

RF Exposure Evaluation Declaration

Product Name	:	Wireless Access Point
Model No.	:	AP410C
FCC ID	:	QXO-AP410CNB

Applicant : Extreme Networks, Inc Address : 6480 Via Del Oro, San Jose, CA 95119

Date of Receipt	:	Apr. 11, 2022
Test Date	:	Apr. 12, 2022 ~ Apr. 27, 2022
Issued Date	:	May. 19, 2022
Report No.	:	2230991R-RF-US-P20V02
Report Version	:	V1.1

NOTE: The EUT used in this report and the 1992128R-RF-US-P20V02report are the same model. The difference is that the EUT used this time removes the BLE chip. The output power test results are not worse than 1992128R-RF-US-P20V02, so the test data in this report refer to the data of 1992128R-RF-US-P20V02.

The test results presented in this report relate only to the object tested.

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to account the uncertainty associated with the measurement result, unless the specification, standard or customer have special requirements

This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory

This report is not used for social proof in China (or Mainland China) market.

Test Report Certification

-

Issued Date: May. 19, 2022 Report No.: 2230991R-RF-US-P20V02

		DEKRA
Product Name Applicant Address Manufacturer Address Model No.	:	Wireless Access Point Extreme Networks, Inc 6480 Via Del Oro, San Jose, CA 95119 Extreme Networks, Inc 6480 Via Del Oro, San Jose, CA 95119 AP410C
Brand FCC ID EUT Voltage Applicable Standard	:	Extreme Networks QXO-AP410CNB DC 37~57V KDB 447498D01V06 FCC Part1.1310
Test Result Performed Location	:	Complied DEKRA Testing and Certification (Suzhou) Co., Ltd. No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 FCC Designation Number: CN1199
Documented By	:	Tim. Coo
Approved By	:	(Project Engineer: Tim Cao)

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)						
(A) Limits for ((A) Limits for Occupational/ Control Exposures									
300-1500			F/300	6						
1500-100,000			5	6						
(B) Limits for 0	(B) Limits for General Population/ Uncontrolled Exposures									
300-1500	300-1500		F/1500	6						
1500-100,000			1	30						

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78° RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	Wireless Access Point
Test Item	•••	RF Exposure Evaluation
Test Site	:	AC-6

ļ

Tes	t Site			:	AC-6									
				า:										
Ante	enna Mo	odel	No.		N/A									
Antenna Manufacturer					N/A									
Ante	enna De	elive	Ъ			1*TX+1*	RX	\square	\triangleleft	2*TX+2*RX		3*TX+3*RX		
Ante	enna Te	chno	ology		\square	SISO								
					Basi	ic ı	methodology							
					Sect	tor	ized antenna sy	stem	6					
					\boxtimes	MIMO		Cros	ss-	polarized anten	nas			
								Une	qu	al antenna gain	s, witl	n equal transmit powers		
							\square	Spa	tia	I Multiplexing				
							\boxtimes	Cycl	Cyclic Delay Diversity (CDD)					
Ante	enna Ty	/pe			PIF	PIFA								
Ante	enna Ga	ain(R	adio 1)											
Ant	onno Ta	Scho	alogy							Ant Gain				
Ante		SCHIN	Jiogy		(dBi)									
Ant	4(Radio	o 1)			4.00									
Ante	enna Ga	ain(R	adio 2)											
A						Ant Gain								
Antenna Technology				(dBi)										
			Ant1 (Radio	2)						3.80				
Antenna In WLAN 2.40 Antenna Mo Antenna Del Antenna Del Antenna Teo Antenna Typ Antenna Ga Antenna Teo Ant 4(Radio Antenna Ga		Ant2 (Radio	2)						3.90					
\square	CDD						3	.90dB	si fo	or Power; 6.91d	Bi for	PSD		
\square	Beam-	form	ing			6.91dBi for Power; 6.91dBi for PSD								

WLAN 5GHz:

Ante	enna M	odel	No.	N/A													
Ante	enna M	anuf	acturer	N/A													
Ante	enna De	elive	ry	\square	1*TX+1*F	RX [\boxtimes	2*TX	(+2*R)	×⊠	3*	TX+3*	RX	\square	4	*TX	+4*RX
Ante	enna Te	echn	ology	\square	SISO												
							Ba	asic m	nethod	ology	,						
							Se	ectoriz	zed an	tenna	a sy	stems					
					MIMO		Cr	ross-p	olariz	ed an	tenr	nas					
							Ur	nequa	al ante	nna g	ains	s, with	equa	al tra	ns	mit I	ower
						\square	Sp	patial	Multip	lexing)						
						\square	Су	yclic E	Delay I	Divers	sity	(CDD)					
Ante	enna Ty	/pe		PIF/	Ą												
Ante	enna Ga	ain(F	Radio 1)														
Antenna Technology				Ant Gain													
Anti	enna re	ecnn	ology	(dBi)													
Ant	4(Radi	o 1)		3.3													
Ante	enna Ga	ain(F	Radio 2)														
A	. .		-	Ant Gain													
Ant	enna Te	ecnn	ology	(dBi)													
			Ant1														
			(Radio 2)						4	4.5							
	SISO		Ant2							4 7							
		\square	(Radio 2)						4	4.7							
\square	CDD					4	.7d	lBi for	Powe	r; 7.7	1dB	i for P	SD				
\square	Beam-	form	ing			7.	710	dBi fo	r Powe	er; 7.7	71dE	Bi for F	SD				

Antenna	Antenna Gain(Radio 3)								
Antenna Technology		Ant Gain (dBi)							
	Ant3 (Radio 3)	4.7							
SIS	Ant5 (Radio 3)	4.6							
	Ant6 (Radio 3)	4.6							
	Ant7 (Radio 3)	4.7							
2*2	CDD	4.7dBi for Power; 7.71dBi for PSD							
2*2	Beam-forming	7.71dBi for Power; 7.71dBi for PSD							
⊠ 4*4	CDD	4.7dBi for Power; 10.72dBi for PSD							
⊠4*4	Beam-forming	10.72dBi for Power; 10.72dBi for PSD							

Note: The device supports 3 radios, radio 1(1*1 2.4GHz & 1*1 5GHz full band); radio 2(2*2 2.4GHz & 2*2 5GHz low band); radio 3(4*4 5GHz full band), and radio 2 & 3 can works with Dual 2.4GHz & 5GHz mode and Dual 5GHz mode. As the 5GHz high band filter is different between two modes, additional Radio 3 5GHz high band mode is tested for compliance.

Dual 2.4GHz & 5GHz mode: Radio 2(2.4GHz 2*2) + Radio 3(5GHz full band 4*4)

Dual 5GHz mode: Radio 2(5GHz low band 2*2) + Radio 3(5GHz high band 4*4)

Power Density

Standalone modes:

AP410C:

Wireless		Frequency	Maximum	Power Density at	Power Density	
Radio	Test Mode	Band (MHz)	EIRP	R = 20cm	Limit at R = 20 cm	
Raulo		Banu (IVINZ)	(dBm)	(mW/cm2)	(mW/cm2)	
Radio 1	802.11b/g/n/ac/ax	2400 ~ 2483.5	26.93	0.098	1.0	
Radio 2	802.11b/g/n/ac/ax	2400 ~ 2483.5	31.8	0.301	1.0	
Radio 1	802.11a/n/ac/ax	5150 ~ 5850	23.76	0.047	1.0	
Radio 2	802.11a/n/ac/ax	5150 ~ 5350	29.63	0.183	1.0	
Radio 3 Full	802.11a/n/ac/ax	5150 ~ 5850	34.61	0.575	1.0	
band	002.11d/11/dC/dX	5150 ~ 5650	34.01	0.575	1.0	
Radio 3	802.11a/n/ac/ax	5470 ~ 5850	33.83	0.481	1.0	
High band	002.11a/11/ac/ax	5470 ~ 5650	55.65	0.401	1.0	

Simultaneous transmission:

Wireless Configure	Frequency Range	Maximum EIRP (dBm)			Limit of Power	Po	Total	Limit		
	(MHz)	Radio 1	Radio 2		Density S(mW/cm2)	Radio 1	Radio 2	Radio 3	Rate	
Radio 1 + Radio 2(2.4GHz Only) + Radio 3(5GHz Full Band)	2.4G+5G	26.93	31.8	34.61	1.0	0.098	0.301	0.575	0.974	1
Radio 1 + Radio 2(5GHz Low Band) + Radio 3(5GHz High Band)	2.4G+5G	26.93	29.63	33.83	1.0	0.098	0.183	0.481	0.761	1

The EUT support simultaneously transmit with Radio 1 + Radio 2+ Radio 3.

The worst combination should be shown in the report. The simultaneously safety distance is 20cm for installed for Wireless Access Point without any other radio equipment.

- The End