No. 52, Hwa Ya 1st Ra., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Extreme Networks, Inc.
Applicant Address	9 Northeastern Blvd. Salem, NH O3079 USA
FCC ID	QXO-441 IOU
Manufacturer's company	Senao Networks, Inc.
Manufacturer Address	3F, No. 529, Chung Cheng Rd., Hsintien, Taipei, Taiwan

Product Name	WS-AP3965i-FCC
Brand Name	Extreme Networks
Model No.	31016
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	$2400 \sim 2483.5 \mathrm{MHz}$
Received Date	Nov. 17,2015
Final Test Date	Dec. 22, 2015
Submission Type	Class II Change

Statement

Test result included is only for the IEEE $802.11 \mathrm{~b} / \mathrm{g}$, IEEE 802.1 ln and IEEE 802.11 ac of the product. The test result in this report refers exclusively to the presented test model / sample.
Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v03r05 and KDB 662911 D01 v02r01, KDB644545 D01 v01r02.
The test equipment used to perform the test is calibrated and traceable to NML/ROC.
 1190

Table of Contents

1. VERIFICATION OF COMPLIANCE 1
2. SUMMARY OF THE TEST RESULT 2
3. GENERAL INFORMATION 3
3.1. Product Details. 3
3.2. Accessories4
3.3. Table for Filed Antenna 5
3.4. Table for Carrier Frequencies6
3.5. Table for Test Modes 6
3.6. Table for Testing Locations 8
3.7. Table for Class II Change 8
3.8. Table for Supporting Units 9
3.9. Table for Parameters of Test Software Setting 10
3.10. EUT Operation during Test 10
3.11. Duty Cycle 10
3.12. Test Configurations 11
4. TEST RESULT 14
4.1. AC Power Line Conducted Emissions Measurement. 14
4.2. Maximum Conducted Output Power Measurement. 18
4.3. Power Spectral Density Measurement 20
4.4. $\quad 6 \mathrm{~dB}$ Spectrum Bandwidth Measurement 27
4.5. Radiated Emissions Measurement 32
4.6. Emissions Measurement 45
4.7. Antenna Requirements 55
5. LIST OF MEASURING EQUIPMENTS 56
6. MEASUREMENT UNCERTAINTY. 58
APPENDIX A. TEST PHOTOS A1 ~ A4
APPENDIX B. RADIATED EMISSION CO-LOCATION REPORT B1 ~B3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR640141-01AC	Rev. 01	Initial issue of report	May 04, 2016

1. VERIFICATION OF COMPLIANCE

```
Product Name : WS-AP3965i-FCC
    Brand Name : Extreme Networks
    Model No. : }3101
    Applicant : Extreme Networks, Inc.
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247
```

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Nov. 17, 2015 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	Complies	16.16 dB
4.2	$15.247(\mathrm{~b})(3)$	Maximum Conducted Output Power	Complies	0.05 dB
4.3	$15.247(\mathrm{e})$	Power Spectral Density	Complies	4.14 dB
4.4	$15.247(\mathrm{~d})(2)$	6dB Spectrum Bandwidth	Complies	-
4.5	$15.247(\mathrm{~d})$	Radiated Emissions	Complies	3.63 dB
4.6	$15.247(\mathrm{~d})$	Band Edge Emissions	Complies	1.04 dB
4.7	15.203	Antenna Requirements	Complies	-

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	WLAN (4TX, 4RX)
Radio Type	Intentional Transceiver
Power Type	From PoE
Modulation	IEEE 802.11b: DSSS IEEE 802.11 g: OFDM IEEE 802.1 n/ac: see the below table
Data Modulation	IEEE 802.11b: DSSS (BPSK / QPSK / CCK) IEEE 802.11 $/ \mathrm{n}: ~ O F D M ~(B P S K ~ / ~ Q P S K ~ / ~ 16 Q A M ~ / ~ 64 Q A M) ~$
	IEEE 802.11 lac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)

Items	Description	
Beamforming Function	\boxtimes	With beamforming
Without beamforming		

Note1: The product has beamforming function for $802.11 \mathrm{n} / \mathrm{ac}$ in $2.4 \mathrm{G} / 5 \mathrm{G}$.
Note2: Test results of non-beamforming are recorded in test report: FR640141-01AA. Test results of beamforming are recorded in this test report.

Antenna and Band width

Antenna	Four (TX)	
Band width Mode	20 MHz	40 MHz
IEEE 802.11b	V	X
IEEE 802.11g	V	X
IEEE 802.11n	V	V
IEEE 802.11 ac	V	V

IEEE 11 n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
$802.1 \ln$ (HT20)	4	MCS 0-31
$802.1 \ln (H T 40)$	4	MCS 0-31
802.11 ac (VHT20)	4	MCS 0-9/Nss1-4
802.11 ac (VHT40)	4	MCS 0-9/Nss1-4

Note 1: IEEE Std. 802.11n modulation consists of HT2O and HT4O (HT: High Throughput).
Then EUT supports HT20 and HT4O.
Note 2: IEEE Std. 802.11 ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT supports VHT20 and VHT4O in 2.4 GHz .
Note 3: Modulation modes consist of below configuration:
HT20/HT4O: IEEE 802.11n, VHT2O/VHT4O: IEEE 802.11 ac

3.2. Accessories

N/A

3.3. Table for Filed Antenna

Set.	Brand Holder	Model Number (Part No.)	Extreme Part No. (Short Description)	Antenna Type	Connector	Polarized	Gain (dBi)
Antenna	2.4 GHz 5GHz						
1	Senao Networks, Inc.	AP3965i	-	PIFA Antenna	MMCX	x	Note 1

Notel:

Set.	Antenna Gain (dBi)							
	2.4GHz				5GHz			
	Chain 1	Chain 2	Chain 3	Chain 4	Chain 1	Chain 2	Chain 3	Chain 4
1	6.25	5.77	6.45	5.60	5.96	5.97	6.25	6.08

<For 2.4 GHz Function>
For IEEE $802.1 \mathrm{lb} / \mathrm{g} / \mathrm{n} / \mathrm{ac}$ mode (4TX, 4RX):
Chain 1, Chain 2, Chain 3 and Chain 4 could transmit/receive simultaneously.
<For 5 GHz Function>
For IEEE 802.11 a/n/ac mode (4TX, 4RX):
Chain 1, Chain 2, Chain 3 and Chain 4 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

There are two bandwidth systems.
For 20MHz bandwidth systems, use Channel 1~Channel 11.
For 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
$2400 \sim 2483.5 \mathrm{MHz}$	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
	3	2422 MHz	9	2452 MHz
	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	Normal Link	-	-	-
Maximum Conducted Output Power	11 ac VHT20	MCSO/Nss 1	1/6/11	$1+2+3+4$
	11 ac VHT40	MCSO/Nss 1	3/6/9	$1+2+3+4$
Power Spectral Density	11 ac VHT20	MCSO/Nss 1	1/6/11	$1+2+3+4$
	11 ac VHT40	MCSO/Nss 1	3/6/9	$1+2+3+4$
6dB Spectrum Bandwidth	11 ac VHT20	MCSO/Nss 1	1/6/11	$1+2+3+4$
	11 ac VHT40	MCSO/Nss 1	3/6/9	$1+2+3+4$
Radiated Emissions 9kHz	Normal Link	-	-	-
Radiated Emissions $1 \mathrm{GHz} \sim 10^{\text {th }}$ Harmonic	11 ac VHT20	MCSO/Nss 1	1/6/11	$1+2+3+4$
	11 ac VHT40	MCSO/Nss 1	3/6/9	$1+2+3+4$
Band Edge Emissions	11 ac VHT20	MCSO/Nss 1	1/6/11	$1+2+3+4$
	11 ac VHT40	MCSO/Nss 1	3/6/9	$1+2+3+4$

Note1: VHT2O/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11 n HT20 and HT40 are the same or lower than 802.1 lac VHT2O and VHT4O.

Note2:

The PoE is for measurement only, would not be marketed.
The PoE information as below:

Power	Brand	Model
PoE	Microsemi	PD-9001GR

Note3: All the specification of test configurations and test modes were based on customer's request.
Note4: The console port can not be used by end user. It is generally used for updating FW by professional installer.

The following test modes were performed for all tests:
For Conducted Emission test:
Mode 1. Normal Link - EUT

For Radiated Emission Below 1 GHz test:

The EUT 1 was performed at Y axis and Z axis position. Z axis has been evaluated to be the worst case, thus measurement will follow this same test mode.

Mode 1. Normal Link - Place EUT in Z axis

For Radiated Emission Above 1 GHz test:

The EUT was performed at Y axis and Z axis position. Y axis has been evaluated to be the worst case, thus measurement will follow this same test mode.

Mode 1. CTX - Place EUT in Y axis

For Co-location MPE and Radiated Emission Co-location Test:

The EUT could be applied with 2.4 GHz WLAN function and 5 GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to FA640141-01) and Radiated Emission Co-location (please refer to Appendix B) tests are added for simultaneously transmit between 2.4 GHz WLAN function and 5 GHz WLAN function.

3.6. Table for Testing Locations

Test Site Location					
Address:	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.				
TEL:	886-3-656-9065				
FAX:	886-3-656-9085				
Test Site No.		Site Category	Location	FCC Reg. No.	IC File No.
03CH01-CB		SAC	Hsin Chu	262045	IC 4086D
COO1-CB		Conduction	Hsin Chu	262045	IC 4086D
TH01-CB		OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR640141AC Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
1. Updating product name to "WS-AP3965i-FCC" from "Wireless $802.11 \mathrm{a} / \mathrm{AC}+\mathrm{b} / \mathrm{g} / \mathrm{n}$ Access Point" 2. Removing three model No.: $31018,31017,31019$ 3. Removing external antennas - Extreme Part No.: 30714, 30716, 30711, 30718, 30720, 30713, 30717, 30715, 30712, WS-AO-5D23009N, 30724 4. Changing the RF Exposure evluated separation distance to 20 cm	It is not necessary to perform for all tests.

Note: All test results are based on original report: FR640141AC.

3.8. Table for Supporting Units

For Test Site No: 03CHO1-CB (For Below 1 GHz)

Support Unit	Brand	Model	FCC ID
$\mathrm{NB}^{\star 4}$	DELL	E4300	DoC
PoE Load	Senao	LT4321UF	N/A
PoE	Microsemi	PD-9001GR	N/A

For Test Site No: 03CHO1-CB (For Above 1 GHz)

Support Unit	Brand	Model	FCC ID
NB*2	DELL	E4300	DoC
Device	Extreme Networks	31018	QXO-4411AC
PoE	Microsemi	PD-9001GR	N/A

For Test Site No: COO1-CB

Support Unit	Brand	Model	FCC ID
NB*4	DELL	E6430	DoC
PoE Load	Senao	LT4321UF	N/A
PoE	Microsemi	PD-9001GR	N/A

For Test Site No: THO1-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC
PoE	Microsemi	PD-9001GR	N/A

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	QCA VER3.0.144.0						
Mode	Test Frequency (MHz)						
	NCB: 20 MHz				NCB: 40 MHz		
	2412 MHz	2437 MHz	2462 MHz	2422 MHz	2437 MHz	2452 MHz	
802.11 ac MCSO/Nss1 VHT20	13.5	18	14	-	-	-	
802.11 ac MCSO/Nss1 VHT40	-	-	-	10.5	13.5	11	

3.10. EUT Operation during Test

For Conducted Mode:
The EUT was programmed to be in continuously transmitting mode.
For Radiated Mode:
During the test, the following programs under WIN XP were executed.
The program was executed as follows:

1. During the test, the EUT operation to normal function.
2. Executed command fixed test channel under DOS.
3. Executed "Lantest.exe " to link with the remote workstation to receive and transmit packet by Device and transmit duty cycle no less 98%

3.11. Duły Cycle

Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle $(\%)$	Duty Factor (dB)	$1 / \mathrm{T}$ Minimum VBW (kHz)
802.11 ac MCSO/Nss1 VHT20	1.750	1.910	91.62	0.38	0.57
802.11 ac MCSO/Nss1 VHT40	1.650	1.850	89.19	0.50	0.61

3.12. Test Configurations

3.12.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length(m)
1	Power cable	No	4.6 m
2	RJ-45 cable	No	10 m
3	RJ-45 cable	No	1.5 m
4	RJ-45 cable	No	10 m
5	RJ-45 cable	No	1.5 m
6	Ground cable	No	1.5 m
7	Ground cable	No	1.5 m

3.12.2. Radiation Emissions Test Configuration

Test Configuration: $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$

Item	Connection	Shielded	Length(m)
1	RJ-45 cable	No	10 m
2	RJ-45 cable	No	1.5 m
3	RJ-45 cable	No	10 m
4	RJ-45 cable	No	1.5 m
5	Ground cable	No	1.5 m
6	Power cable	No	4.6 m

Test Configuration: above 1 GHz

Item	Connection	Shielded	Length(m)
1	RJ-45 cable	No	10 m
2	RJ-45 cable	No	10 m
3	RJ-45 cable	No	1.5 m
4	Power cable	No	4.6 m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
$0.15 \sim 0.5$	$66 \sim 56$	$56 \sim 46$
$0.5 \sim 5$	56	46
$5 \sim 30$	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connected to the other LISNs. The LISN should provide $50 \mathrm{uH} / 50 \mathrm{ohms}$ coupling impedance.
4. The frequency range from 150 kHz to 30 MHz was searched.
5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:
(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m .
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω. LISN can be placed on top of, or immediately beneath, reference ground plane.
(3.1) All other equipment powered from additional LISN(s).
(3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
(3.3) LISN at least 80 cm from nearest part of EUT chassis.
(4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
(5) Non-EUT components of EUT system being tested.
(6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	$23^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Edison Lin	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1

Freq	Level	Over Limit	Limit Line	Read Level		Cable Loss	Pol/Phase	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	dB		
0.1633	38.32	-16.98	55.30	28.37	9.93	0.02	LINE	Average
0.1633	45.02	-20.28	65.30	35.07	9.93	0.02	LINE	QP
0.2455	33.58	-18.33	51.91	23.62	9.93	0.03	LINE	Average
0.2455	38.68	-23.23	61.91	28.72	9.93	0.03	LINE	QP
0.4083	27.03	-20.65	47.68	17.06	9.93	0.04	LINE	Average
0.4083	31.63	-26.05	57.68	21.66	9.93	0.04	LINE	QP
2.2968	24.19	-21.81	46.00	14.13	10.00	0.06	LINE	Average
2.2968	34.32	-21.68	56.00	24.26	10.00	0.06	LINE	QP
3.5654	21.82	-24.18	46.00	11.75	10.01	0.06	LINE	Average
3.5654	30.85	-25.15	56.00	20.78	10.01	0.06	LINE	QP
5.1663	21.83	-28.17	50.00	11.67	10.06	0.10	LINE	Average
5.1663	31.49	-28.51	60.00	21.33	10.06	0.10	LINE	QP

Temperature	$23^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Edison Lin	Phase	Neutral
Configuration	Normal Link	Test Mode	Mode 1

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1624	36.93	-18.41	55.34	27.13	9.78	0.02	NEUTRAL	Average
2	0.1624	44.62	-20.72	65.34	34.82	9.78	0.02	NEUTRAL	QP
3	0.2468	35.70	-16.16	51.86	25.88	9.79	0.03	NEUTRAL	Average
4	0.2468	39.56	-22.30	61.86	29.74	9.79	0.03	NEUTRAL	QP
5	0.4040	21.74	-26.03	47.77	11.91	9.79	0.04	NEUTRAL	Average
6	0.4040	30.52	-27.25	57.77	20.69	9.79	0.04	NEUTRAL	QP
7	2.3336	22.34	-23.66	46.00	12.43	9.85	0.06	NEUTRAL	Average
8	2.3336	33.76	-22.24	56.00	23.85	9.85	0.06	NEUTRAL	QP
9	3.3105	23.57	-22.43	46.00	13.65	9.86	0.06	NEUTRAL	Average
10	3.3105	32.50	-23.50	56.00	22.58	9.86	0.06	NEUTRAL	QP
11	5.2770	21.74	-28.26	50.00	11.73	9.91	0.10	NEUTRAL	Average
12	5.2770	30.79	-29.21	60.00	20.78	9.91	0.10	NEUTRAL	QP

Note:
Level $=$ Read Level + LISN Factor + Cable Loss.

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

The limit for output power is 30 dBm .

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50 MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

1. Test procedures refer KDB558074 D01 v03r05 section 9.2.3.2 Measurement using a power meter (PM).
2. Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
3. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	$25^{\circ} \mathrm{C}$	Humidity	45%
Test Engineer	Roki Liu	Test Date	Dec. 21,2015

Mode	Frequency	Conducted Power (dBm)					Max. Limit (dBm)	Result
		Chain 1	Chain 2	Chain 3	Chain 4	Total		
802.11ac	2412 MHz	12.72	12.96	12.28	12.94	18.75	23.96	Complies
MCSO/Nss 1	2437 MHz	18.05	17.58	17.63	18.27	23.91	23.96	Complies
VHT20	2462 MHz	13.36	13.61	12.45	13.52	19.28	23.96	Complies
802.11ac	2422 MHz	10.49	10.27	10.45	10.96	16.57	23.96	Complies
MCSO/Nss 1	2437 MHz	13.84	13.61	14.08	14.02	19.91	23.96	Complies
VHT40	2452 MHz	11.45	11.42	11.33	11.65	17.48	23.96	Complies

Note: \quad DirectionalGain $=10 \cdot \log \left[\frac{\sum_{j=1}^{N_{\text {SS }}}\left\{\sum_{k=1}^{N_{\text {NIT }}} g_{j, k}\right\}^{2}}{N_{\text {ANT }}}\right]^{2}=12.04 \mathrm{dBi}>6 \mathrm{dBi}$, SO Limit $=30-(12.04-6)=23.96 \mathrm{dBm}$.

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	$3 \mathrm{kHz} \leq \mathrm{RBW} \leq 100 \mathrm{kHz}$
VBW	$\geq 3 \times$ RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

1. Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) - section 10.2 Method PKPSD (peak PSD) and KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b) Measure and sum spectral maximal across the outputs.
2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
3. Ensure that the number of measurement points in the sweep $\geq 2 \times$ span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
5. The resulting PSD level must be $\leq 8 \mathrm{dBm}$.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Power Spectral Density

Temperature	$25^{\circ} \mathrm{C}$	Humidity	45%
Test Engineer	Roki Liu		

Mode	Frequency	Power Density ($\mathrm{dBm} / 3 \mathrm{kHz}$)					Power Density Limit (dBm/3kHz)	Result
		Chain 1	Chain 2	Chain 3	Chain 4	Total		
802.11 ac	2412 MHz	-16.16	-15.11	-15.80	-15.65	-9.64	1.96	Complies
MCSO/Nss 1	2437 MHz	-8.14	-8.48	-8.20	-7.99	-2.18	1.96	Complies
VHT2O	2462 MHz	-12.61	-12.38	-12.71	-12.53	-6.54	1.96	Complies
802.11 ac	2422 MHz	-18.55	-18.41	-17.14	-16.83	-11.65	1.96	Complies
MCSO/Nss 1	2437 MHz	-16.88	-16.87	-17.64	-17.56	-11.20	1.96	Complies
VHT40	2452 MHz	-18.70	-17.73	-19.42	-20.45	-12.94	1.96	Complies

Note: DirectionalGain $=10 \cdot \log \left[\frac{\sum_{j=1}^{N_{S S}}\left\{\sum_{k=1}^{N_{\text {ANT }}} g_{j, k}\right\}^{2}}{N_{\text {ANT }}}\right]=12.04 \mathrm{dBi}>6 \mathrm{dBi}$, So Limit $=8-(12.04-6)=1.96 \mathrm{dBm} / 3 \mathrm{kHz}$.

Note: All the test values were listed in the report.
For plots, only the channel with worse result was shown.

Power Density Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT20 / 2437 MHz / Chain 1

Date: 21.DEC. 2015 17:50:31

Power Density Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT2O / 2437 MHz / Chain 2

[^0]Power Density Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT20 / 2437 MHz / Chain 3

Date: 21.DEC. 2015 17:49:39
Power Density Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT2O / 2437 MHz / Chain 4

[^1]Power Density Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT40 / 2437 MHz / Chain 1

Date: 22.DEC. 2015 02:10:51
Power Density Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT40 / 2437 MHz / Chain 2

[^2]Power Density Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT40 / 2437 MHz / Chain 3

Date: 22.DEC. 2015 02:11:26
Power Density Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT4O / 2437 MHz / Chain 4

[^3]
4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz .

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

6dB Spectrum Bandwidth	
Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	$>6 d B$ Bandwidth
RBW	100 kHz
VBW	$\geq 3 \times$ RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto
	99% Occupied Bandwidth
Spectrum Parameters	Setting
Span	1.5 times to 5.0 times the OBW
RBW	1 \% to 5% of the OBW
VBW	$\geq 3 \times$ RBW
Detector	Peak
Trace	Max Hold

4.4.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
2. Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) - section 8.0 DTS bandwidth=>8.1 Option 1.
3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
4. Measured the spectrum width with power higher than 6 dB below carrier.

4.4.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:
This test setup layout is the same as that shown in section 4.5.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of 6 dB Spectrum Bandwidth

Temperature	$25^{\circ} \mathrm{C}$	Humidity	45%
Test Engineer	Roki Liu		

Mode	Frequency	6dB Bandwidth (MHz)	99\% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
	2412 MHz	16.52	17.97	500	Complies
	2437 MHz	16.23	21.10	500	Complies
802.11 ac MCSO/Nss 1 VHT40	2462 MHz	17.28	17.97	500	Complies
	2422 MHz	36.41	36.90	500	Complies
	2452 MHz	36.41	36.29	36.90	500
Complies					

Note: All the test values were listed in the report.
For plots, only the channel with worse result was shown.

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT2O / 2437 MHz / Chain 1 + Chain 2

+ Chain 3 + Chain 4

Date: 21.DEC. 2015 16:52:47
99\% Occupied Bandwidth Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT2O / 2437 MHz / Chain 1

+ Chain 2 + Chain 3 + Chain 4

Date: 21.DEC. 2015 17:11:29

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / 2437 MHz / Chain 1 + Chain 2

+ Chain 3 + Chain 4

Date: 21.DEC. 2015 16:57:35
99\% Occupied Bandwidth Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT40 / 2437 MHz / Chain 1

+ Chain 2 + Chain 3 + Chain 4

Date: 21.DEC. 2015 17:06:16

4.5. Radiated Emissions Measurement

4.5.1. Limit

30 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	$10+\mathrm{h}$ carrier harmonic
RBW / VBW (Emission in restricted band)	$1 \mathrm{MHz} / 3 \mathrm{MHz}$ for Peak, $1 \mathrm{MHz} / \mathrm{I} / \mathrm{T}$ for Average
RBW / VBW (Emission in non-restricted band)	$100 \mathrm{kHz} / 300 \mathrm{kHz}$ for peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	$9 \mathrm{kHz} \sim 150 \mathrm{kHz} /$ RBW 200Hz for QP
Start \sim Stop Frequency	$150 \mathrm{kHz} \sim 30 \mathrm{MHz} / \mathrm{RBW} 9 \mathrm{kHz}$ for QP
Start \sim Stop Frequency	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz} / \mathrm{RBW} 120 \mathrm{kHz}$ for QP

4.5.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1 m \& 3 m far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1 GHz , use 1 MHz VBW and 3 MHz RBW for peak reading. Then 1 MHz RBW and $1 / T$ VBW for average reading in spectrum analyzer.
7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1 GHz .
8. For testing above 1 GHz , the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
9. In case the emission is lower than 30 MHz , loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz $\sim 30 \mathrm{MHz}$

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in beamforming transmitting mode.

4.5.7. Results of Radiated Emissions ($9 \mathrm{kHz} \sim 30 \mathrm{MHz}$)

Temperature	$22^{\circ} \mathrm{C}$	Humidity	55%
Test Engineer	Stim Sung \& Owen Hsu	Configurations	Normal Link
Test Date	Nov. 18,2015	Test Mode	Mode 1

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:
The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
Distance extrapolation factor $=40 \log$ (specific distance $/$ test distance) (dB);
Limit line $=$ specific limits (dBuV) + distance extrapolation factor.

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	$22^{\circ} \mathrm{C}$	Humidity	55%
Test Engineer	Stim Sung \& Owen Hsu	Configurations	Normal Link
Test Mode	Mode 1		

Horizontal

Freq	Level	Limlt Line	Over Limit	Read Level	CableA Loss	ntenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dB	dBuV	dB	dB / m	dB	deg	Cm		
30.00	35.60	40.00	-4.40	45.09	0.20	19.80	29.49	124	114		HORIZONTAL
36.79	36.10	40.00	-3.90	49.67	0.25	15.66	29.48	360	200	Peak	HORIZONTAL
45.52	33.00	40.00	-7.00	51.45	0.33	10.69	29.47	360	200	Peak	HORIZONTAL
109.54	28.19	43.50	-15.31	44.14	0.75	12.51	29.21	360	200	Peak	HORIZONTAL
150.28	33.12	43.50	-10.38	50.04	0.92	11.17	29.01	360	200	Peak	HORIZONTAL
206.54	32.08	43.50	-11.42	49.15	1.16	10.56	28.79	360	200	Peak	HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	intenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBuW} / \mathrm{m}}$	dB	dBuV	dB	dB / m	dB	deg	Cm		
1	35.82	34.47	40.00	-5.53	47.49	0.23	16.23	29.48	360		Peak	VERTICAL
2	46.49	35.75	40.00	-4.25	54.60	0.34	10.27	29.46	360	100	Peak	VERTICAL
3	53.28	36.12	40.00	-3.88	56.97	0.41	8.18	29.44	225	142		VERTICAL
4	61.04	36.37	40.00	-3.63	58.35	0.45	6.98	29.41	360	100	Peak	VERTICAL
5	68.80	35.64	40.00	-4.36	57.71	0.48	6.82	29.37	360	100	Peak	VERTICAL
6	204.60	37.70	43.50	-5.80	54.80	1.15	10.55	28.80	360	100	Peak	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
Emission level $(\mathrm{dBuV} / \mathrm{m})=20$ log Emission level (uV / m) .
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor $=$ Level.

4.5.9. Results for Radiated Emissions ($1 \mathrm{GHz} \sim 10^{\text {th }}$ Harmonic)

Temperature	$25^{\circ} \mathrm{C}$			Humidity			58\%				
Test Engineer	Peter Wu \& Owen Hsu			Configurations			IEEE 802.11ac MCSO/Nss1 VHT2O CH 1 / Chain $1+$ Chain $2+$ Chain $3+$ Chain 4				
Test Date	Nov. 28, 2015										
Horizontal											
Freq	Level	Limit Line	Over Limit	$\begin{aligned} & \text { Read } \\ & \text { Level } \end{aligned}$	Cablea Loss	ntenna Factor	Preanip Factor	A/Pos	T/Pos	Renark	Pol/Phase
MHz	$\overline{\mathrm{dBu} / \mathrm{m}} \mathrm{m}$	$\overline{\mathrm{dBu} / \mathrm{V} / \mathrm{m}}$	dB	dBuv	dB	dB/m	dB	cm	deg		
$1 \quad 4823.40$	36.19	54.00	-17.81	28.05	8.11	33.11	33.08	175		Average	HORIZOHTAL
24832.12	48.51	74.00	-25.49	40.38	8.07	33.14	33.08	175		Peak	HORIZOHTAL

Vertical

Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ntenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBu} / \mathrm{m}} \mathrm{m}$	dB	dBuV	dB	dB/m	dB	cm	deg		
4823.88	37.99	54.00	-16.01	29.85	8.11	33.11	33.08	175	152	Average	VERTICAL
4827.64	48.95	74.00	-25.05	40.82	8.07	33.14	33.08	175	152	Peak	VERTICAL

Temperature	$25^{\circ} \mathrm{C}$				Humidity	58\%				
Test Engineer	Peter Wu \& Owen Hsu				Configurations	IEEE 802.1 lac MCSO/Nss1 VHT2O CH $6 /$ Chain 1 + Chain $2+$ Chain $3+$ Chain 4				
Test Date	Nov. 28, 2015									
Horizontal										
Freq	Level	Limit Line	over Limit	$\begin{array}{r} \text { Read } \\ \text { Level } \end{array}$	Cableantenna Loss Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBuv/m	dBuv/m	dB	dBuv	dB $\overline{d B / m}$	dB	cm	deg		
$1 \quad 4877.72$	38.79	54.00	-15.21	30.69	$97.94 \quad 33.23$	33.07	175		Average	HORIZOIITAL
24877.80	52.64	74.00	-21.36	44.54	$4 \quad 7.94 \quad 33.23$	33.07	175	159	Peak	HORIZOHTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ntenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuv/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4875.12	52.04	74.00	-21.96	43.95	7.94	33.23	33.08	175	325	Peak	VERTICAL
2	4876.92	41.60	54.00	-12.40	33.50	7.94	33.23	33.07	175	325	Average	VERTICAL

Temperature	$25^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Peter Wu \& Owen Hsu	Configurations	IEEE 802.11ac MCSO/Nss1 VHT20 CH 11 / Chain 1 + Chain 2 + Chain 3 + Chain 4
Test Date	Nov. 28, 2015		

Horizontal

	Freq	Level	Limit Line	Over Limit	Read Level	Cablea Loss	ntenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuv/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4916.72	49.44	74.00	-24.56	41.37	7.82	33.32	33.07	175	180	Peak	HORIZOHTAL
2	4919.84	35.66	54.00	-18.34	27.59	7.82	33.32	33.07	175	180	Average	HORIZOHTAL

Vertical

Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ntenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBu}} / \mathrm{m}$	dB	dBuV	dB	dB/m	dB	cm	deg		
4915.08	36.92	54.00	-17.08	28.85	7.82	33.32	33.07	175	198	Average	VERTICAL
4920.64	48.60	74.00	-25.40	40.53	7.82	33.32	33.07	175	198	Peak	VERTICAL

Temperature	$25^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Peter Wu \& Owen Hsu	Configurations	IEEE 802.11 ac MCSO/Nss 1 VHT40 CH 3 / Chain 1 + Chain 2 + Chain 3 + Chain 4
Test Date	Nov. 28, 2015		

Horizontal

	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ntenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuv/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4836.08	49.08	74.00	-24.92	40.95	8.07	33.14	33.08	175	201	Peak	HORIZOHTAL
2	4852.80	35.84	54.00	-18.16	27.72	8.03	33.17	33.08	175	201	Average	HORIZOHTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level	$\begin{aligned} & \text { CableA } \\ & \text { Loss } \end{aligned}$	ntenna Factor	Preanip Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBuv} / \mathrm{m}}$	dB	dBuV	dB	dB / m	dB	cm	deg		
1	4834.68	48.73	74.00	-25.27	40.60	8.07	33.14	33.08	175	174	Peak	VERTICAL
2	4836.56	36.10	54.00	-17.90	27.97	8.07	33.14	33.08	175	174	Average	VERTICAL

Temperature	$25^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Peter Wu \& Owen Hsu	Configurations	IEEE 802.11ac MCSO/Nss1 VHT40 CH 6 / Chain 1 + Chain 2 + Chain 3 + Chain 4
Test Date	Nov. 28, 2015		

Horizontal

	Freq	Level	Limit Line	Over Limit	Read Level	$\begin{aligned} & \text { CableA } \\ & \text { Loss } \end{aligned}$	Antenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4867.28	48.70	74.00	-25.30	40.61	7.94	33.23	33.08	175	129	Peak	HORIZOHTAL
2	4876.56	35.69	54.00	-18.31	27.60	7.94	33.23	33.08	175	129	Average	HORIZOIITAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level	CableAn Loss	ntenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4874. 20	36.21	54.00	-17.79	28.12	7.94	33.23	33.08	175	185	Average	VERTICAL
2	4877.28	48.54	74.00	-25.46	40.44	7.94	33.23	33.07	175	185	Peak	VERTICAL

Temperature	$25^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Peter Wu \& Owen Hsu	Configurations	IEEE 802.11ac MCSO/Nss1 VHT40 CH 9 / Chain 1 + Chain 2 + Chain 3 + Chain 4
Test Date	Nov. 28, 2015		

Horizontal

	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	Antenna Factor	Preanp Factor	A/Pos	T/Pos	Renark	Pol/Phase
	MHz	$\overline{\mathrm{dBu} / \mathrm{m}}$	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4902.60	48.53	74.00	-25.47	40.45	7.86	33.29	33.07	175	236	Peak	HORIZOHTAL
2	4910.36	35.65	54.00	-18.35	27.58	7.82	33.32	33.07	175	236	Average	HORIZOHTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathrm{dBu} / 2} \mathrm{~m}$	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dB	dBuV	dB	dB / m	dB	cm	deg		
1	4899.64	49.01	74.00	-24.99	40.93	7.86	33.29	33.07	175	208	Peak	VERTICAL
2	4912.00	36.10	54.00	-17.90	28.03	7.82	33.32	33.07	175	208	Average	VERTICAL

Note:
The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level $(\mathrm{dBuV} / \mathrm{m})=20$ log Emission level (uV / m).
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Emissions Measurement

4.6.1. Limit

30 dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	$1 \mathrm{MHz} / 3 \mathrm{MHz}$ for Peak,
	$1 \mathrm{MHz} / 1 / \mathrm{T}$ for Average
RBW / VBW (30dBc in any 100 kHz bandwidth emission)	$100 \mathrm{kHz} / 300 \mathrm{kHz}$ for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3.

For Radiated Out of Band Emission Measurement:

1. Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure.

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in beamforming transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	$25^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Peter Wu \& Owen Hsu	Configurations	IEEE 802.11ac MCSO/Nss1 VHT20 CH 1, 6, 11 $/$ Chain 1 + Chain 2 + Chain 3 + Chain 4
Test Date	Nov. 28, 2015 ~ Dec. 13, 2015		

Channel 1

	Freq	Level	Limit Line	Over Limit	Read Level	Cablea Loss	ntenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBuv} / \mathrm{m}}$	dB	dBuv	dB	dB/m	dB	cm	deg		
1	2388.20	65.67	74.00	-8.33	32.35	5.01	28.31	0.90	157	356	Peak	VERTICAL
2	2390.00	52.61	54.00	-1.39	19.29	5.01	28.31	0.00	157	356	Average	VERTICAL
3	2414.80	107.63			74.22	5.05	28.36	0.00	157	356	Average	VERTICAL
4	2416. 20	119.21			85.80	5.05	28.36	0.00	157	356	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz .

Channel 6

Freq	Level	Limit Line	Over Limit	Read Level	$\begin{gathered} \text { CableA } \\ \text { Loss } \end{gathered}$	ntenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	$\overline{\mathrm{dBu} /} / \mathrm{m}$	$\overline{\mathrm{dBu}} / \mathrm{l}^{\mathrm{m}}$	dB	dBuv	dB	dB / m	dB	cm	deg		
2382.40	65.30	74.00	-8.70	32.00	5.00	28.30	0.00	164	4	Peak	VERTICAL
2389.60	51.70	54.00	-2.30	18.38	5.01	28.31	0.00	164	4	Average	VERTICAL
2437.60	107.66			74.20	5.07	28.39	0.00	164	4	Average	VERTICAL
2438.20	121.50			88.04	5.07	28.39	0.00	164	4	Peak	VERTICAL
2485.60	52.77	54.00	-1. 23	19.17	5.12	28.48	0.00	164	4	Average	VERTICAL
2486.80	66.54	74.00	-7.46	32.94	5.12	28.48	0.00	164	4	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz .

Channel 11

Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	ntenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dBuv/m	dB	dBuV	d8	dB/m	dB	cm	deg		
2456.60	117.07			83.55	5.09	28.43	0.90	169	26	Peak	VERTICAL
2463.80	103.86			70.32	5.10	28.44	0.90	169	26	Average	VERTICAL
2483.50	52.79	54.00	-1.21	19.19	5.12	28.48	0.00	169	26	Average	VERTICAL
2484.80	69.05	74.00	-4.95	35.45	5.12	28.48	0.00	169	26	Peak	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz .

Temperature	$25^{\circ} \mathrm{C}$	Humidity	58%
Test Engineer	Peter Wu \& Owen Hsu	Configurations	IEEE 802.11ac MCSO/Nss1 VHT40 CH 3, 6, 9 / Chain 1 + Chain 2 + Chain 3 + Chain 4
Test Date	Nov. 28, 2015		

Channel 3

Item 3, 4 are the fundamental frequency at 2422 MHz .

Channel 6

Freq	Level	Limit Line	Over Limit	Read Level	CableA Loss	intenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	$\mathrm{dBuV} / \mathrm{m}$	$\overline{\mathrm{dBu}} / \mathrm{m}$	dB	dBuv	dB	dB/m	dB	cm	deg		
2390.00	65.54	74.00	-8.46	32.22	5.01	28.31	0.00	144	2	Peak	VERTICAL
2390.00	52.96	54.00	-1.04	19.64	5.01	28.31	0.00	144	2	Average	VERTICAL
2427.00	113.74			80.30	5.06	28.38	0.00	144	2	Peak	VERTICAL
2428.60	109.06			75.62	5.06	28.38	0.00	144	2	Average	VERTICAL
2483.80	50.82	54.00	-3.18	17.22	5.12	28.48	0.00	144	2	Average	VERTICAL
2484. 20	61.90	74.00	-12.10	28.30	5.12	28.48	0.00	144	2	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz .

Channel 9

	Freq	Level	Limit Line	Over Limit	Read Level	CableAn Loss	ntenna Factor	Preanp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	$\overline{\mathrm{dBuV} / \mathrm{m}}$	$\overline{\mathrm{dBuV} / \mathrm{m}}$	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2458.40	98.66			65.14	5.09	28.43	0.00	146	16	Average	VERTICAL
2	2460.00	111.43			77.91	5.09	28.43	0.00	146	16	Peak	VERTICAL
3	2484.40	52.96	54.00	-1.04	19.36	5.12	28.48	0.00	146	16	Average	VERTICAL
4	2486.00	66.33	74.00	-7.67	32.73	5.12	28.48	0.00	146	16	Peak	VERTICAL

Item 1, 2 are the fundamental frequency at 2452 MHz .
Note:
Emission level $(\mathrm{dBuV} / \mathrm{m})=20$ log Emission level (uV / m).
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor $=$ Level

For Emission not in Restricted Band

Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT20 / Reference Level

Date: 28.noV. 2015 13:11:56
Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT2O / CH 1 / 30MHz~2400MHz (down 30dBC)

Date: 28.nOV.2015 13:13:36

Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT20 / CH $1 / 2500 \mathrm{MHz} \sim 26500 \mathrm{MHz}$ (down 30dBC)

Date: 28.noV.2015 13:14:02
Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT2O / CH 11 / 30MHz~2400MHz (down 30dBC)

Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT2O / CH $11 / 2500 \mathrm{MHz} \sim 26500 \mathrm{MHz}$ (down 30dBC)

Date: 28.NOV. 2015 13:15:41

Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT40 / Reference Level

Date: 28.NOV.2015 13:16:34
Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT40 / CH 3 / 30MHz~2400MHz (down 30dBc)

Plot on Configuration IEEE 802.1 lac MCSO/Nss1 VHT4O / CH 3 / 2500MHz~26500MHz (down 30dBC)

Date: 28.NOV. 2015 13:21:29
Plot on Configuration IEEE 802.11 ac MCSO/Nss1 VHT40 / CH 9 / 30MHz~2400MHz (down 30dBC)

Date: 28.NOV.2015 13:18:59

Plot on Configuration IEEE 802.11ac MCSO/Nss1 VHT40 / CH 9 / 2500MHz~26500MHz (down 30dBc)

Date: 28.NOV. 2015 13:19:21

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R\&S	ESCS 30	100355	$9 \mathrm{kHz} \sim 2.75 \mathrm{GHz}$	Apr. 22, 2015	Conduction (COO1-CB)
LISN	Schwarzbeck	NSLK 8127	8127650	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	Nov. 16, 2015	Conduction (COO1-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$	Nov. 13, 2015	Conduction (COO1-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 25, 2015	Conduction (COO1-CB)
Software	Audix	E3	$6.120210 n$	-	N.C.R.	Conduction (COO1-CB)
BILOG ANTENNA	Schaffner	CBL6112D	37880	$20 \mathrm{MHz} \sim 2 \mathrm{GHz}$	Sep. 03, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
Loop Antenna	Teseq	HLA 6120	24155	$9 \mathrm{kHz}-30 \mathrm{MHz}$	Mar. 12, 2015*	$\begin{aligned} & \text { Radiation } \\ & \text { (O3CHO1-CB) } \end{aligned}$
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHOl}-\mathrm{CB}) \end{aligned}$
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA91 70252	$15 \mathrm{GHz} \sim 40 \mathrm{GHz}$	Jul. 21, 2015	$\begin{gathered} \text { Radiation } \\ (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{gathered}$
Pre-Amplifier	Agilent	8447D	2944A10991	$0.1 \mathrm{MHz} \sim 1.3 \mathrm{GHz}$	Feb. 24, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
Pre-Amplifier	Agilent	8449B	3008A02310	$1 \mathrm{GHz} \sim 26.5 \mathrm{GHz}$	Jan. 12, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
Pre-Amplifier	WM	TF-130N-R1	923365	$26 \mathrm{GHz} \sim 40 \mathrm{GHz}$	Feb. 10, 2015	Radiation ($\mathrm{O} 3 \mathrm{CHO1-CB)}$
Spectrum Analyzer	R\&S	FSP40	100056	$9 \mathrm{kHz} \sim 40 \mathrm{GHz}$	Oct. 27, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
EMI Receiver	Agilent	N9038A	MY52260123	$9 \mathrm{kHz} \sim 8.4 \mathrm{GHz}$	Jan. 21, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO1-CB}) \end{aligned}$
RF Cable-low	Woken	Low Cable-1	N/A	$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$	Nov. 02, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
RF Cable-high	Woken	High Cable-16	N/A	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	Nov. 02, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
RF Cable-high	Woken	High Cable-17	N/A	$1 \mathrm{GHz} \sim 18 \mathrm{GHz}$	Nov. 02, 2015	$\begin{aligned} & \text { Radiation } \\ & \text { (O3CHO1-CB) } \end{aligned}$
RF Cable-high	Woken	High Cable-40G-1	N/A	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	Nov. 02, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
RF Cable-high	Woken	High Cable-40G-2	N/A	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	Nov. 02, 2015	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	$\begin{aligned} & \text { Radiation } \\ & (\mathrm{O} 3 \mathrm{CHO}-\mathrm{CB}) \end{aligned}$
Spectrum analyzer	R\&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (THO1-CB)
RF Cable-high	Woken	RG402	High Cable-7	$1 \mathrm{GHz}-26.5 \mathrm{GHz}$	Nov. 02, 2015	Conducted (THOI-CB)
RF Cable-high	Woken	RG402	High Cable-8	$1 \mathrm{GHz}-26.5 \mathrm{GHz}$	Nov. 02, 2015	Conducted (THO1-CB)
RF Cable-high	Woken	RG402	High Cable-9	$1 \mathrm{GHz}-26.5 \mathrm{GHz}$	Nov. 02, 2015	Conducted (THOI-CB)
RF Cable-high	Woken	RG402	High Cable-10	$1 \mathrm{GHz}-26.5 \mathrm{GHz}$	Nov. 02, 2015	Conducted (THOI-CB)
RF Cable-high	Woken	RG402	High Cable-6	$1 \mathrm{GHz}-26.5 \mathrm{GHz}$	Nov. 02, 2015	Conducted (THO1-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Power Sensor	Agilent	U2021XA	MY53410001	$50 \mathrm{MHz} \sim 18 \mathrm{GHz}$	Nov. 02,2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.
"*" Calibration Interval of instruments listed above is two years.
N.C.R. means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission $(150 \mathrm{kHz} \sim 30 \mathrm{MHz})$	3.2 dB	Confidence levels of 95%
Radiated Emission $(30 \mathrm{MHz} \sim 1,000 \mathrm{MHz})$	3.6 dB	Confidence levels of 95%
Radiated Emission $(1 \mathrm{GHz} \sim 18 \mathrm{GHz})$	3.7 dB	Confidence levels of 95%
Radiated Emission $(18 \mathrm{GHz} \sim 40 \mathrm{GHz})$	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

[^0]: Date: 21.DEC. 2015 17:50:06

[^1]: Date: 21.DEC. 2015 17:48:45

[^2]: Date: 22.DEC. 2015 02:11:08

[^3]: Date: 22.DEC. 2015 02:11:44

