

Report No.: FR1N2903AE

RADIO TEST REPORT

FCC ID

: QXO-AP5010

Equipment

: Access Point

Brand Name

: Extreme Networks

Model Name

: AP5010

Applicant

: Extreme Networks, Inc.

2121 RDU Center Drive Morrisville North Carolina

United States 27560

Manufacturer

: Extreme Networks, Inc.

2121 RDU Center Drive Morrisville North Carolina

United States 27560

Standard

: 47 CFR FCC Part 15.247

The product was received on Dec. 03, 2021, and testing was started from Dec. 11, 2021 and completed on Apr. 28, 2022. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number

: 1 of 32

Issued Date

: Jun. 13, 2022

Report Version : 01

Table of Contents

Report No.: FR1N2903AE

Histo	ory of this test report	3
Sumi	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	10
1.3	Testing Location Information	10
1.4	Measurement Uncertainty	10
2	Test Configuration of EUT	11
2.1	Test Channel Mode	11
2.2	The Worst Case Measurement Configuration	11
2.3	EUT Operation during Test	13
2.4	Accessories	
2.5	Support Equipment	14
2.6	Test Setup Diagram	15
3	Transmitter Test Result	18
3.1	AC Power-line Conducted Emissions	18
3.2	DTS Bandwidth	20
3.3	Maximum Conducted Output Power	21
3.4	Power Spectral Density	
3.5	Emissions in Non-restricted Frequency Bands	26
3.6	Emissions in Restricted Frequency Bands	27
4	Test Equipment and Calibration Data	31
Appe	endix A. Test Results of AC Power-line Conducted Emissions	
Appe	endix B. Test Results of DTS Bandwidth	
Appe	endix C. Test Results of Maximum Conducted Output Power	
Appe	endix D. Test Results of Power Spectral Density	
Appe	endix E. Test Results of Emissions in Non-restricted Frequency Bands	

Photographs of EUT v01

Appendix G. Test Photos

 TEL: 886-3-656-9065
 Page Number : 2 of 32

 FAX: 886-3-656-9085
 Issued Date : Jun. 13, 2022

Report Template No.: CB-A10_9 Ver1.3 Report Version : 01

Appendix F. Test Results of Emissions in Restricted Frequency Bands

History of this test report

Report No.: FR1N2903AE

Report No.	Version	Description	Issued Date
FR1N2903AE	01	Initial issue of report	Jun. 13, 2022

TEL: 886-3-656-9065 Page Number : 3 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

Summary of Test Result

Report No.: FR1N2903AE

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-
Note: Refe	erence to Sport	on Project No.: 1N2902		

Declaration of Conformity:

- The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.
- 2. The measurement uncertainty please refer to report "Measurement Uncertainty".

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen Report Producer: Viola Huang

TEL: 886-3-656-9065 Page Number : 4 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std.	Ch. Frequency (MHz)	Channel Number
2400-2483.5	802.15.4	2405-2480	11-26 [26]

Report No.: FR1N2903AE

For Radio 4

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.15.4	3	1

Note:

- 802.15.4 uses a O-QPSK (250kbps) modulation.
- BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 5 of 32
FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

1.1.2 Antenna Information

			Port							
Ant.	WLAN 2.4GHz (Radio 1) (Scanning Radio 1)	WLAN 5GHz (Radio 2)	WLAN 6E (Radio 3)	WLAN 5GHz / WLAN 6GHz (Scanning Radio 1)	BT / IEEE802.15.4 (Radio 4)	Brand Name	Model Name	Antenna Type	Connector	Gain (dBi)
1	3	3	-	-	-	WNC	95XEAJ15.30	PIFA	I-PEX	
2	1	1	-	-	-	WNC	95XEAJ15.31	PIFA	I-PEX	
3	2	2	-	-	-	WNC	95XEAJ15.32	PIFA	I-PEX	
4	4	4	-	-	-	WNC	95XEAJ15.33	PIFA	I-PEX	
5	-	-	2	-	-	WNC	95XEAJ15.34	PIFA	I-PEX	
6	-	-	1	-	-	WNC	95XEAJ15.35	PIFA	I-PEX	Note 1
7	-	-	4	-	-	WNC	95XEAJ15.36	PIFA	I-PEX	
8	-	-	3	-	-	WNC	95XEAJ15.37	PIFA	I-PEX	
9	-	-	-	1	-	WNC	95XEAJ15.38	PIFA	I-PEX	
10	-	-	-	2	-	WNC	95XEAJ15.39	PIFA	I-PEX	
11	-	-	-	-	1	WNC	95XEAJ15.40	PIFA	I-PEX	

Report No.: FR1N2903AE

Note 1:

Note	1.				A 4	tonno Coin (dD:\			
Ant.	WLAN 2.4GHz (Radio 1) (Scanning	WLAN 5GHz (Radio 2)				wLAN 6E (Radio 3)	WLAN 5GHz (Scanning Radio 1)	WLAN 6GHz (Scanning Radio 1)	BT / IEEE802.15.4 (Radio 4)
	Radio 1)	UNII 1	UNII 2A	UNII 2C	UNII 3	UNII 5~UNII 8	UNII 1~UNII 3	UNII 5~UNII 8	(Naulo 4)
1	2.04	3.99	3.18	2.9	1.52	-	-	-	-
2	2.69	1.96	2.27	1.08	1.18	-	-	-	ı
3	3.74	4.38	4.4	2.73	3.04	-	-	-	-
4	1.68	2.83	3.02	2.16	1.69	-	-	-	-
5	-	-	-	-	-	5.2	-	-	-
6	-	-	-	-	-	5.2	-	-	-
7	-	-	-	-	-	5.2	-	-	-
8	-	-	-	-	-	5.2	-	-	-
9	-	-	-	-	-	-	5.9	6.0	-
10	-	-	-	-	-	-	5.9	6.0	-
11	-	-	-	-	-	-	-	-	4.2

TEL: 886-3-656-9065 Page Number : 6 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

		Directional Gain (dBi)										
Ant.		Hz (Radio 1)		WLAN 5GHz (Radio 2)								
Απ.	(Scanning Radio 1)		UNII 1		UNII 2A		UNII 2C		UNII 3			
	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S	2T1S	2T2S		
2	5.94	2.94	5.06	2.44	5.15	2.51	3.68	0.97	4.04	1.31		
3	5.94	2.94	3.00	2.44	5.15	2.31	5.00	0.97	4.04	1.31		

Report No.: FR1N2903AE

						Di	rection	al Gain	(dBi)						
Ant.	WLAN 2.4GHz (Radio 1) (Scanning Radio 1)			WLAN 5GHz (Radio 2)											
A.I.C.			UNII 1			UNII 2A	L		UNII 2C			UNII 3			
	4T1S	4T2S	4T4S	4T1S	4T2S	4T4S	4T1S	4T2S	4T4S	4T1S	4T2S	4T4S	4T1S	4T2S	4T4S
1															
2	7.55	4.55	1.67	6.83	4.38	1.22	6.24	4.40	0.72	5.74	2.90	-0.03	5.92	3.04	0.20
3	7.55	4.55	1.07	0.63	4.30	1.22	0.24	4.40	0.72	5.74	2.90	-0.03	5.92	3.04	0.20
4															

- Note 2: The EUT has eleven antennas.
- Note 3: The above information (except gain of Radio 1 2.4GHz, Scanning Radio 1 2.4GHz, Radio 2) was declared by manufacturer.
- Note 4: Radio 1 2.4GHz, Scanning Radio 1 2.4GHz, Radio 2: Maximum Directional Gain following KDB662911 D03.

The antenna report is provided in the operational description for this application.

- Note 5: Scanning Radio 1 5GHz: Maximum Directional Gain following KDB662911 D01.
- Note 6: The EUT doesn't enable the DFS band.
- Note 7: Scanning Radio 1 5GHz: Directional gain information.

Type	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	$Directional Gain = 10 \cdot \log \left[\frac{\sum\limits_{j=1}^{N_{min}} \left\{ \sum\limits_{k=1}^{N_{obs}} \mathcal{g}_{j,k} \right\}^{2}}{N_{ANT}} \right]$

Ex.

$$Directional Gain = 10 \cdot \log \left[\frac{\sum\limits_{j=1}^{N_{mod}} \left\{ \sum\limits_{k=1}^{N_{ods}} \mathcal{g}_{j,k} \right\}^{2}}{N_{ods}} \right]$$

 ${\sf NSS1}({\sf g1,1}) = 10^{{\sf G1/20}} \; ; \\ {\sf NSS1}({\sf g1,2}) = 10^{{\sf G2/20}} \; ; \\ {\sf NSS1}({\sf g1,2}) = 10^{{\sf G3/20}} ; \\ {\sf NSS1}({\sf g1,2}) = 10^{{\sf G4/20}} \; ; \\ {\sf NSS1}({\sf g1,2}) = 10^{{\sf G3$

$$gj,k = (Nss1(g1,1) + Nss1(g1,2) + Nss1(g1,3) + Nss1(g1,4))^2$$

$$\label{eq:defDG} DG = 10 \; log[(Nss1(g1,1) \; + \; Nss1(g1,2) \; + \; Nss1(g1,3) \; + \; Nss1(g1,4))^2 \; / \; N_{ANT}] => 10 \; log[(Nss1(g1,1) \; + \; Nss1(g1,2) \; + \; Nss1(g1,3) \; + \; Nss1(g1,4))^2 \; / \; N_{ANT}] => 10 \; log[(Nss1(g1,1) \; + \; Nss1(g1,2) \; + \; Nss1(g1,3) \; + \; Nss1(g1,4))^2 \; / \; N_{ANT}] => 10 \; log[(Nss1(g1,1) \; + \; Nss1(g1,2) \; + \; Nss1(g1,3) \; + \; Nss1(g1,4))^2 \; / \; N_{ANT}] => 10 \; log[(Nss1(g1,1) \; + \; Nss1(g1,3) \; + \; Nss1(g1,4))^2 \; / \; N_{ANT}] => 10 \; log[(Nss1(g1,1) \; + \; Nss1(g1,3) \; + \; Nss1(g1,4))^2 \; / \; N_{ANT}] => 10 \; log[(Nss1(g1,1) \;$$

$$\log[(10^{\rm G1/20} + 10^{\rm G2/20} + 10^{\rm G3/20} + 10^{\rm G4/20})^2 \ / \ \rm N_{\rm ANT}]$$

Where:

G1 = 5.9 ; G2 = 5.9

5 GHz U-NII-1 DG = 8.91 dBi

5 GHz U-NII-2A DG = 8.91 dBi

5 GHz U-NII-2C DG = 8.91 dBi

5 GHz U-NII-3 DG = 8.91 dBi

For Radio 1

For 2.4GHz:

For IEEE 802.11b/g/n/VHT/ax mode (1TX/4RX):

Only Port 1 can be use as transmitting antenna.

Port 1, Port 2 could transmit simultaneously.

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas.

Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

For IEEE 802.11b/g/n/VHT/ax mode (2TX/4RX):

Port 1, Port 2 can be use as transmitting antenna.

Port 1, Port 2 could transmitting simultaneously.

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas.

Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

For IEEE 802.11b/g/n/VHT/ax mode (4TX/4RX):

Port 1, Port 2, Port 3 and Port 4 can be used as transmitting/receiving antenna.

Report No.: FR1N2903AE

Port 1, Port 2, Port 3 and Port 4 could transmit/receive simultaneously.

For Scanning Radio 1

For 2.4GHz:

For IEEE 802.11b/g/n/VHT/ax mode (4TX/4RX):

Port 1, Port 2, Port 3 and Port 4 can be used as transmitting/receiving antenna.

Port 1, Port 2, Port 3 and Port 4 could transmit/receive simultaneously.

For 5GHz UNII 1, 3:

For IEEE 802.11a/n/ac/ax mode (2TX/2RX):

Port 1, Port 2 can be used as transmitting/receiving antenna.

Port 1, Port 2 could transmit/receive simultaneously.

For 6GHz UNII 5~8:

For IEEE 802.11ax mode (2TX/2RX):

Port 1, Port 2 can be used as transmitting/receiving antenna.

Port 1, Port 2 could transmit/receive simultaneously.

For Radio 2

For 5GHz UNII 1, 3:

For IEEE 802.11a/n/ac/ax mode (1TX/4RX):

Only Port 1 can be use as transmitting antenna.

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas.

Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

For IEEE 802.11a/n/ac/ax mode (2TX/4RX):

Port 1, Port 2 can be use as transmitting antenna.

Port 1, Port 2 could transmitting simultaneously.

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas.

Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

For IEEE 802.11a/n/ac/ax mode (4TX/4RX):

Port 1, Port 2, Port 3 and Port 4 can be used as transmitting/receiving antenna.

Port 1, Port 2, Port 3 and Port 4 could transmit/receive simultaneously.

For Radio 3

For 6GHz UNII 5~8:

For IEEE 802.11ax mode (1TX/4RX):

Only Port 1 can be use as transmitting antenna.

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas.

Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

For IEEE 802.11ax mode (2TX/4RX):

Port 1, Port 2 can be use as transmitting antenna.

Port 1, Port 2 could transmitting simultaneously.

Port 1, Port 2, Port 3, Port 4 can be used as receiving antennas.

Port 1, Port 2, Port 3, Port 4 could receive simultaneously.

TEL: 886-3-656-9065 Page Number : 8 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

For IEEE 802.11ax mode (4TX/4RX):

Port 1, Port 2, Port 3 and Port 4 can be used as transmitting/receiving antenna.

Port 1, Port 2, Port 3 and Port 4 could transmit/receive simultaneously.

For Radio 4

Bluetooth / IEEE802.15.4 (1TX):

Only Port 1 can be used as transmitting antenna.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
802.15.4	1	0	n/a (DC>=0.98)	n/a (DC>=0.98)

Report No.: FR1N2903AE

NI	Oto.	•
N	OIC	

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	From Power Adapter or PoE			
Function	☑ Point-to-multipoint ☐ Point-to-point			
Test Software Version	DOS [ver 6.1.7601]			

Note: The above information was declared by manufacturer.

1.1.5 Table for Multiple Listing

Function
AP
Bridge
Mesh

Note: For above table list, only AP mode was tested and recorded in this test.

Note: The above information was declared by manufacturer.

1.1.6 Table for Radio function

Radio (R)	WLAN 2.4GHz	5GHz UNII 1, 3	Scanning radio (WLAN 2.4GHz 4TX / 5GHz UNII 1, 3 2TX / 6E UNII 5~8 2TX)	6E (UNII 5~8)	Bluetooth / IEEE802.15.4
R1	V (AP, Bridge, Mesh)	-	V (2.4GHz: AP, Bridge, Mesh/5GHz, 6E: AP)	-	ı
R2	-	V AP for UNII 1, 3 Bridge, Mesh for UNII 1, 3	-	1	1
R3	-	-	-	V (AP)	-
R4	-	-	-	-	V

Note: The above information was declared by manufacturer.

TEL: 886-3-656-9065 Page Number : 9 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR1N2903AE

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab.: Sporton International Inc. Hsinchu Laboratory

Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

(TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test site Designation No. TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH02-CB	Jay Lo	20.3~21 / 59~61	Dec. 14, 2021~Apr. 23, 2022
Radiated below 1GHz	03CH05-CB	Eason Chen	24.4~25.5 / 55~58	Dec. 16, 2021
Radiated above 1GHz	03CH01-CB	RJ Huang	23.5~24.4 / 56~59	Dec. 11, 2021~Apr. 28, 2022
AC Conduction	CO01-CB	Ryan Huang	23~24 / 52~53	Dec. 22, 2021

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.4 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.5 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.2 dB	Confidence levels of 95%
Conducted Emission	2.5 dB	Confidence levels of 95%
Output Power Measurement	1.3 dB	Confidence levels of 95%
Power Density Measurement	2.5 dB	Confidence levels of 95%
Bandwidth Measurement	0.9%	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number : 10 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
802.15.4	-
2405MHz	5
2440MHz	5
2475MHz	5
2480MHz	-1

Report No.: FR1N2903AE

2.2 The Worst Case Measurement Configuration

	The Worst Case Mode for Following Conformance Tests		
Tests Item	AC power-line conducted emissions		
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz		
Operating Mode	Normal Link, CTX		
1	Normal Link (R1: (2.4GHz) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
2	Normal Link (R1: (2.4GHz) + R2 + R3) + CTX (R4: (IEEE802.15.4)) + adapter		
	Mode 1 has been evaluated to be the worst case among Mode 1~2, thus measurement for Mode 3~4 will follow this same test mode.		
3	Normal Link (Scanning radio 1: (5GHz UNII 1, UNII 3) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
4	Normal Link (Scanning radio 1: (6GHz UNII 5~UNII 8) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
Mode 1 has been eva this same test mode.	luated to be the worst case among Mode 1~4, thus measurement for Mode 5 will follow		
5	Normal Link (R1: (2.4GHz) + R2 + R3) + CTX (R4: (Bluetooth)) + PoE		
For operating mode 5	is the worst case and it was record in this test report.		

	The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands		
Test Condition	Conducted measurement at transmit chains		

TEL: 886-3-656-9065 Page Number : 11 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands		
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.		
Operating Mode < 1GHz	Normal Link, CTX		
1	EUT in Z axis-Normal Link (R1: (2.4GHz) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
2	EUT in Y axis-Normal Link (R1: (2.4GHz) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
3	EUT in X axis-Normal Link (R1: (2.4GHz) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
Mode 1 has been evaluated this same test mode.	d to be the worst case among Mode 1~3, thus measurement for Mode 4 will follow		
4	EUT in Z axis-Normal Link (R1: $(2.4GHz) + R2 + R3) + CTX$ (R4: $(IEEE802.15.4)) + adapter$		
Mode 1 has been evaluate follow this same test mode	ed to be the worst case among Mode 1~4, thus measurement for Mode 5~6 will .		
5	EUT in Z axis-Normal Link (Scanning radio 1: (5GHz UNII 1, UNII 3) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
6	EUT in Z axis-Normal Link (Scanning radio 1: (6GHz UNII 5~8) + R2 + R3) + CTX (R4: (Bluetooth)) + adapter		
Mode 1 has been evaluated this same test mode.	d to be the worst case among Mode 1~6, thus measurement for Mode 7 will follow		
7	EUT in Z axis- Normal Link (R1: (2.4GHz) + R2 + R3) + CTX (R4: (Bluetooth)) + PoE		
For operating mode 1 is the worst case and it was record in this test report.			
	CTX		
Operating Mode > 1GHz	The EUT was performed at X axis, Y axis and Z axis and the worst case was found at Y axis. So the measurement will follow this same test configuration.		
1	Radio 4_EUT in Y axis		

Report No.: FR1N2903AE

TEL: 886-3-656-9065 Page Number : 12 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluati			
Operating Mode			
1	R1: (2.4GHz) + R2 + R3 + R4: (Bluetooth)		
2	R1: (2.4GHz) + R2 + R3 + R4: (IEEE802.15.4)		
3	Scanning radio 1: (5GHz UNII 1, UNII 3) + R2 + R3 + R4: (Bluetooth)		
4	Scanning radio 1: (5GHz UNII 1, UNII 3) + R2 + R3 + R4: (IEEE802.15.4)		
5	Scanning radio 1: (6GHz UNII 5~UNII 8) + R2 + R3 + R4: (Bluetooth)		
6	Scanning radio 1: (6GHz UNII 5~UNII 8) + R2 + R3 + R4: (IEEE802.15.4)		
fer to Sporton Test Re	eport No.: FA1N2903 for Co-location RF Exposure Evaluation.		

Report No.: FR1N2903AE

Note: The PoE and adapter are for measurement only, would not be marketed.

Their information as below:

Power	Brand	Model
PoE	Microsemi	PD-9001-10GC/AC
Adapter	Powertron	PA1045-120HIB300

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link Mode:

During the test, the EUT operation to normal function.

2.4 Accessories

Accessories	
Bracket*1	

TEL: 886-3-656-9065 Page Number: 13 of 32
FAX: 886-3-656-9085 Issued Date: Jun. 13, 2022

2.5 Support Equipment

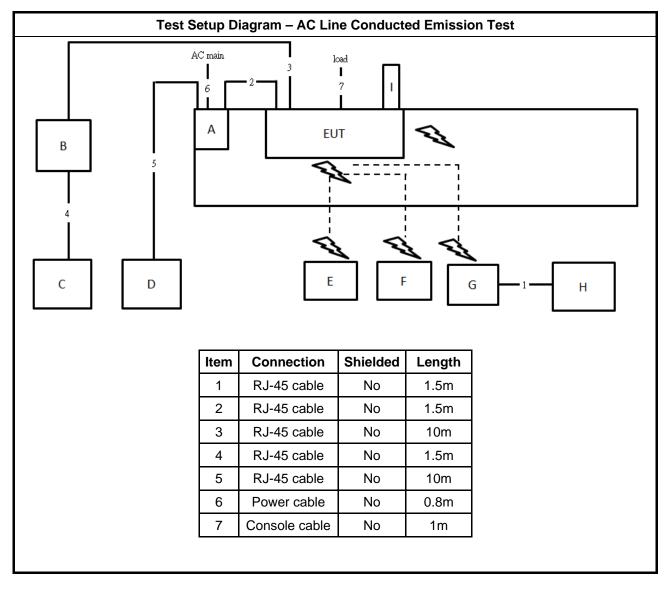
For AC Conduction:

	Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID		
Α	PoE	Microsemi	PD-9501-10GC/AC	N/A		
В	PD Load	JUNIPER	RXRB-MIB	N/A		
С	5G WAN PC	DELL	T3400	N/A		
D	LAN NB	DELL	E6430	N/A		
E	2.4G NB	DELL	E6430	N/A		
F	5G NB	DELL	E6430	N/A		
G	6E NB	DELL	E6430	N/A		
Н	6E device	JUNIPER	RXRB-MIB	N/A		
I	Flash disk3.0	Transcend	JetFlash-700	N/A		

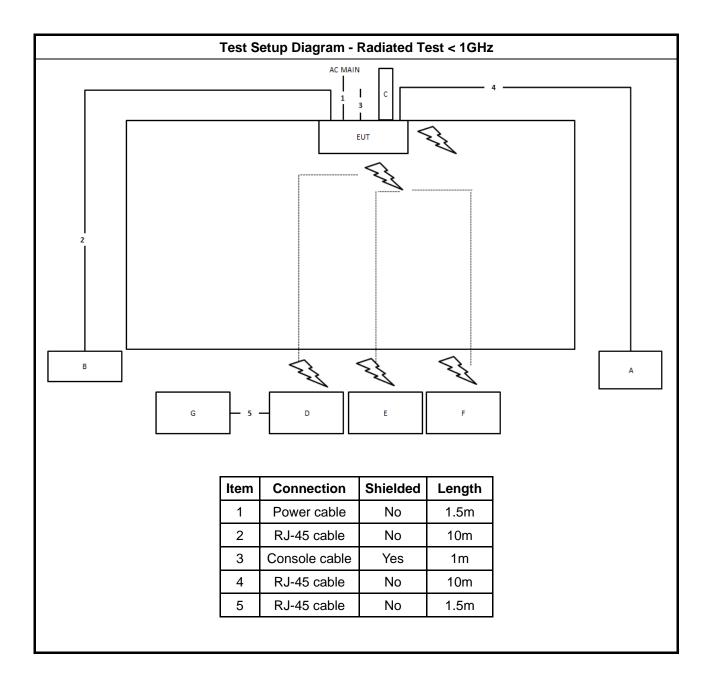
Report No.: FR1N2903AE

For Radiated (below 1GHz):

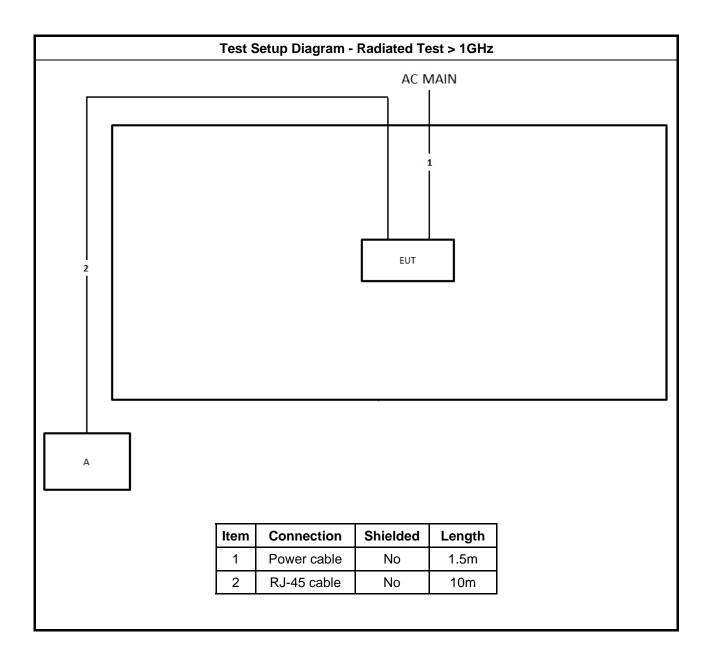
	Support Equipment					
No. Equipment		Brand Name Model Name		FCC ID		
Α	(Lan) Notebook	DELL	E4300	N/A		
В	(Lan) Notebook	DELL	E4300	N/A		
С	Flash disk3.0	Silicon Power	B06	N/A		
D	WIFI Access Point	Extreme Networks	AP5010U	N/A		
Е	(2.4G WiFi) Notebook	DELL	E4300	N/A		
F	(5G WiFi) Notebook	DELL	E4300	N/A		
G	(6E Client) Notebook	DELL	E4300	N/A		
Н	AC Adapter	Powertron	PA1045-120HIB300	N/A		


For Radiated (above 1GHz) and RF Conducted:

Support Equipment					
No. Equipment Brand Name Model Name FCC ID					
Α	NB	DELL	E4300	N/A	


TEL: 886-3-656-9065 Page Number : 14 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

2.6 Test Setup Diagram



TEL: 886-3-656-9065 Page Number : 15 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

TEL: 886-3-656-9065 Page Number : 16 of 32 FAX: 886-3-656-9085 Ssued Date : Jun. 13, 2022

Report No.: FR1N2903AE

TEL: 886-3-656-9065 Page Number : 17 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

3 Transmitter Test Result

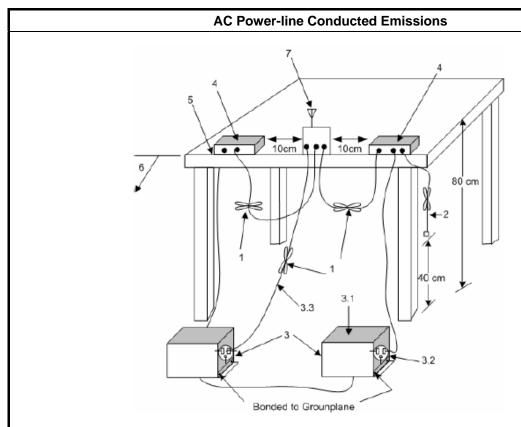
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz) Quasi-Peak Average				
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30	60	50		
Note 1: * Decreases with the logarithm of the frequency.				

Report No.: FR1N2903AE

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

TEL: 886-3-656-9065 Page Number: 18 of 32
FAX: 886-3-656-9085 Issued Date: Jun. 13, 2022

3.1.4 **Test Setup**

-Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

Report No.: FR1N2903AE

- 2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.
- 3.1—All other equipment powered from additional LISN(s).
- 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment. 3.3—LISN at least 80 cm from nearest part of EUT chassis.
- 4—Non-EUT components of EUT system being tested.
- -Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.
 -Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground
- 7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

Measurement Results Calculation

The measured Level is calculated using:

- Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- Margin = -Limit + Level

Test Result of AC Power-line Conducted Emissions 3.1.6

Refer as Appendix A

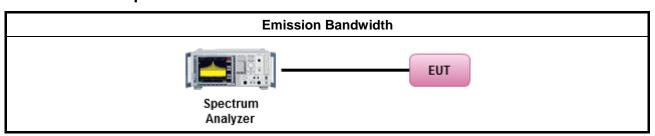
TEL: 886-3-656-9065 Page Number : 19 of 32 FAX: 886-3-656-9085 : Jun. 13, 2022 Issued Date

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit			
Systems using digital modulation techniques:			
■ 6 dB bandwidth ≥ 500 kHz.			

Report No.: FR1N2903AE


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method						
•	For the emission bandwidth shall be measured using one of the options below:						
	\boxtimes	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.					
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.					
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.					

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 20 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

- If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
- Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)$ dBm
- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

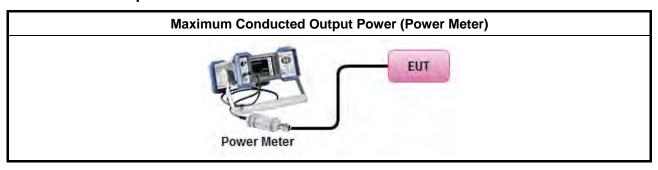
Report No.: FR1N2903AE

 \mathbf{P}_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, \mathbf{G}_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 21 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022


3.3.3 Test Procedures

		Test Method
•	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).
•	Max	imum Conducted Output Power
	[duty	/ cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)
	Mea	surement using a power meter (PM)
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).
•	For	conducted measurement.
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + \ldots + P_n \\ \text{(calculated in linear unit [mW] and transfer to log unit [dBm])} \\ \text{EIRP}_{total} = P_{total} + DG$

Report No.: FR1N2903AE

TEL: 886-3-656-9065 Page Number : 22 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

3.3.4 Test Setup

Report No.: FR1N2903AE

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

TEL: 886-3-656-9065 Page Number : 23 of 32
FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

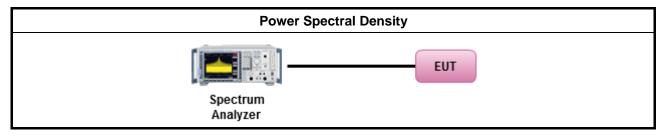
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit Power Spectral Density (PSD) ≤ 8 dBm/3kHz

Report No.: FR1N2903AE

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method	
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).		
	⊠ Ref	er as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.	
•	For cond	lucted measurement.	
	• If T	he EUT supports multiple transmit chains using options given below:	
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.	
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,	
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.	

TEL: 886-3-656-9065 Page Number : 24 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

3.4.4 Test Setup

Report No.: FR1N2903AE

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

TEL: 886-3-656-9065 Page Number : 25 of 32
FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

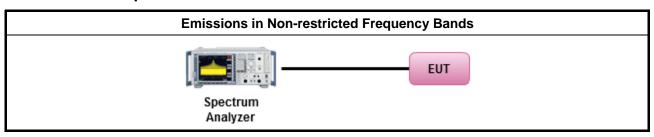
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit			
RF output power procedure	Limit (dBc)		
Peak output power procedure	20		
Average output power procedure	30		

Report No.: FR1N2903AE

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method	
Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands.	

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-656-9065 Page Number : 26 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit					
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)		
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300		
0.490~1.705	24000/F(kHz)	33.8 - 23	30		
1.705~30.0	30	29	30		
30~88	100	40	3		
88~216	150	43.5	3		
216~960	200	46	3		
Above 960	500	54	3		

Report No.: FR1N2903AE

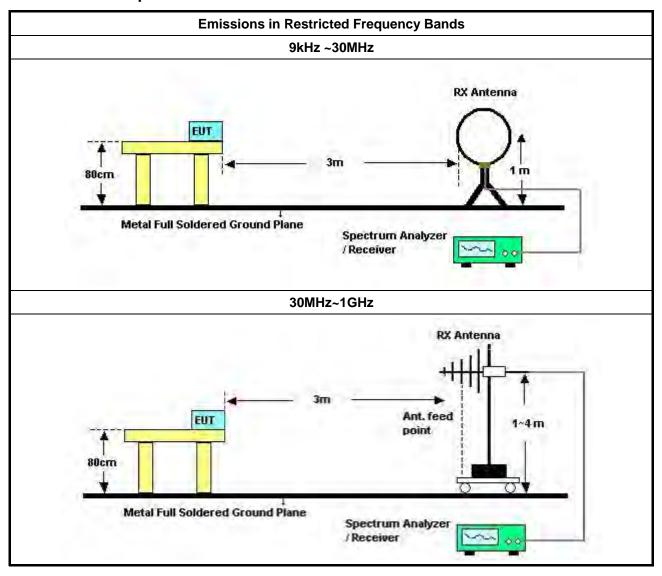
- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the ELIT
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 27 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

3.6.3 Test Procedures


	Test Method									
•	The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].									
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.									
•	For the transmitter unwanted emissions shall be measured using following options below:									
	■ Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands.									
Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace ave cycle ≥98%).										
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).									
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).									
	Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time									
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.									
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.									
•	For the transmitter band-edge emissions shall be measured using following options below:									
	Refer as FCC KDB 558074 clause 8.7 & c63.10 clause 11.13.1, When the performing peak o average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.									
 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta band-edge measurements. 										
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). 									
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB 									
	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.									

Report No.: FR1N2903AE

TEL: 886-3-656-9065 Page Number : 28 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

3.6.4 Test Setup

TEL: 886-3-656-9065 Page Number : 29 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

Report No.: FR1N2903AE

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA) (if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-656-9065 Page Number : 30 of 32 FAX: 886-3-656-9085 Issued Date : Jun. 13, 2022

4 Test Equipment and Calibration Data

Instrument	Instrument Brand		Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz	Mar. 03, 2021	Mar. 02, 2022	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-1 6-2	04083	150kHz ~ 100MHz	Jan. 06, 2021	Jan. 05, 2022	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Mar. 07, 2021	Mar. 06, 2022	Conduction (CO01-CB)
Pulse Limiter	Rohde& Schwarz	ESH3-Z2	100430	9kHz ~ 30MHz	Jan. 30, 2021	Jan. 29, 2022	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	May 19, 2021	May 18, 2022	Conduction (CO01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Apr. 14, 2021	Apr. 13, 2022	Radiation (03CH05-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH05-CB	30 MHz ~ 1 GHz	Aug. 09, 2021	Aug. 08, 2022	Radiation (03CH05-CB)
Bilog Antenna with 6dB Attenuator	TESEQ & EMCI	CBL 6112D & N-6-06	35236 & AT-N0610	30MHz ~ 2GHz	Mar. 26, 2021	Mar. 25, 2022	Radiation (03CH05-CB)
Pre-Amplifier	EMCI	EMC330N	980331	20MHz ~ 3GHz	Apr. 27, 2021	Apr. 26, 2022	Radiation (03CH05-CB)
Signal Analyzer	R&S	FSV40	101903	9kHz ~ 40GHz	Mar. 22, 2021	Mar. 21, 2022	Radiation (03CH05-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	Jun. 21, 2021	Jun. 20, 2022	Radiation (03CH05-CB)
RF Cable-low	Woken	RG402	Low Cable-04+23	30MHz~1GHz	Oct. 13, 2021	Oct. 12, 2022	Radiation (03CH05-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH05-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH01-CB	1GHz ~18GHz 3m	May 07, 2021	May 06, 2022	Radiation (03CH01-CB)
Horn Antenna	ETS-LINDGR EN	3115	00075790	750MHz ~ 18GHz	Nov. 06, 2021	Nov. 05, 2022	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 05, 2021	Aug. 04, 2022	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02121	1GHz ~ 26.5GHz	May 20, 2021	May 19, 2022	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 13, 2021	Jul. 12, 2022	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	May 03, 2021	May 02, 2022	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16	1 GHz ~ 18 GHz	Oct. 04, 2021	Oct. 03, 2022	Radiation (03CH01-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_9 Ver1.3

Page Number : 31 of 32 Issued Date : Jun. 13, 2022

Report No.: FR1N2903AE

Report Version : 01

Calibration Calibration Instrument **Brand** Model No. Serial No. Characteristics Remark Date **Due Date** High Radiation RG402 1 GHz ~ 18 GHz Oct. 04, 2021 Oct. 03, 2022 RF Cable-high Woken Cable-16+17 (03CH01-CB) High Radiation RF Cable-high Woken RG402 18GHz ~ 40 GHz Jul. 15, 2021 Jul. 14, 2022 Cable-40G#1 (03CH01-CB) Radiation High Jul. 15, 2021 RF Cable-high 18GHz ~ 40 GHz Woken RG402 Jul. 14, 2022 Cable-40G#2 (03CH01-CB) Radiation High Cable Woken WCA0929M 40G#5+7 1GHz ~ 40 GHz Dec. 14, 2021 Dec. 13, 2022 (03CH01-CB) Radiation 1GHz ~ 40 GHz High Cable Woken WCA0929M 40G#5 Dec. 08, 2021 Dec. 07, 2022 (03CH01-CB) Radiation High Cable Woken WCA0929M 40G#7 1GHz ~ 40 GHz Dec. 14, 2021 Dec. 13, 2022 (03CH01-CB) Radiation Test Software **SPORTON SENSE** V5.10 N.C.R. N.C.R. (03CH01-CB) Conducted Spectrum R&S FSV40 9kHz~40GHz Aug. 01, 2022 101027 Aug. 02, 2021 (TH02-CB) analyzer Conducted Power Sensor Anritsu MA2411B 1126203 300MHz~40GHz Oct. 25, 2021 Oct. 24, 2022 (TH02-CB) Conducted Power Meter Anritsu ML2495A 1210004 300MHz~40GHz Oct. 25, 2021 Oct. 24, 2022 (TH02-CB) Conducted RF Cable-high Woken RG402 High Cable-01 1 GHz - 18 GHz Oct. 04, 2021 Oct. 03, 2022 (TH02-CB) Conducted Woken RG402 1 GHz - 18 GHz Oct. 03, 2022 RF Cable-high High Cable-02 Oct. 04, 2021 (TH02-CB) Conducted RF Cable-high Woken RG402 High Cable-03 1 GHz - 18 GHz Oct. 04, 2021 Oct. 03, 2022 (TH02-CB) Conducted RF Cable-high Woken RG402 High Cable-04 1 GHz - 18 GHz Oct. 04, 2021 Oct. 03, 2022 (TH02-CB) Conducted RF Cable-high Woken RG402 High Cable-05 1 GHz - 18 GHz Oct. 04, 2021 Oct. 03, 2022 (TH02-CB) Conducted Switch **SPTCB** SP-SWI **SWI-02** 1 GHz -26.5 GHz Dec. 13, 2021 Dec. 12, 2022 (TH02-CB) Conducted RF Cable-high Woken RG402 SWI-02-P1 1 GHz -26.5 GHz Dec. 13, 2021 Dec. 12, 2022 (TH02-CB) Conducted RG402 SWI-02-P2 RF Cable-high Woken 1 GHz -26.5 GHz Dec. 13, 2021 Dec. 12, 2022 (TH02-CB) Conducted RF Cable-high Woken RG402 SWI-02-P3 1 GHz -26.5 GHz Dec. 13, 2021 Dec. 12, 2022 (TH02-CB) Conducted SWI-02-P4 RF Cable-high Woken RG402 1 GHz -26.5 GHz Dec. 13, 2021 Dec. 12, 2022 (TH02-CB) Conducted SWI-02-P5 1 GHz -26.5 GHz Dec. 13, 2021 Dec. 12, 2022 RF Cable-high Woken RG402

Note: Calibration Interval of instruments listed above is one year.

SENSE

V5.10

N.C.R. means Non-Calibration required.

SPORTON

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test Software

Report Template No.: CB-A10_9 Ver1.3

Page Number : 32 of 32

N.C.R.

Issued Date : Jun. 13, 2022

(TH02-CB)
Conducted

(TH02-CB)

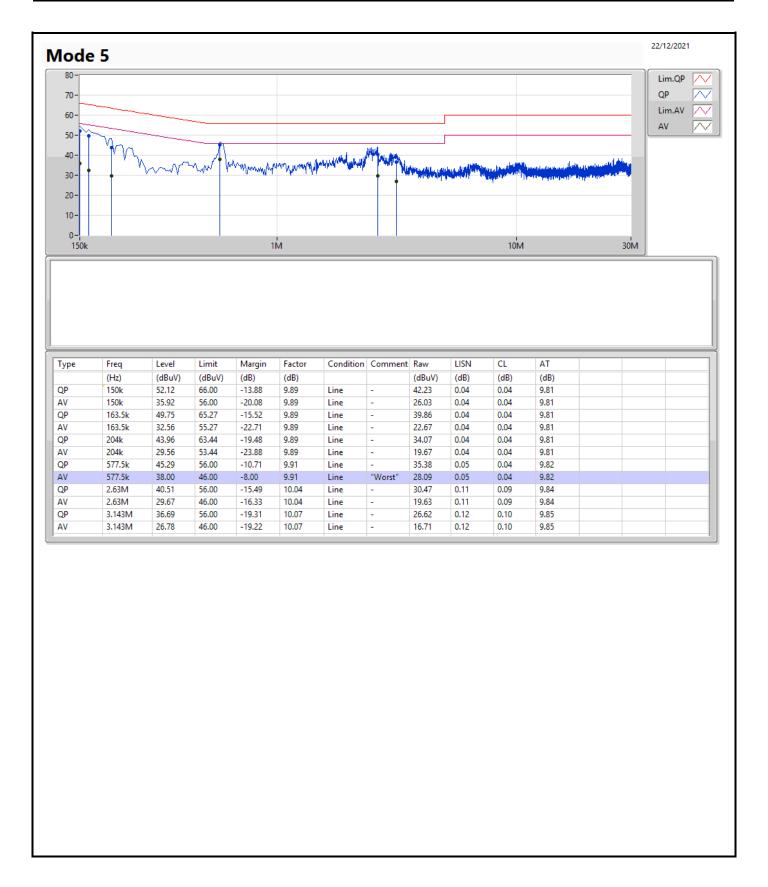
Report No.: FR1N2903AE

Report Version : 01

N.C.R.

Conducted Emissions at Powerline

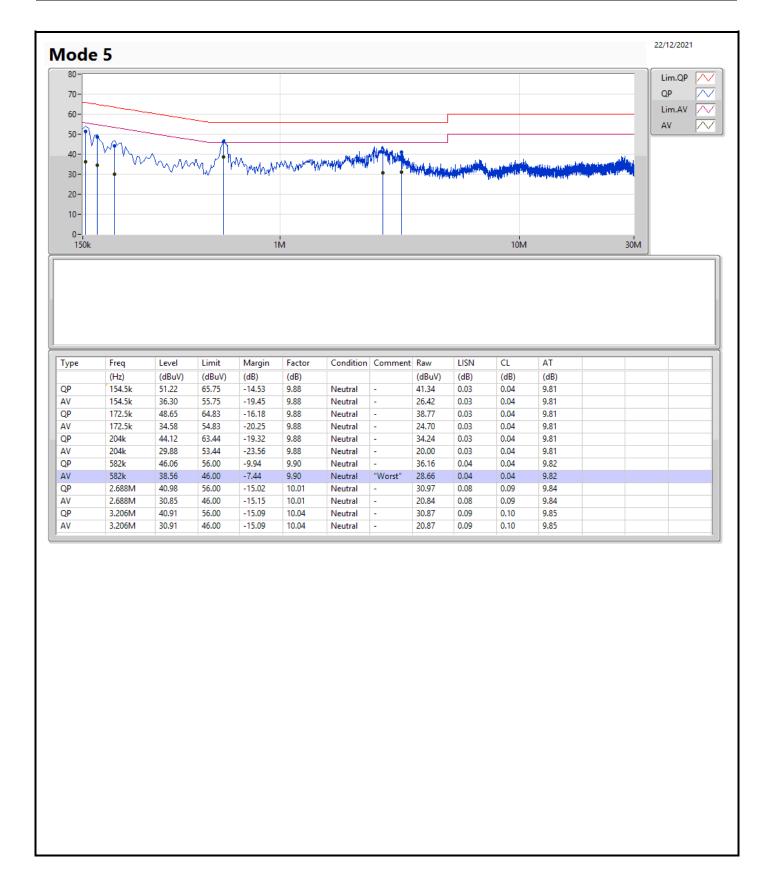
Appendix A


Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition
Mode 5	Pass	AV	582k	38.56	46.00	-7.44	Neutral

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3

Reprot No. : FR1N2903AE



Page No. : 2 of 3

Reprot No. : FR1N2903AE

Page No. : 3 of 3

Reprot No. : FR1N2903AE

EBW-DTS Appendix B

Summary

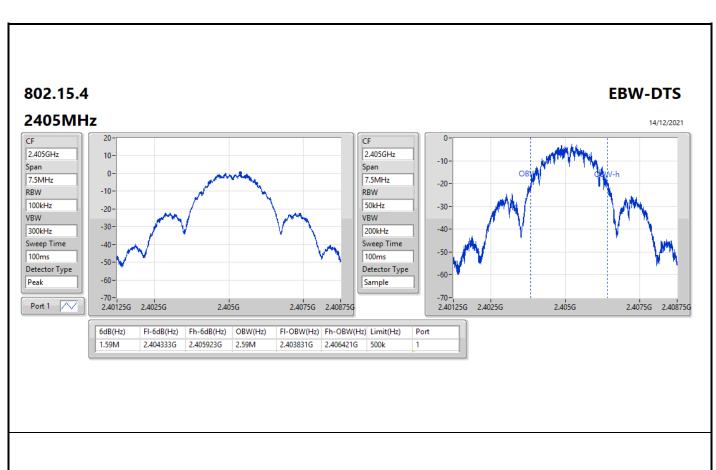
Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	=	-	=	-
802.15.4	1.598M	2.59M	2M59D1D	1.575M	2.571M

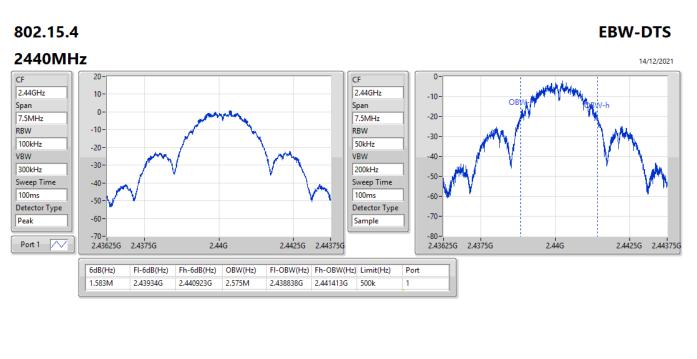
 $Max-N\ dB=Maximum\ 6dB\ down\ bandwidth;\ Max-OBW=Maximum\ 99\%\ occupied\ bandwidth;\ Min-N\ dB=Minimum\ 6dB\ down\ bandwidth;\ Min-OBW=Minimum\ 99\%\ occupied\ bandwidth;\ Minimum\ 99\%\ occupied\$

Sporton International Inc. Hsinchu Laboratory
Page No. : 1 of 4
Reprot No. : FR1N2903AE

EBW-DTS Appendix B

Result

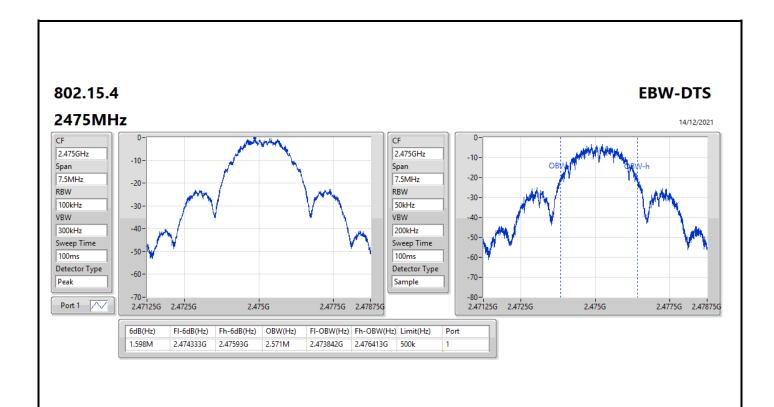

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
802.15.4	-	-	-	-
2405MHz	Pass	500k	1.59M	2.59M
2440MHz	Pass	500k	1.583M	2.575M
2475MHz	Pass	500k	1.598M	2.571M
2480MHz	Pass	500k	1.575M	2.571M

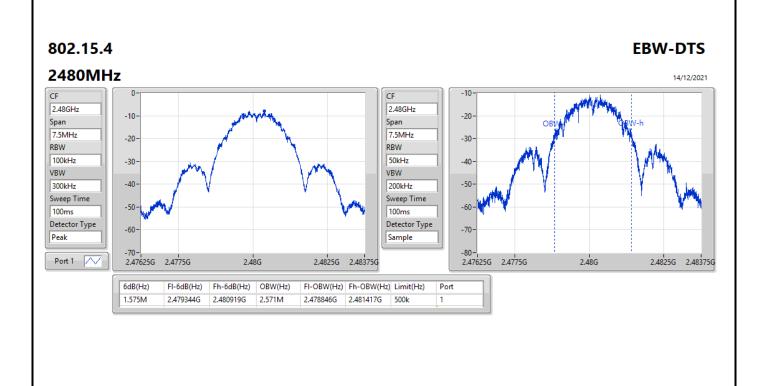

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth

Sporton International Inc. Hsinchu Laboratory Page No. : 2 of

Reprot No. : FR1N2903AE

EBW-DTS Appendix B





Page No. : 3 of 4

Reprot No. : FR1N2903AE

EBW-DTS Appendix B

Page No. : 4 of 4

Reprot No. : FR1N2903AE

Average Power-DTS

Appendix C

Summary

Mode	Power (dBm)	Power (W)
2.4-2.4835GHz	-	-
802.15.4	3.28	0.00213

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of

Reprot No. : FR1N2903AE

Average Power-DTS

Appendix C

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
802.15.4	-	-	-	-
2405MHz	Pass	4.20	3.28	30.00
2440MHz	Pass	4.20	2.85	30.00
2475MHz	Pass	4.20	2.60	30.00
2480MHz	Pass	4.20	-5.39	30.00

DG = Directional Gain; Port X = Port X output power

Page No. Reprot No. : FR1N2903AE

PSD-DTS Appendix D

Summary

Mode	PD (dBm/RBW)
2.4-2.4835GHz	·
802.15.4	-11.88

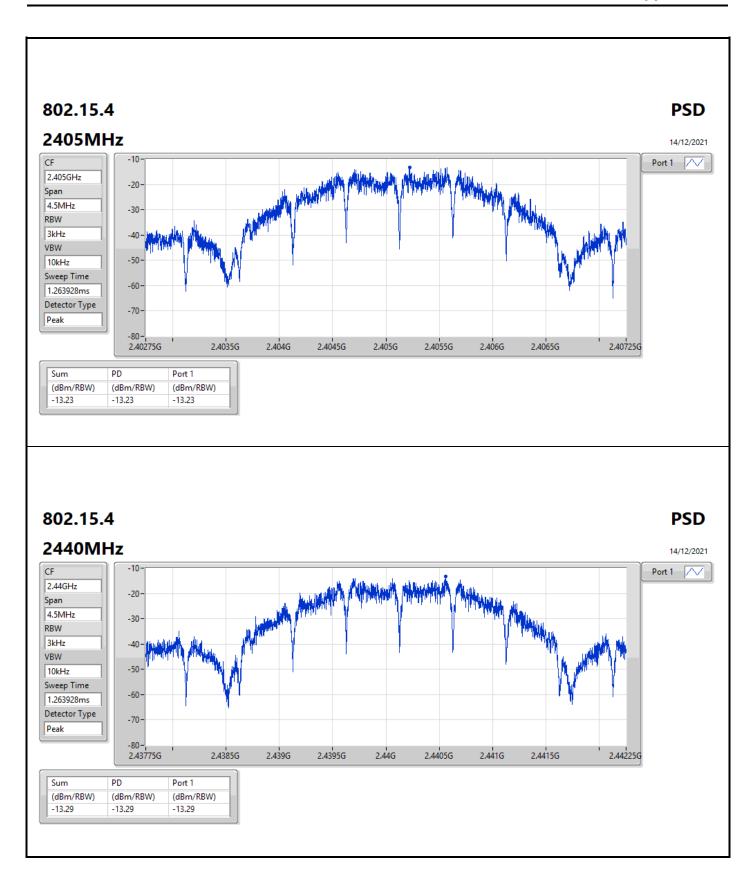
RBW = 3kHz;

Sporton International Inc. Hsinchu Laboratory

Page No. : 1 of 4
Reprot No. : FR1N2903AE

Appendix D **PSD-DTS**

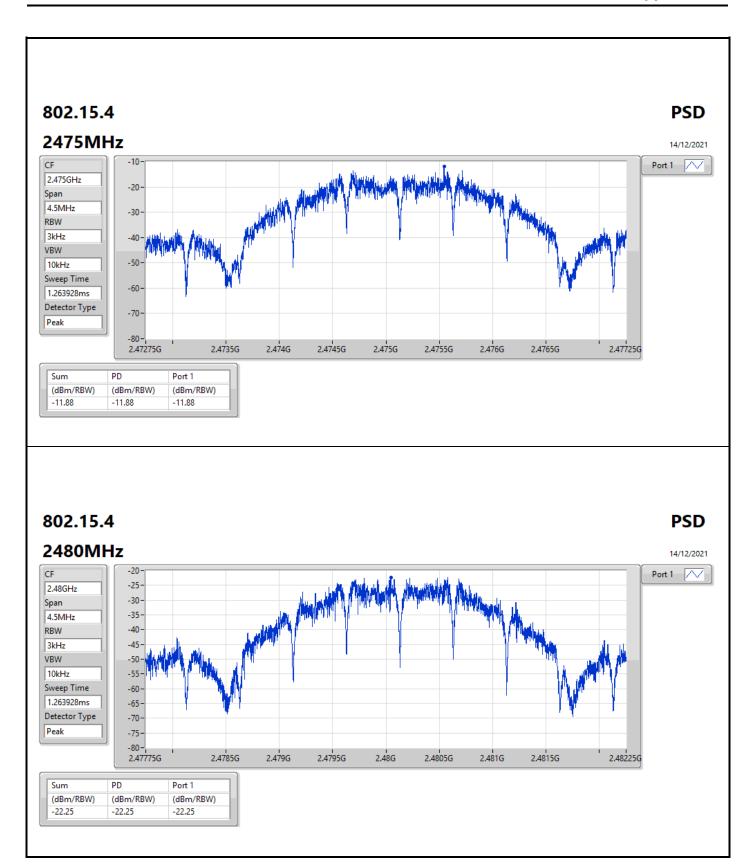
Result


Mode	Result	Gain PD		PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
802.15.4	-	=	-	-
2405MHz	Pass	4.20	-13.23	8.00
2440MHz	Pass	4.20	-13.29	8.00
2475MHz	Pass	4.20	-11.88	8.00
2480MHz	Pass	4.20	-22.25	8.00

Sporton International Inc. Hsinchu Laboratory Page No.

Reprot No. : FR1N2903AE

DG = Directional Gain; RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;


PSD-DTS Appendix D

Page No. : 3 of 4

Reprot No. : FR1N2903AE

PSD-DTS Appendix D

Page No. : 4 of 4

Reprot No. : FR1N2903AE

CSE (Non-restricted Band)-DTS

Appendix E

Summary

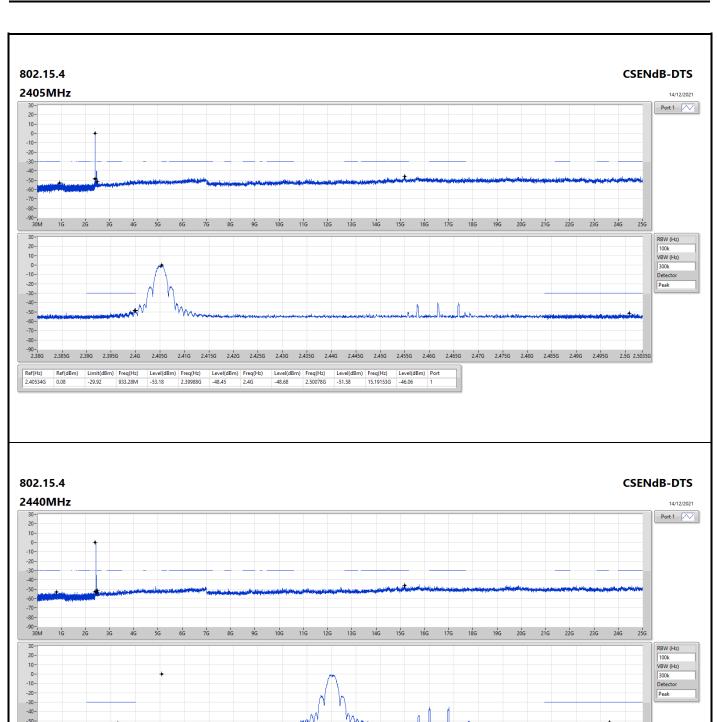
Mode	Result	Ref	Ref	Limit	Freq	Level	Port								
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)									
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
802.15.4	Pass	2.40534G	0.08	-29.92	677.43M	-52.98	2.3909G	-51.79	2.4835G	-49.32	2.4835G	-48.10	6.9803G	-46.03	1

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 4

Reprot No. : FR1N2903AE

CSE (Non-restricted Band)-DTS

Appendix E


Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
802.15.4	-	-	-	-		-	-	-	-	-	-	-	-	-	-
2405MHz	Pass	2.40534G	0.08	-29.92	933.28M	-53.18	2.39988G	-48.45	2.4G	-48.68	2.50078G	-51.58	15.19153G	-46.06	1
2440MHz	Pass	2.40534G	0.08	-29.92	810.2M	-53.10	2.39642G	-52.38	2.4835G	-54.09	2.49674G	-51.64	15.1859G	-46.11	1
2475MHz	Pass	2.40534G	0.08	-29.92	2.16409G	-53.31	2.39094G	-52.51	2.4835G	-52.31	2.48413G	-50.29	21.87861G	-45.90	1
2480MHz	Pass	2.40534G	0.08	-29.92	677.43M	-52.98	2.3909G	-51.79	2.4835G	-49.32	2.4835G	-48.10	6.9803G	-46.03	1

Sporton International Inc. Hsinchu Laboratory Page No. : 2 of

Reprot No. : FR1N2903AE

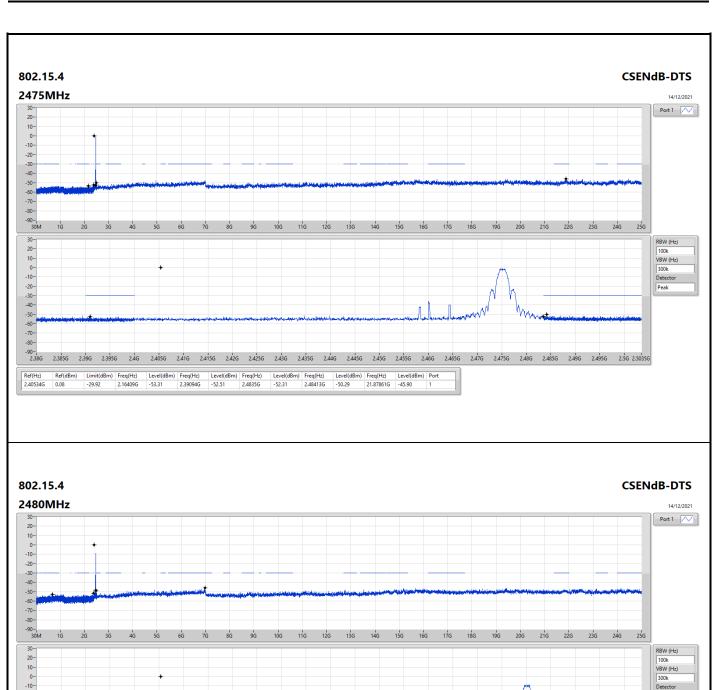
2385G 239G 2395G 24G 2405G 241G 2415G 242G 2425G 2435G 2435G 2445G 2445G 2455G 2455G 2465G 2465G 2475G 2475G 2485G 2485G 2495G 256 25035G

| Level(dBm) | Freq(Hz) | Level(dBm) | Freq(Hz) | Level(dBm) | Port | -54.09 | 2.49674G | -51.64 | 15.1859G | -46.11 | 1

 Ref(dBm)
 Limit(dBm)
 Freq(Hz)

 0.08
 -29.92
 810.2M

| Level(dBm) | Freq(Hz) | Level(dBm) | Freq(Hz) | -53.10 | 2.39642G | -52.38 | 2.4835G


-90-2.38G

2.40534G 0.08

Page No. : 3 of 4

Reprot No. : FR1N2903AE

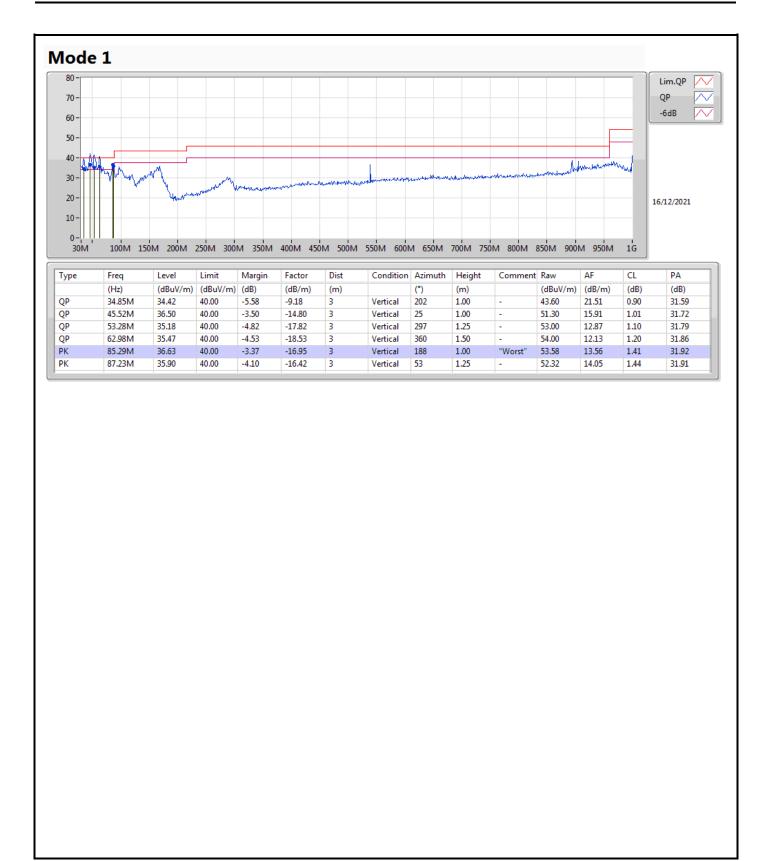
-90-1 2.38G 2.385G 2.39G 2.395G 2.4G 2.405G 2.41G 2.415G 2.42G 2.425G 2.435G 2.435G 2.44G 2.445G 2.45G 2.455G 2.45G 2.455G 2.475G 2.475G 2.475G 2.48G 2.485G 2.495G 2.50.25035G

 Ref(Hz)
 Ref(dBm)
 Limit(dBm)
 Freq(Hz)
 Level(dBm)
 Freq(Hz)
 Level(dBm)

Page No. : 4 of 4

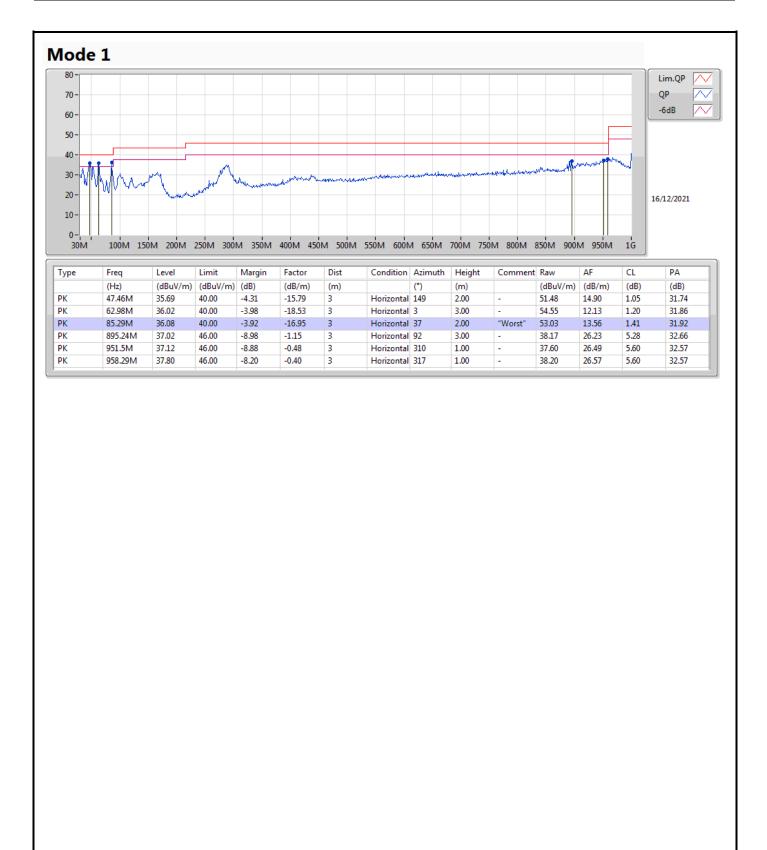
Reprot No. : FR1N2903AE

Radiated Emissions below 1GHz


Appendix F.1

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 1	Pass	PK	85.29M	36.63	40.00	-3.37	Vertical


Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 3

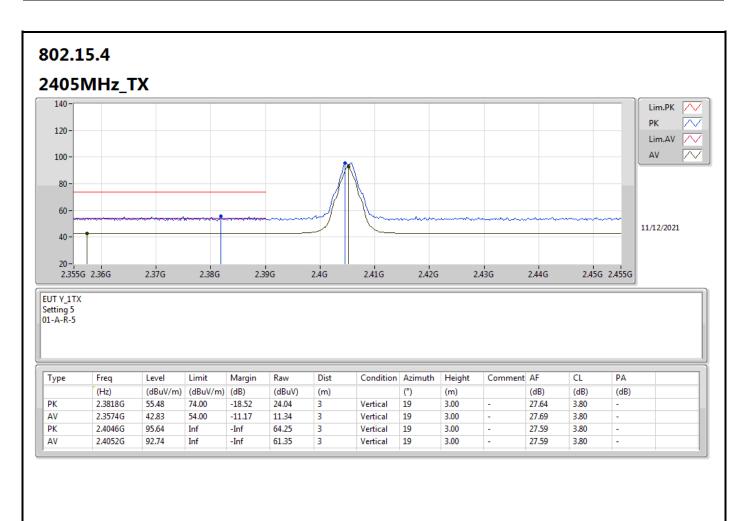
Reprot No. : FR1N2903AE

Page No. : 2 of 3
Reprot No. : FR1N2903AE

Page No. : 3 of 3

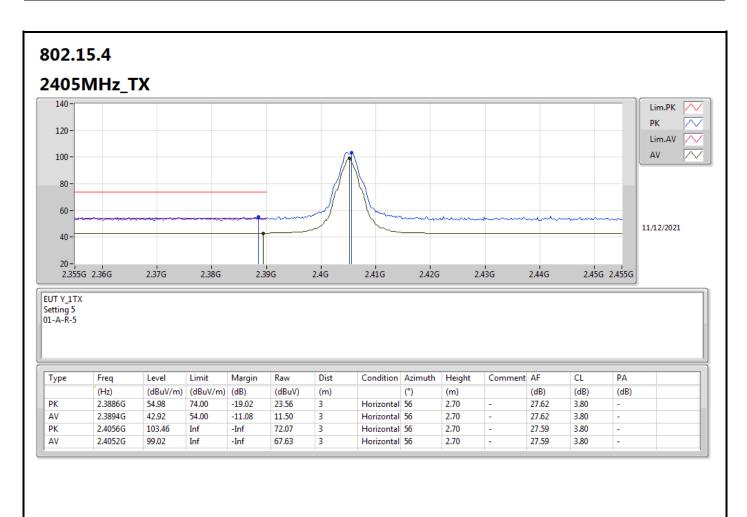
Reprot No. : FR1N2903AE

RSE TX above 1GHz

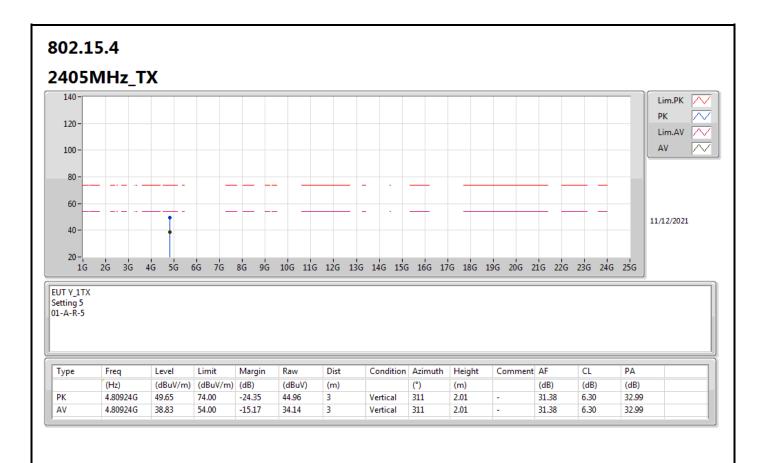

Appendix F.2

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
802.15.4	Pass	AV	2.4835G	52.76	54.00	-1.24	3	Horizontal	55	2.55	-

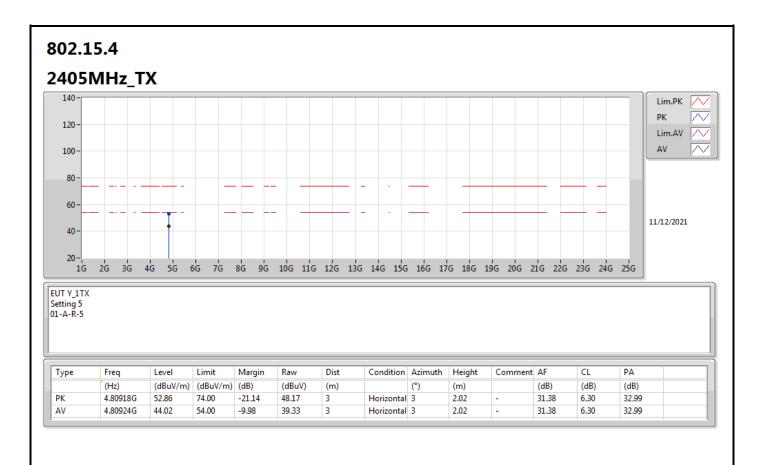

Sporton International Inc. Hsinchu Laboratory Page No. : 1 of 17 Reprot No. : FR1N2903AE

Page No. : 2 of 17 Reprot No. : FR1N2903AE

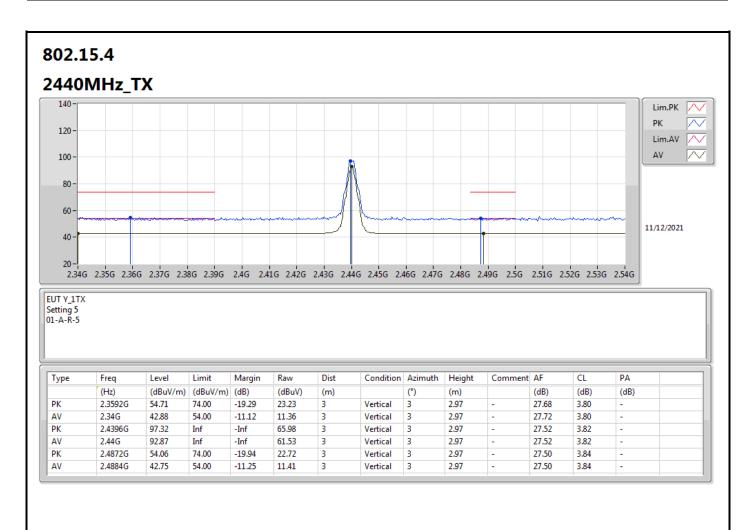


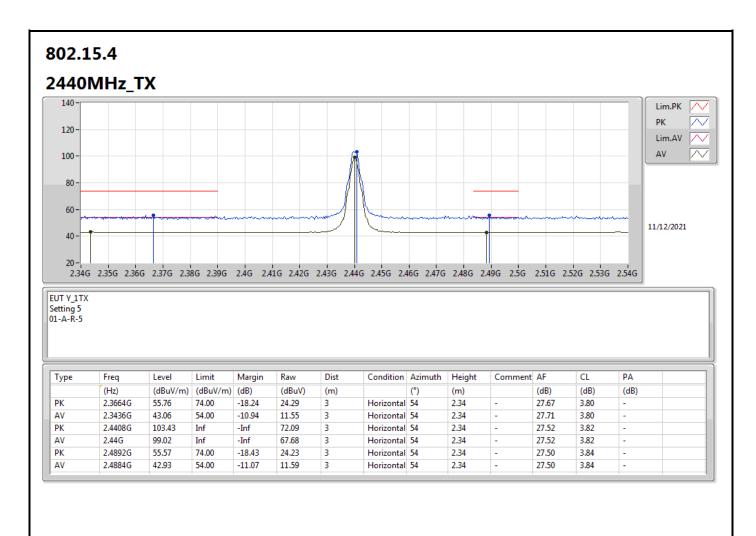
Page No. : 3 of 17

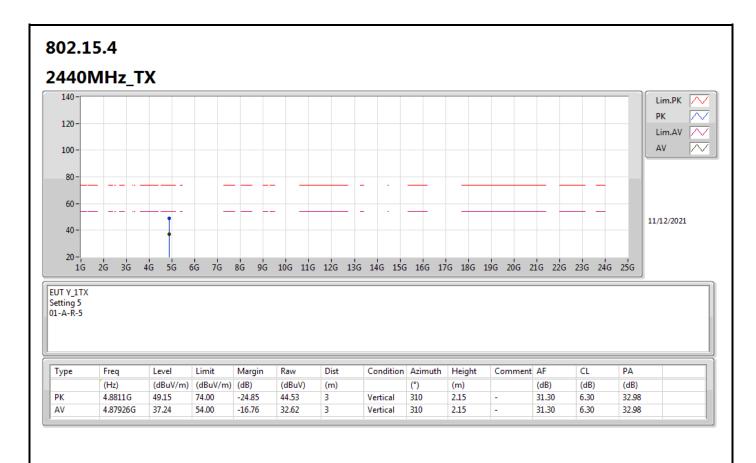
Reprot No. : FR1N2903AE



Page No. : 4 of 17


Reprot No. : FR1N2903AE


Page No. : 5 of 17
Reprot No. : FR1N2903AE

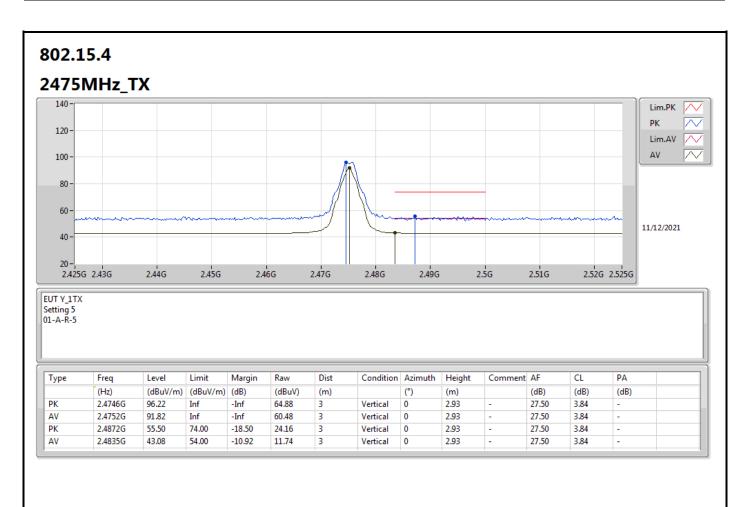

Page No. : 6 of 17
Reprot No. : FR1N2903AE

Page No. : 7 of 17 Reprot No. : FR1N2903AE



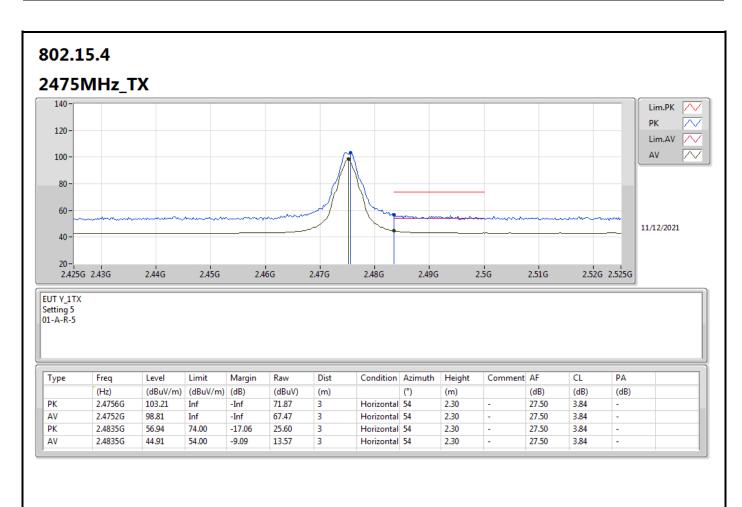
Page No. : 8 of 17

Reprot No. : FR1N2903AE

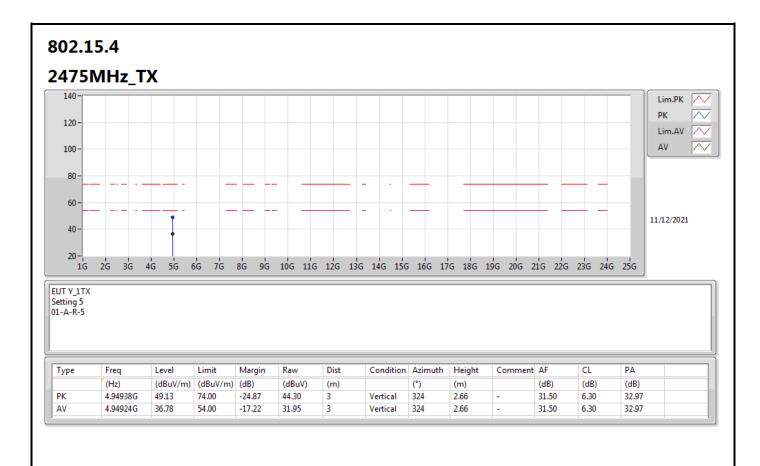


Page No. : 9 of 17

Reprot No. : FR1N2903AE



Page No. : 10 of 17

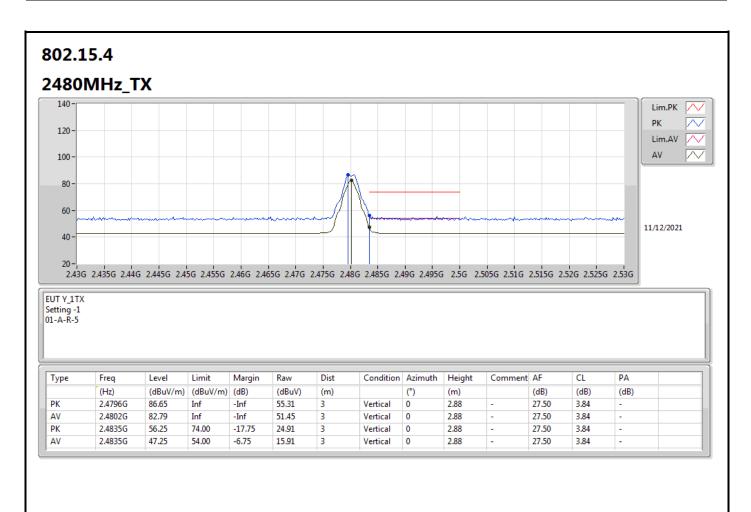

Reprot No. : FR1N2903AE

Page No. : 11 of 17 Reprot No. : FR1N2903AE



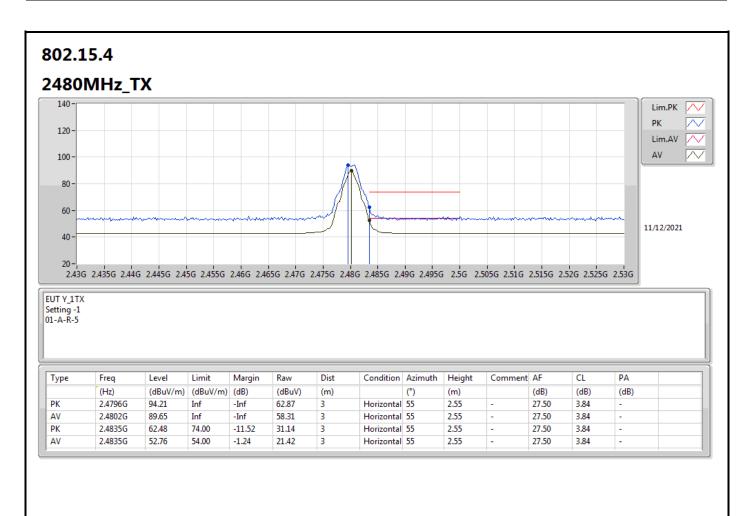
Page No. : 12 of 17

Reprot No. : FR1N2903AE



Page No. : 13 of 17

Reprot No. : FR1N2903AE



Page No. : 14 of 17

Reprot No. : FR1N2903AE

Page No. : 15 of 17

Reprot No. : FR1N2903AE

Page No. : 16 of 17

Reprot No. : FR1N2903AE

Page No. : 17 of 17

Reprot No. : FR1N2903AE