube) of biological tissue. The test procedure, of course, measures SAR in the simulated tissue.

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

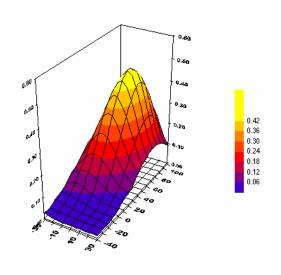


Figure 5.6.4.3.a. Area scan

The software request the user to move the probe to locations at two extreme corners of a rectangle that encloses the area to be scanned. An arbitrary origin and the spatial resolution for the scan are also specified. Under program control, the scan is performed automatically by the robot-guided probe.

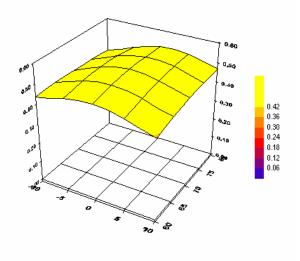


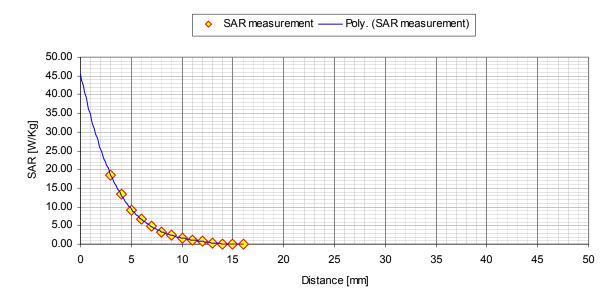
Figure 5.6.4.3.b. Zoom Scan

The fine resolution volume scan region is centered at the peak SAR locations determined by the interpolated (cubic spline) data from the area scan measurements. The number of measurement point required in a zoom scan is defined to

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

provide an accurate one-gram averaged SAR in terms of both the number of points $(PT_X \times PT_Y \times PT_Z)$ and the size $(SZ_X[mm] \times SZ_Y[mm] \times SZ_Z[mm])$ of the cubic. For one-gram SAR, $(5 \times 5 \times 7)$ and $(32[mm] \times 32[mm] \times 30[mm])$ is preferred to select below 1 GHz. The zoom scan region extends in each direction for at least 1.5 times the linear dimensions of 1- or 10-gram cube of tissue from each peak. The zoom scan spatial resolution is interpolated down to SAR values on a 1mm grid by using the tri-linear interpolation algorithm.


The peak field values near the surface of a homogeneous phantom are usually not measurable because the sensors in a field probe are located at 2-4 mm behind the tip of the probe and the measurement point is defined at the geometric center of the sensors where the calibration is defined. These SAR values are computed by extrapolating the closest measured points to the surface of the phantom to determine the highest one-gram averaged SAR. The extrapolation coefficients are determined with a multi-order curve-fitting algorithm. Generally the 4-th order polynomial least-square fit is sufficient to extrapolate to the surface if the number of the valid measurements, that are non-zero, along the probe axis is greater than 4.

The interpolated and extrapolated SAR values from the zoom scan measurements are integrated in the shape of 1- or 10gram cube then traversed to determine the highest peak spatial-average SAR in the zoom scan region.

This peak spatial-averaged SAR is reported as SAR [W/kg] for compliance.

5.6.4.4. Data Extrapolation and boundary effect

The distance from the center of the sensor (diode) to the end of the protective tube is called the 'probe offset' or 'sensor offset'. To compensate we use a multi-order polynomial least-square curve fitting to obtain the peak surface value from the voltages measured at the distance from the inner surface of the phantom. The field is measured as close as possible to the phantom's surface and every pre-defined separation distance (1 [mm] to 5 [mm]) along the probe axis (z) for a distance of at least 50 mm until they are not measurable. The appropriate curve is obtained from all the points measured and used to define an exponential decay of the energy density versus depth.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ENEN-001-SAR February 20, 2003

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Figure 5.6.4.4. Exponential decay of the energy density versus depth

Boundary effects arise when the tip of an electric field probe approaches the interface between two dielectric media. Under these conditions, the external field is strongly perturbed by the superposition of a scattered field from the probe. The effect of the boundary on the peak spatial-average SAR values strongly depends on the probe dimensions, especially the diameter of the tip of the probe. It is known that the error due to boundary effects is very small if the distance between the probe tip and the surface is greater than half the probe diameter. Therefore the first one or two measurements at the vicinity to the phantom surface are excluded for evaluating the exponential decay curve in order to compensate for the boundary effect.

5.6.5. Determining the Heat Capacity of Simulated Tissue

5.6.5.1. Instruments and Materials

- Calibrated differential thermometer (Vitek or BAT-8 or equivalent)
- Two identical 500 ml containers
- A thermally insulated vessel (thick styrofoam, with a form fitting hole for one container)
- Hot and cold tap water
- Solution under test
- Hot plate
- Temperature vs. time (chart recorder, or data loger)

5.6.5.2. Method

Heat can be propagated by conduction, convection and radiation. In the case of liquids heated from below, gravity convection is the main and predominant heating mechanism of the fluid mass.

Obtain two containers that can be rapidly heated (e.g. glass or suitable plastic). Fill one container with 250 ml of water, the other with the same mass of simulated tissue. The initial temperature of the water should be the same as that of the simulated tissue (\pm 1°C). Since we are dealing with heating by electromagnetic sources at ambient temperature, it is essential that we eliminate the chance of any direct infrared heating of the temperature sensor. To ensure this, position the tip of the sensor 2 mm from the bottom of the center of the container. Turn on the heat source and wait at least 5 minutes for its temperature to stabilize. Record the initial temperature of the water. Place the container of water 5 mm above the center of the hot plate and monitor the temperature increase.

After 30 seconds of heating, the water temperature should have increased by at least 5 °C. Record the time and temperature. Remove the container from the heat source and place it in the thermally insulated vessel. Stir the liquid thoroughly and record the steady state temperature 1-2 minutes after stirring.

Repeat the above procedure using the container of simulated tissue. Ensure that the container is placed on the same area of the hot plate, is heated for the identical length of time, and the steady state temperature is recorded after the identical time interval.

Since the heat capacity of water is $C_w = 1,000 \text{ [cal/Kg/°C]}$ or 4,189 [J/Kg/°C] with excellent approximation (~1%) in the temperature range of interest, the heat capacity (C_s) of the solution is given by:

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

$$C_s = C_w \cdot \frac{\Delta T_w}{\Delta T_s}$$

where ΔT_w is the temperature increase of water and ΔT_s the temperature increase of the solution. The ratio of the values, $\Delta T_w / \Delta T_s$, should be the same (within the sensitivity of the thermometer) at the end of the heating and stirring. This ensures that the liquids have been uniformly heated.

5.6.5.3. Rationale

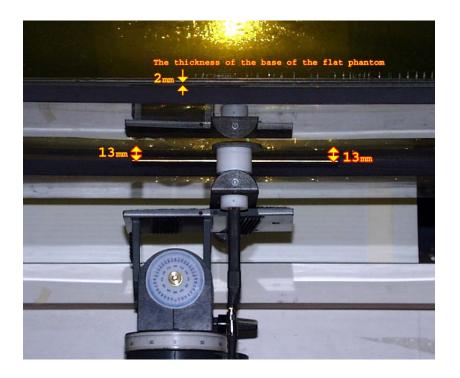
$$C \cdot \Delta T = Heat_Flow \cdot Time = Total_Heating_Energy$$

If the heat flow, sample mass, and absorption (heat transfer) are the same for both liquids, then:

$$C_w \cdot \Delta T_w = C_s \cdot \Delta T_s$$

The heat flow and total heating are kept constant by using the same source for the same amount of time. If the heat transfer mechanisms for the woe liquids are about the same, with insignificant differences in convective and conductive characteristics, then any differences in temperature increase are a direct measure of the specific heat capacity, C.

ULTRATECH GROUP OF LABS


File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.7. SAR MEASUREMENT SYSTEM VERIFICATION

5.7.1. **Standard Source**

A half-wave dipole is positioned below the bottom of the phantom and centered with its axis parallel to the longest side of the phantom. The distance between the liquid filled phantom bottom surface and the center of the dipole axis, s, is chosen as specified IEEE 1528 at the specific test frequency (i.e. 15 mm at 835 MHz). A low loss and low dielectric constant spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom.

5.7.2. **Standard Source Input Power Measurement**

The system validation is performed as shown below or in Figure 7.1 in IEEE 1528.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

SPECIFIC ABSORPTION RATIO (SAR)

FCC ID: 5N5-RBTBF

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power was verified to be at least 20dB below the forward power.

5.7.3. **System Validation Procedure**

A complete 1g-averaged SAR measurement is performed. The measured 1g-averaged SAR value is normalized to a forward power of 1W to a half-wave dipole and compared with the reference SAR value for the reference dipole and flat phantom shown in columns 2 and 3 of Table 7.1 in IEEE 1528.

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.8. POWER MEASUREMENT

Whenever possible, a conducted power measurement is performed. To accomplish this, we utilize a fully charged battery, a calibrated power meter and a cable adapter provided by the manufacturer. The data of the cable and related circuit losses are also provided by the manufacturer. The power measurement is then performed across the operational band and the channel with the highest output power is recorded.

Power measurement is performed before and after the SAR to verify if the battery was delivering full power at the time of testing. A difference in output power would determine a need for battery replacement and to repeat the SAR test.

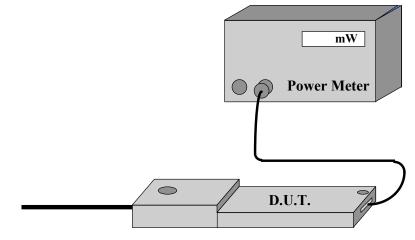


Figure 5.8. Measured Power + Cable and Switching Mechanism Loss

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.9. POSITIONING OF D.U.T.

The clear SAM phantom shell have been previously marked with a highly visible grid with a defined centre line, so it can easily be seen through the liquid simulated tissue. In the case of testing a cellular phone, this line is connecting the ear channel with the corner of the lips. The D.U.T. is then placed by centering the speaker with the ear channel and the center of the radio width with the corner of the mouth.

For HAND HELD devices (push-to-talk), or any other type of wireless transmitters postioned in front of the face, the D.U.T. will be positioned 2.5cm distance from a flat phantom to simulate the frontal facial position in use. All body-worn operating configurations are tested using a flat phantom. The length and width of the phantom is at least twice the corresponding dimensions of the test device, including its antenna.

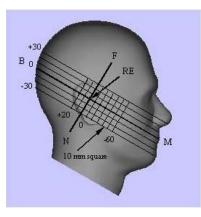
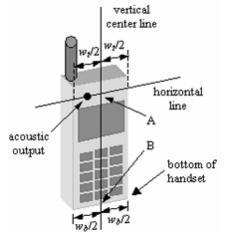



Figure 5.9.a. Side view of the phantom showing relevant marking

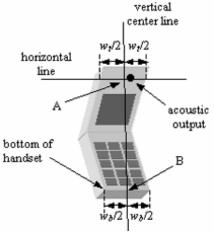
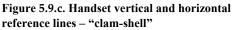



Figure 5.9.b. Handset vertical and horizontal reference lines – fixed case

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

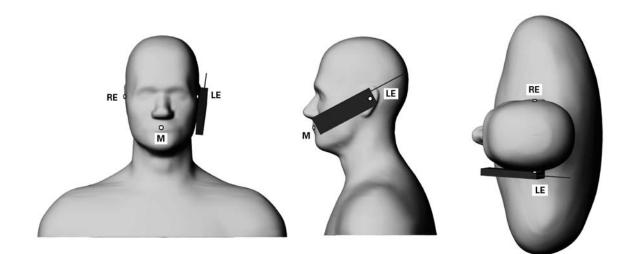


Figure 5.9.d. Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

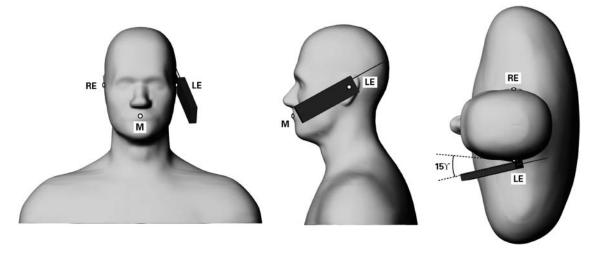


Figure 5.9.e. Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.10. SAR MEASUREMENT UNCERTAINTY

This uncertainty analysis covers the 3D-EMC Laboratory test procedure for Specific Absorption Rate (SAR) associated with wireless telephones and similar devices.

Standards Covered Are:

WGMTE 96/4 - Secretary SC211/B

FCC 96-326, ET Docket No. 93-62

Industry Canada RSS 102

ACA Radiocommunications (Electromagnetic Radiation - Human Exposure) Amendment Standard 2000 (No. 1)

The laboratory test procedure, and this uncertainty analysis, may be used to cover all standards above. It is based on test equipment and procedures specified by 3D-EMC Laboratories, Inc. located in Ft. Lauderdale, Florida.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ENEN-001-SAR February 20, 2003

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.10.1. Measurement Uncertainty

5.10.1.1. Measurement Uncertainty evaluation for handset SAR test

							<i>h</i> =	<i>i</i> =	
a	Ь	с	d	e = f(d,k)	F	g	cxf/e	cxg/e	k
Uncertainty		Tol.	Prob.		c_i	C _i	1-g	10-g	
Component		(±%)	Dist.		(1-g)	(10-g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
·	Sec.	l`´´		Div.	× 0/	× 0,	(±%)	(±%)	v _i
Measurement System									
Probe Calibration	E1.1	3.0	Ν	1	1	1	3.0	3.0	8
Axial Isotropy	E1.2	5.0	R	$\sqrt{3}$	0.7	0.7	2.0	2.0	8
Hemispherical Isotropy	E1.2	8.0	R	$\sqrt{3}$	1	1	4.6	4.6	8
Boundary Effect	E1.3	10.0	R	$\sqrt{3}$	1	1	5.8	5.8	8
Linearity	E1.4	4.2	R	$\sqrt{3}$	1	1	2.4	2.4	8
System Detection Limits	E1.5	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
Readout Electronics	E1.6	1.0	Ν	1	1	1	1.0	1.0	8
Response Time	E1.7	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	8
Integration Time	E1.8	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
RF Ambient Conditions	E5.1	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E5.2	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Probe Positioning with respect to Phantom Shell	E5.3	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E4.2	3.5	R	$\sqrt{3}$	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E3.2.1	7.5	Ν	1	1	1	7.5	7.5	11
Device Holder Uncertainty	E3.1.1	6.5	Ν	1	1	1	6.5	6.5	8
Output Power Variation - SAR drift measurement	5.6.2	5.0	R	√3	1	1	2.9	2.9	×
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E2.1	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
Liquid Conductivity Target - tolerance	E2.2	5.0	R	$\sqrt{3}$	0.7	0.5	2.0	1.4	8
Liquid Conductivity - measurement uncertainty	E2.2	4.0	R	√3	0.7	0.5	1.6	1.2	8
Liquid Permittivity Target tolerance	E2.2	5.0	R	$\sqrt{3}$	0.6	0.5	1.7	1.4	8
Liquid Permittivity - measurement uncertainty	E2.2	4.0	R	$\sqrt{3}$	0.6	0.5	1.4	1.2	8
Combined Standard Uncertainty			RSS				14.3	14.2	
Expanded Uncertainty									
(95% confidence interval)							28.5	28.3	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

• Recognized/Listed by FCC (USA)

							h =	<i>i</i> =	
а	b	с	d	e = f(d,k)	f	g	cxf/e	cxg/e	k
Uncertainty		Tol.	Prob.		Ci	Ci	1-g	10-g	<i>v</i> _i
Component		(± %)	Dist.		(1-g)	(10-g)	\boldsymbol{u}_i	\boldsymbol{u}_i	or v _{eff}
	Sec.			Div.			(±%)	(±%)	
Measurement System									
Probe Calibration	E1.1	3.0	Ν	1	1	1	3.0	3.0	×
Axial Isotropy	E1.2	5.0	R	$\sqrt{3}$	0.7	0.7	2.0	2.0	×
Hemispherical Isotropy	E1.2	8.0	R	$\sqrt{3}$	1	1	4.6	4.6	œ
Boundary Effect	E1.3	10.0	R	√3	1	1	5.8	5.8	œ
Linearity	E1.4	4.2	R	√3	1	1	2.4	2.4	œ
System Detection Limits	E1.5	2.0	R	√3	1	1	1.2	1.2	×
Readout Electronics	E1.6	1.0	Ν	1	1	1	1.0	1.0	×
Response Time	E1.7	1.5	R	√3	1	1	0.9	0.9	~
Integration Time	E1.8	2.0	R	√3	1	1	1.2	1.2	~
RF Ambient Conditions	E5.1	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	~
Probe Positioner Mechanical Tolerance	E5.2	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	00
Probe Positioning with respect to Phantom Shell	E5.3	3.0	R	√3	1	1	1.7	1.7	œ
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E4.2	3.5	R	$\sqrt{3}$	1	1	2.0	2.0	~
Dipole									
Dipole Axis to Liquid Distance	7, X3.2	2.0	R	√3	1	1	1.2	1.2	~
Input Power and SAR Drift Measurement	7, 5.6.2	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	~
Phantom and Tissue Parameters									
Phantom Uncertainty - shell thickness tolerance	E2.1	4.0	R	√3	1	1	2.3	2.3	~
Liquid Conductivity – deviation from target values	E2.2	5.0	R	$\sqrt{3}$	0.7	0.5	2.0	1.4	8
Liquid Conductivity - measurement uncertainty	E2.2	4.0	R	√3	0.7	0.5	1.6	1.2	s
Liquid Permittivity – deviation from target values	E2.2	5.0	R	√3	0.6	0.5	1.7	1.4	s
Liquid Permittivity - measurement uncertainty	E2.2	4.0	R	$\sqrt{3}$	0.6	0.5	1.4	1.2	8
Combined Standard Uncertainty			RSS				10.0	9.9	
Expanded Uncertainty									
(95% confidence interval)							20.1	19.8	

5.10.1.2. Measurement Uncertainty for System Performance Check

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com File #: ENEN-001-SAR February 20, 2003

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

EXHIBIT 6. SAR PRESCANS

6.1.1. **Body-Worn Configuration**

6.1.1.1. Test configurations used

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. The D.U.T. was placed against the phantom and tested in its appropriate holster as would normally be used by the end user. If the SAR measured at the middle channel for each test is at least 32.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components..

6.1.1.2. Equipment permutation investigated for each orientation

N/A

6.1.1.3. Comments on non-tested configurations

N/A

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: ENEN-001-SAR February 20, 2003

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.2. RECOMMENDED CAUTION STATEMENTS TO BE INCLUDED IN USERS MANUAL

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and caution statements should be included in the manual. The information should allow users to make informed decisions on the type of body-worn accessories and operating configurations that are appropriate for the device. The following are *examples* of typical statements that provide end-users with the necessary information about body-worn accessories:

Example 1. For a product that has the potential to be used in a body worn configuration and has been tested and certified with a specific accessory device(s):

"For body worn operation, this phone has been tested and meets the FCC RF exposure guidelines when used with the *(manufacturer name)* accessories supplied or designated for this product. Use of other accessories may not ensure compliance with FCC RF exposure guidelines."

Example 2. For a product that has the potential to be used in a body worn configuration and has not been certified with a specific accessory device(s):

"For body worn operation, this phone has been tested and meets FCC RF exposure guidelines when used with an accessory that contains no metal and that positions the handset a minimum of (specified distance) from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines."

Example 3. For a product that has the potential to be used in a body worn configuration with future manufacturer designed accessories:

"For body worn operation, this phone has been tested and meets the FCC RF exposure guidelines when used with a (*manufacturer name*) accessory designated for this product or when used with an accessory that contains no metal and that positions the handset a minimum of (specified distance) from the body."

ULTRATECH GROUP OF LABS

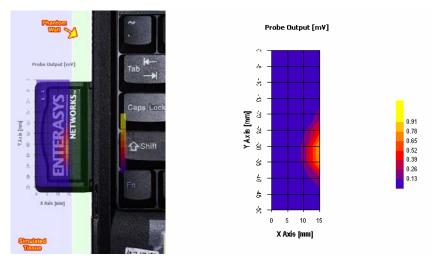
File #: ENEN-001-SAR February 20, 2003

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)


6.3. PRESCAN DATA FOR WORST CONFIGURATION OF RF EXPSOSURE

6.3.1. Body-Worn Configuration

Configuration	Antenna Position	SAR (W/kg)
Keyboard faced outward from the phantom, 54 Mbps, Separation distance 13 mm between the tip of DUT and the phantom (the host PC parallel and in contact), 5240 MHz, ANT1	Fixed	less than 0.01*
Keyboard faced inward to the phantom, 54 Mbps, Separation distance 8 mm between the tip of DUT and the phantom (the host PC parallel and in contact), 5240 MHz, ANT1	Fixed	less than 0.01*
Left-end-on, 54Mbps, DUT in contact with the phantom, 5240MHz, ANT1	Fixed	less than 0.01^*
Keyboard faced outward from the phantom, 54 Mbps, Separation distance 13 mm between the tip of DUT and the phantom (the host PC parallel and in contact), 5240 MHz, ANT2	Fixed	less than 0.01*
Keyboard faced inward to the phantom, 54 Mbps, Separation distance 8 mm between the tip of DUT and the phantom (the host PC parallel and in contact), 5240 MHz, ANT2	Fixed	less than 0.01*
Left-end-on, 54Mbps, DUT in contact with the phantom, 5240MHz, ANT2	Fixed	less than 0.01*
Top of the DUT parallel and in contact with the phantom , 54Mbps, 5240MHz, ANT2	Fixed	(1)

Prescans, as listed above, for the feasible configurations had been performed in order to determine the worst case under the specific configurations as described in the table.

(1) Since no exposure was measured through prescans, The DUT was positioned to be parallel and in contact with phantom at an edge of the flat phantom box. The probe's accessible area was limited by the wall of the phantom, which made a complete SAR measurement impossible as shown below. Refer to 4.3.1.4 for the photograph of setup. As a result, a very low level of exposure was found to be existing as was expected.

^{*} It was found to be below the SAR measurement system's sensitivity (less than 0.01[W/Kg]).

ULTRATECH GROUP OF LABS

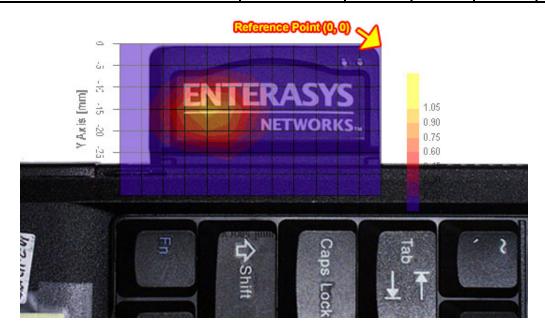

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 7. SAR MEASUREMENT

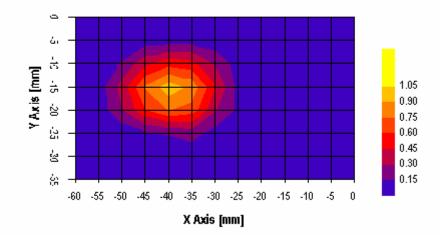
7.1. **BODY-WORN CONFIGURATION**

7.1.1. Keyboard faced inward to the phantom

Configuration	Device Test Positions	Antenna Position	Freq. [MHz]	Channel	MAX SAR [W/Kg]
54 MBPS data rate ANT1	8 mm separation		5180	CH36	less than 0.01*
		Fixed	5240	CH48	less than 0.01^*
			5320	CH64	0.062

* It was found to be below the SAR measurement system's sensitivity (less than 0.01[W/Kg]).

ULTRATECH GROUP OF LABS

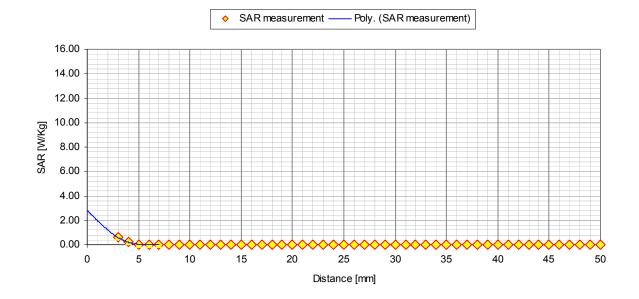

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

7.1.1.1. ANT1, CH 64, 5320 MHz

Test date [MM/DD/YYYY]	02/12/2003
Test by	JaeWook Choi
Room temperature [°C]	21
Room humidity [%]	30
Simulated tissue temperature [°C]	21
Separation distance, d [mm]	8
Test frequency [MHz]	5320
E-field Probe	M/N: E-TR, S/N: UT-0200-1, Sensor Offset: 2.0 mm
Sensor Factor $(\eta_{Pd})_{[mV/(mW/cm)]}^2$	10.8
Amplifier Settings (AS ₁ , AS ₂ , AS ₃)	0.00596768, 0.00563160, 0.00779221
Tissue Type	Muscle
Measured conductivity [S/m]	5.61 (+4.9 %)
Measured dielectric constant	47.3 (-3.5 %)
Conversion Factor (y)	2.721
Sensitivity (ζ) _[W/Kg/mV]	0.719
Power [mW]	14.55 conducted
Measurement Volume Specification (X × Y × Z)	5 pts \times 5 pts \times 13 pts, 12 mm \times 12 mm \times 12 mm; Resolution: 3 mm \times 3 mm \times 1 mm
SAR _{1g [W/Kg]}	0.062

Probe Output [m¥]



ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Page 52 IEEE C95.1-1991, FCC OET Bulletin 65 (Supplement C), Industry Canada RSS-102(Issue 1) and ACA Radiocommunications (Electromagnetic Radiation - Human Exposure) Amendment Standard 2000 (No. 1) 802.11A SUPER RATE WIRELESS LAN PC CARD

FCC ID: 5N5-RBTBF

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 8. TISSUE DIELECTRIC PARAMETER CALIBRATION

The tissue conductivity was calibrated in accordance with IEEE Std 1528-200X, Draft 6.1 November 14, 2000, Sponsor IEEE SCC 34

Tissue calibration type	HP Dielectric Strength Probe System (M/N: 85070C)
Tissue calibration date [MM/DD/YYYY]	2/10/2003
Tissue calibrated by	JaeWook Choi
Room temperature [°C]	21
Room humidity [%]	30
Simulated tissue temperature [°C]	21
Tissue calibration frequency [MHz]	5240
Tissue Type	Muscle
Target conductivity [S/m]	5.35
Target dielectric constant	49.0
Composition (by weight) [%]	DI Water (77.67 %)
	DGBE (2.91 %)
	Triton X-100 (19.42 %)
Measured conductivity [S/m]	5.61 (+4.9 %)
Measured dielectric constant	47.3 (-3.5 %)
Penetration depth (plane wave excitation) [mm]	6.64

ULTRATECH GROUP OF LABS

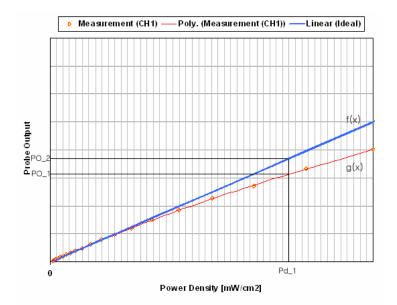
File #: ENEN-001-SAR February 20, 2003

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)


EXHIBIT 9. SAR SYSTEM CALIBRATION

Probe Type	E-Field Triangle, Isotropic	
Model Number	E-TR	
Serial Number	UT-0200-01	
Manufacturer	3D-EMC Laboratory Inc.	
Manufactured Date	February 2000	
Probe Length [mm]	270	
Probe offset [mm]	2.0	
Probe Tip diameter [mm]	4.0	
Sensor Factor $(\eta_{Pd}) \left[\frac{2}{\left[\frac{MV}{(mW/cm)}\right]}\right]$	10.8	
Sensor Factor $(\eta_{E2}) \left[\frac{1}{mV/(V/m)} \right]^2$	10.8 / 3770	

9.1. GENERAL INFORMATION OF THE PROBE

9.2. PROBE LINEARITY AND DYNAMIC RANGE

Each channel of the probe output over the range of the generated field's power density is recorded and stored as a diode compensation table to yield the polynomial equations, using the curve fitting algorithm, for the ideal diode response (linear) and the saturated diode response (the 3rd order). The linear equation and the inverse of the 3rd order polynomial equation are used to compensate for the saturated diode response to the ideal diode response.

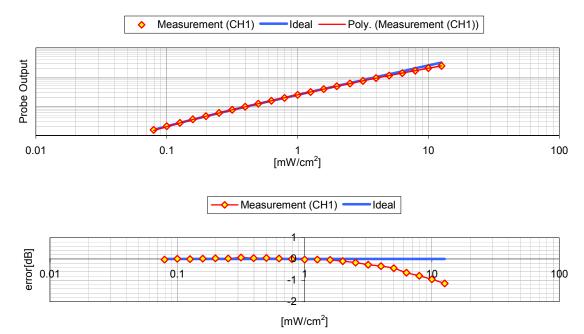
For example, Provided that linear equation, f, the 3^{rd} order polynomial equation, g, and its inverse, g^{-1} , the saturated diode output PO ₁ can be compensated to the ideal diode output PO ₂ by the calculation as shown below.

$$Pd_{1} = g^{-1}(PO_{1}),$$

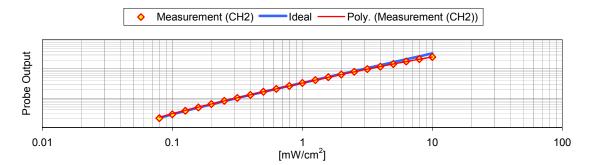
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

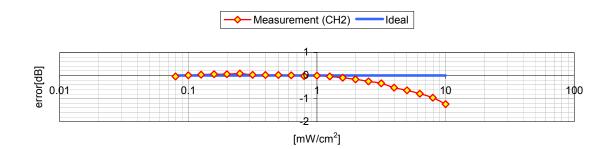
Recognized/Listed by FCC (USA)


All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

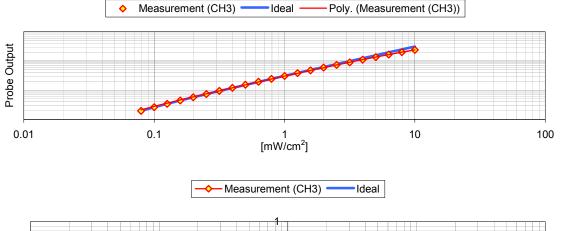
PO
$$_2 = f(Pd_1) = f(g^{-1}(PO_1))$$

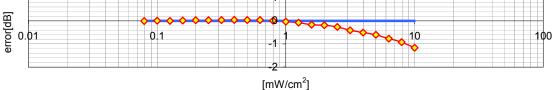
9.2.1. **Channel 1**

9.2.2. **Channel 2**


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4


File #: ENEN-001-SAR February 20, 2003 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

FCC ID: 5N5-RBTBF

Channel 3 9.2.3.

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

9.3. PROBE FREE SPACE CALIBRATION

9.3.1. Calibration Setup

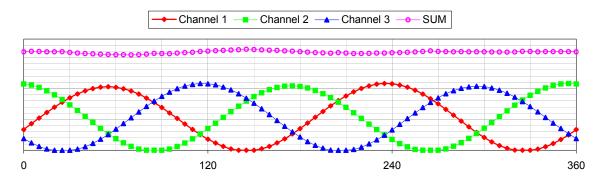
Calibration cell type	Waveguide
Model Number	11457-2
Serial Number	CO-05721-01
Manufacturer	APOLLO
Cross-sectional dimension (W × H) [mm]	40×20
Input Power / Power Density [mW/(mW/cm)] @ 5,240 [MHz]	2.794

9.3.2. Amplifier Settings

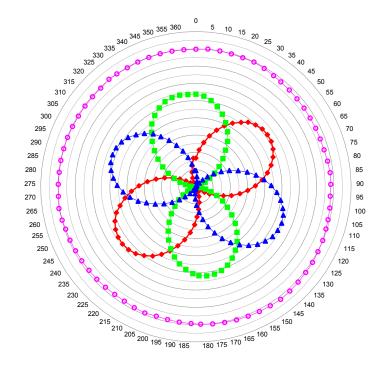
Calibration Date [MM/DD/YYYY]	07/31/2002
Calibrated by	JaeWook Choi
Calibration Frequency [MHz]	5,240
Room Temperature [°C]	24
Room Humidity [%]	30
$\mathbf{\Phi}$ [°]	90
$\theta_1, \theta_2, \theta_3$ [°]	54.7, 54.7, 54.7
	2.0
V _{max1}	2413
V _{max2}	2557
V _{max3}	1848
AS ₁	0.00596768
AS ₂	0.00563160
AS ₃	0.00779221

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)


Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

9.3.3. Isotropic response

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

9.4. PROBE THERMAL TRANSFER CALIBRATION

9.4.1. Calibration Setup

Calibration type	Thermal transfer calibration
Flat phantom dimension (W × L × H) [mm]	$420 \times 700 \times 200$
Flat phantom shell thickness (d ₃) [mm]	2.0
Flat phantom shell permittivity	2.98
Calibration dipole dimension (L × h × d) [mm]	25.1 × 13.4 × 3.6
Sensor-to-Phantom (d ₁) [mm]	5.0
Dipole-to-Phantom (d ₂) [mm]	8.0
Sensor-to-Dipole $(d_1 + d_2 + d_3)$ [mm]	15.0 (5.0 + 8.0 + 2.0)
Return Loss (at test frequency) [dB]	-21.0

9.4.2. Simulated Tissue

Tissue calibration type	HP Dielectric Strength Probe System
Tissue calibration date [MM/DD/YYYY]	07/31/2002
Tissue calibrated by	JaeWook Choi
Room temperature [°C]	24
Room humidity [%]	30
Simulated tissue temperature [°C]	24
Tissue calibration frequency [MHz]	5240
Tissue Type	Muscle
Target conductivity [S/m]	5.40
Target dielectric constant	48.5
Measured conductivity [S/m]	5.43 (+0.6 %)
Measured dielectric constant	48.8 (+0.6 %)
Penetration depth (plane wave excitation) [mm]	6.95

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)


Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

9.4.3. Conversion Factor

Calibration Date [MM/DD/YYYY]	07/31/2002
Calibration by	JaeWook Choi
Calibration Frequency [MHz]	5,240
Room Temperature [°C]	24
Room Humidity [%]	30
Simulated Tissue Temperature [°C]	23
PO _{tot_tissue [mV]}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	23.278 @ 0.99 _[W]
$\delta(PO_{tot \ tissue})/\delta P_{[mV/W]}$	23.44599
$\Delta T/\Delta t$ [°C/ sec]	$\begin{array}{c} 0.01525 @ 4.0 \ {}_{\rm [W]} \\ 0.01940 @ 5.0 \ {}_{\rm [W]} \\ 0.02343 @ 6.0 \ {}_{\rm [W]} \\ 0.02732 @ 7.0 \ {}_{\rm [W]} \\ 0.03152 @ 8.0 \ {}_{\rm [W]} \\ 0.03549 @ 9.0 \ {}_{\rm [W]} \\ 0.03943 @ 10.0 \ {}_{\rm [W]} \end{array}$
$\delta(\Delta T/\Delta t)/\delta P_{[^{\circ}C/sec/W]}$	0.004029
Conversion Factor (y)	2.721

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

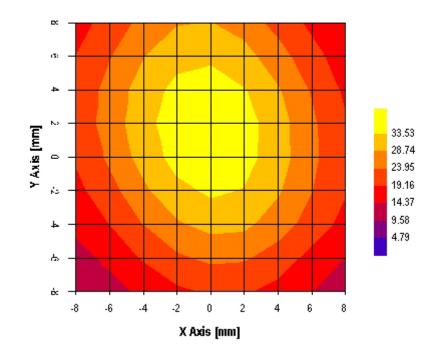
EXHIBIT 10. SAR SYSTEM VERIFICATION USING DIPOLE REFERENCE

10.1.1. Verification Setup

Flat phantom dimension (W × L × H) [mm]	$420 \times 700 \times 200$
Flat phantom shell thickness (d ₃) [mm]	2.0
Flat phantom shell permittivity	2.98
Reference dipole dimension (L × h × d) [mm]	$25.1 \times 13.4 \times 3.6$
Dipole-to-Phantom (d ₂) [mm]	8.0
Dipole-to-Liquid $(d_2 + d_3)_{[mm]}$	10.0 (8.0 + 2.0)
Return Loss (at test frequency) [dB]	-21.0

10.1.2. Simulated Tissue

Tissue calibration type	HP Dielectric Strength Probe System
Tissue calibration date [MM/DD/YYYY]	02/10/2003
Tissue calibrated by	JaeWook Choi
Room temperature [°C]	21
Room humidity [%]	30
Simulated tissue temperature [°C]	21
Tissue calibration frequency [MHz]	5240
Tissue Type	Muscle
Target conductivity [S/m]	5.35
Target dielectric constant	49.0
Measured conductivity [S/m]	5.61 (+4.9 %)
Measured dielectric constant	47.3 (-3.5 %)
Penetration depth (plane wave excitation) [mm]	6.64

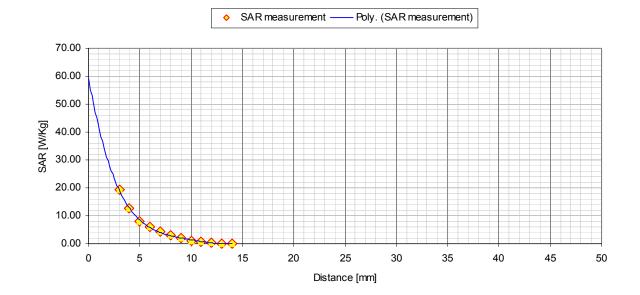

ULTRATECH GROUP OF LABS

File #: ENEN-001-SAR February 20, 2003

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

10.1.3. Verification Result

Test date [MM/DD/YYYY]	02/10/2003
Test by	JaeWook Choi
Room temperature [°C]	21
Room humidity [%]	30
Simulated tissue temperature [°C]	21
Separation distance, d [mm]	10 (8 + 2)
Test frequency [MHz]	5240
E-field Probe	M/N: E-TR, S/N: UT-0200-1, Sensor Offset: 2.0 mm
Sensor Factor $(\eta_{Pd}) \left[\frac{2}{\left[\frac{M}{M} \right]} \right]$	10.8
Amplifier Settings (AS ₁ , AS ₂ , AS ₃)	0.00596768, 0.00563160, 0.00779221
Tissue Type	Muscle
Measured conductivity [S/m]	5.61 (+4.9 %)
Measured dielectric constant	47.3 (-3.5 %)
Conversion Factor (y)	2.721
Sensitivity (ζ) _[W/Kg/mV]	0.719
Power [mW]	250 (forward power)
Measurement Volume Specification (X × Y × Z)	$5_{\text{pts}} \times 5_{\text{pts}} \times 13_{\text{pts}}$, $12_{\text{mm}} \times 12_{\text{mm}} \times 12_{\text{mm}}$, Resolution: $3_{\text{mm}} \times 3_{\text{mm}} \times 1_{\text{mm}}$
SAR _{1g [W/Kg]}	12.817
SAR _{s [W/Kg]}	61.878
Penetration Depth [mm]	5.22


Probe Output [m¥]

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

FCC ID: 5N5-RBTBF

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 11. SAR CALCULATION SUMMARY

11.1. TERMINOLOGY

AS_i	Amplifier Setting for channel i $(i = 1, 2, 3)$
Pd	Power density at the measurement point [mW/cm ²]
PO _{tot_air}	Probe Output in the air [mV]
PO _{tot_tissue}	Probe Output in the simulated tissue [mV]
η_{E2}	Sensor Factor to the $ E ^2$, an arbitrary value 10.8/3,770 $[mV/(V/m)^2]$
η_{pd}	Sensor Factor to the uniform power density, an arbitrary value 10.8 [mV/(mW/cm ²)]
γ	Conversion factor; ratio of sensor response in air to response in the dielectric media
ζ	Sensitivity of the probe in the simulated tissue [W/Kg/mV]
c	Specific heat capacity of the simulated tissue [J/Kg/°C]
$\sigma_{@cal}$	Conductivity of the simulated tissue during the thermal transfer calibration [S/m]
σ_{ameas}	Conductivity of the simulated tissue during the SAR measurement [S/m]
ρ	Mass density of the simulated tissue [Kg/m ³]
$\Delta T/\Delta t$	Initial rate of tissue heating, before thermal diffusion takes place [°C /sec]

11.1.1. Sensor factor(η_{pd} and η_{E2}) in the air ($Z_0 = 377[\Omega]$)

$$\eta_{Pd} = 10.8[mV/(mW/cm)^2] \equiv \eta_{E2} = \frac{10.8}{3,770}[mV/(V/m)^2]$$

$$Pd[mW/cm^{2}] = \frac{PO_{tot}}{\eta_{Pd}}, |E|^{2}[(V/m)^{2}] = \frac{PO_{tot}}{\eta_{E2}} \text{ and } SAR[W/Kg] = \frac{\sigma \times \frac{PO_{tot}}{\eta_{E2}}}{\rho}$$

11.1.2. Amplifier settings(AS_i) and probe output

$$AS_{i} = \frac{\eta_{Pd}}{V_{\max_{i}} - DC_{i}} \times \cos^{2}(\varphi - \theta_{i}) \times Pd$$

$$PO_{1}[mV] = (V_{1} - DC_{1}) \times AS_{1} \equiv |E_{1}|^{2} \times \eta_{E2}$$

$$PO_{2}[mV] = (V_{2} - DC_{2}) \times AS_{2} \equiv |E_{2}|^{2} \times \eta_{E2}$$

$$PO_{3}[mV] = (V_{3} - DC_{3}) \times AS_{3} \equiv |E_{3}|^{2} \times \eta_{E2}$$

$$PO_{tot}[mV] \equiv |E|^{2} \times \eta_{E2} = (|E_{1}|^{2} + |E_{2}|^{2} + |E_{3}|^{2}) \times \eta_{E2} = |E_{1}|^{2} \times \eta_{E2} + |E_{2}|^{2} \times \eta_{E2} + |E_{3}|^{2} \times \eta_{E2}$$

$$\equiv PO_{1} + PO_{2} + PO_{3}$$

ULTRATECH GROUP OF LABS

- File #: ENEN-001-SAR February 20, 2003
- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

11.1.3. Conversion factor (γ) in the simulated tissue

$$\left|E_{tissue}\right|^{2} = \frac{PO_{tot_tissue}}{\eta_{E2}} \times \frac{1}{\gamma}$$

$$SAR_{t} = SAR_{tissue} = \frac{\sigma_{@cal} \times |E_{tissue}|^{2}}{\rho} = \frac{\sigma_{@cal} \times \frac{PO_{tot_tissue}}{\eta_{E2}} \times \frac{1}{\gamma}}{\rho[Kg/m^{3}]} = \left(\frac{\sigma_{@cal} \times \frac{PO_{tot_tissue}}{\eta_{E2}}}{\rho}\right) \times \frac{1}{\gamma} = SAR_{PO_{tot_tissue}} \times \frac{1}{\gamma}$$

11.1.4. Conversion factor (γ) Calculation

$$\frac{\delta}{\delta P} SAR_{t} = \frac{\delta}{\delta P} SAR_{tissue}$$
$$\frac{\delta}{\delta P} \left(c \times \frac{\Delta T}{\Delta t} \right) = \frac{\delta}{\delta P} \left(\frac{\sigma_{@cal} \times |E_{tissue}|^{2}}{\rho} \right) = \frac{\delta}{\delta P} \left(\frac{\sigma_{@cal} \times \frac{PO_{tot_tissue}}{\eta_{E2}} \times \frac{1}{\gamma}}{\rho} \right)$$

$$\gamma = \frac{\frac{\delta}{\delta P}SAR_{PO_{tot_tissue}}}{\frac{\delta}{\delta P}SAR_{t}} = \frac{\frac{\sigma_{@cal} \times \frac{\delta}{\delta P}PO_{tot_tissue}}{\eta_{E2}}}{c \times \frac{\delta}{\delta P}\frac{\Delta T}{\Delta t}} = \frac{\sigma_{@cal}}{\eta_{E2} \times c \times \rho} \times \frac{\frac{\delta}{\delta P}PO_{tot_tissue}}{\frac{\delta}{\delta P}\frac{\Delta T}{\Delta t}}$$

11.1.5. Sensitivity (ζ) in the simulated tissue

$$\zeta[W/Kg/mV] = \frac{\sigma_{@meas}}{\eta_{E2} \times 1,000[Kg/m^3] \times \gamma}$$

11.1.6. SAR calculation

$$SAR[W/Kg] = \zeta[W/Kg/mV] \times PO_{tot \ tissue}[mV]$$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)