## RF Exposure Report

Report No.: SA160922E02F
FCC ID: QXO-7602
Test Model: AP-7602
Received Date: Sep. 22, 2016
Test Date: Nov. 12, 2016
Issued Date: Sep. 11, 2017

Applicant: Extreme Networks, Inc.
Address: 6480 Via Del Oro, San Jose, CA 95119

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

## Table of Contents

Release Control Record ..... 3
1 Certificate of Conformity ..... 4
2 RF Exposure ..... 5
2.1 Limits For Maximum Permissible Exposure (MPE) ..... 5
2.2 MPE Calculation Formula ..... 5
2.3 Classification ..... 5
2.4 Antenna Gain ..... 5
2.5 Calculation Result of Maximum Conducted Power ..... 6

## Release Control Record

| Issue No. | Description | Date Issued |
| :--- | :--- | :--- |
| SA160922E02F | Original release. | Sep. 11, 2017 |

## 1 Certificate of Conformity

```
    Product: Access Point
    Brand: Extreme
    Test Model: AP-7602
Sample Status: ENGINEERING SAMPLE
    Applicant: Extreme Networks, Inc.
    Test Date: Nov. 12, }201
    Standards: FCC Part 2 (Section 2.1091)
    KDB 447498 D01 General RF Exposure Guidance v06
    IEEE C95.1-1992
```

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :
 , Date: $\qquad$

Approved by : $\qquad$ , Date: $\qquad$ Sep. 11, 2017

May Chen / Manager

## 2 RF Exposure

2.1 Limits For Maximum Permissible Exposure (MPE)

| Frequency Range <br> $(\mathrm{MHz})$ | Electric Field <br> Strength $(\mathrm{V} / \mathrm{m})$ | Magnetic Field <br> Strength (A/m) | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Average Time <br> $($ minutes $)$ |
| :---: | :---: | :---: | :---: | :---: |
| Limits For General Population / Uncontrolled Exposure |  |  |  |  |
| $300-1500$ | $\ldots$ | $\ldots$ | $\mathrm{~F} / 1500$ | 30 |
| $1500-100,000$ | $\ldots$ | $\ldots$ | 1.0 | 30 |

$\mathrm{F}=$ Frequency in MHz

### 2.2 MPE Calculation Formula

Pd $=\left(\right.$ Pout $\left.^{*} G\right) /\left(4^{*}\right.$ pi $\left.^{*} r^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$G=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

### 2.3 Classification

The antenna of this product, under normal use condition, is at least 20 cm away from the body of the user.
So, this device is classified as Mobile Device.

### 2.4 Antenna Gain

| No. | PCB <br> Chain No | Brand | Model | Antenna Gain(dBi) Including cable loss | Frequency range | Antenna Type | Connector type | Cable <br> Length (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Chain 0 | NA | NA | 2.61 | $2.4 \sim 2.4835 \mathrm{GHz}$ | Dipole | i-pex(MHF) | 155 |
|  |  |  |  | 4.39 | $5.15 \sim 5.25 \mathrm{GHz}$ |  |  |  |
|  |  |  |  | 4.2 | $5.25 \sim 5.35 \mathrm{GHz}$ |  |  |  |
|  |  |  |  | 4.28 | $5.47 \sim 5.725 \mathrm{GHz}$ |  |  |  |
|  |  |  |  | 5.61 | $5.725 \sim 5.85 \mathrm{GHz}$ |  |  |  |
| 2 | Chain 1 | NA | NA | 3.76 | $2.4 \sim 2.4835 \mathrm{GHz}$ | Dipole | i-pex(MHF) | 182 |
|  |  |  |  | 5.18 | $5.15 \sim 5.25 \mathrm{GHz}$ |  |  |  |
|  |  |  |  | 5.22 | $5.25 \sim 5.35 \mathrm{GHz}$ |  |  |  |
|  |  |  |  | 4.44 | $5.47 \sim 5.725 \mathrm{GHz}$ |  |  |  |
|  |  |  |  | 5.95 | $5.725 \sim 5.85 \mathrm{GHz}$ |  |  |  |
| 3 | BT | NA | NA | 1.8 | $2.4 \sim 2.483 \mathrm{GHz}$ | Dipole | i-pex(MHF) | 88 |

### 2.5 Calculation Result of Maximum Conducted Power

WLAN Maximum power

| Frequency <br> Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2412-2462$ | 183.039 | 6.21 | 20 | 0.15215 | 1 |
| $5180-5240$ | 194.249 | 7.8 | 20 | 0.23286 | 1 |
| $5260-5320$ | 185.704 | 7.74 | 20 | 0.21956 | 1 |
| $5500-5720$ | 162.102 | 7.85 | 20 | 0.17600 | 1 |
| $5745-5825$ | 260.394 | 8.79 | 20 | 0.39207 | 1 |

NOTE:
2.4GHz: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=6.21 \mathrm{dBi}$
$5 \mathrm{GHz}:$
UNII-1: Directional gain $=10 \log \left[\left(10^{\mathrm{Gi1/20}}+10^{\mathrm{G} 2 / 20} / 2\right]=7.8 \mathrm{dBi}\right.$
UNII-2A: Directional gain $=10 \log \left[\left(10^{\mathrm{GG} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=7.74 \mathrm{dBi}$
UNII-2C: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=7.37 \mathrm{dBi}$
UNII-3: Directional gain $=10 \log \left[\left(10^{\mathrm{G} 1 / 20}+10^{\mathrm{G} 2 / 20}\right)^{2} / 2\right]=8.79 \mathrm{dBi}$

## For Bluetooth:

## BT-EDR

| Frequency Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2402-2480$ | 5.957 | 1.8 | 20 | 0.00179 | 1 |

BT-LE

| Frequency Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2402-2480$ | 2.244 | 1.8 | 20 | 0.00068 | 1 |

For WLAN / BT coexistence mode:

| Condition | Technology |  |  |
| :---: | :---: | :---: | :---: |
| 1 | WLAN (2.4GHz-Chain0) | WLAN (5GHz-Chain1) | BT |
| 2 | WLAN (2.4GHz-Chain1) | WLAN (5GHz-Chain0) | BT |
| 3 | WLAN (2.4GHz-Chain0) | WLAN (2.4GHz-Chain1) | BT |
| 4 | WLAN (5GHz-Chain0) | WLAN (5GHz-Chain1) | BT |

## Condition 1

| Frequency Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2412-2462$ <br> $($ Chain 0) | 92.257 | 2.61 | 20 | 0.03348 | 1 |
| $5180-5240$, <br> $5260-5320$, <br> $5500-5720$, <br> $5745-5825$ <br> (Chain 1) | 146.893 | 5.95 | 20 | 0.11501 | 1 |
| $2402-2480$ | 5.957 | 1.8 | 20 | 0.00179 | 1 |

## Condition 2

| Frequency Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2412-2462$ <br> $($ Chain 1) | 90.782 | 3.76 | 20 | 0.04293 | 1 |
| $5180-5240$, <br> $5260-5320$, <br> $5500-5720$, <br> $5745-5825$ <br> $($ Chain 0) | 116.681 | 5.61 | 20 | 0.08448 |  |
| $2402-2480$ | 5.957 | 1.8 | 20 | 0.00179 | 1 |

## Condition 3

| Frequency Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2412-2462$ <br> $(2 \mathrm{TX})$ | 183.039 | 6.21 | 20 | 0.15215 | 1 |
| $2402-2480$ | 5.957 | 1.8 | 20 | 0.00179 | 1 |

Condition 4

| Frequency Band <br> $(\mathrm{MHz})$ | Max Power <br> $(\mathrm{mW})$ | Antenna Gain <br> $(\mathrm{dBi})$ | Distance <br> $(\mathrm{cm})$ | Power Density <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Limit <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $5180-5240$, <br> $5260-5320$, <br> $5500-5720$, <br> $5745-5825$ <br> $(2 T X)$ | 260.394 | 8.79 | 20 |  |  |
| $2402-2480$ | 5.957 | 1.8 | 20 | 0.39207 | 1 |

## Conclusion:

The formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + .etc. < 1
CPD = Calculation power density
LPD = Limit of power density

## Condition 1:

Therefore, the worst-case situation is $0.03348 / 1+0.11501 / 1+0.00179 / 1=0.15028$, which is less than " 1 ".
This confirmed that the device comply with FCC 1.1310 MPE limit.

## Condition 2:

Therefore, the worst-case situation is $0.04293 / 1+0.08448 / 1+0.00179 / 1=0.12920$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.

## Condition 3:

Therefore, the worst-case situation is $0.15215 / 1+0.00179 / 1=0.15394$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.

## Condition 4:

Therefore, the worst-case situation is $0.39207 / 1+0.00179 / 1=0.39386$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.

