Radio Test Report

Saab AB **R60 AIS AtoN Station**

In accordance with IEC 62320-2

Prepared for: Saab AB

Lasblecksgatan 3

Linkoping SE-589 41 **SWEDEN**

COMMERCIAL-IN-CONFIDENCE

Document 75959974-01 Issue 01

SIGNATURE			
Towsell			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Matthew Russell	Chief Engineer	Authorised Signatory	09 January 2024
Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.			

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with IEC 62320-2: 2016 for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited). Results of tests covered by our Flexible UKAS Accreditation Schedule are marked FS (Flexible Scope).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

2 2
2
3
4
8
8
8
8
9
g
13
21
27
29
29
31

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	09-Jan-2024

Table 1

1.2 Introduction

Applicant Saab AB

Manufacturer Saab AB Transponder Tech

Model Number(s) R60 AIS AtoN Station

Serial Number(s) 100098

Hardware Version(s) B

Software Version(s) 1.0.12

Number of Samples Tested 1

Test Specification/Issue/Date IEC 62320-2: 2016

Order Number 4777274 - QAF

Date 30-November-2023

Date of Receipt of EUT 05-December-2023

Start of Test 13-December-2023

Finish of Test 20-December-2023

Name of Engineer(s) Thomas Biddlecombe

TÜV

Summary of Results

summary of the tests accordance with IEC

1.3 Brief

A brief carried out in 62320-2 is shown below.

Section	Specification Clause	Test Description	Comments/Base Standard	
Configuration and Mode: AIS Transceiver				
2.1	7.1.4	Modulation Spectrum Slotted Transmission	Pass	
2.2	7.1.5	Transmitter Test Sequence and Modulation Accuracy	Pass	
2.3	7.1.6	Transmitter Output Power Versus Time Function (FATDMA and RATDMA)	Pass	
2.4	7.2.7	Blocking or Desensitisation	Pass	

Table 2

COMMERCIAL-IN-CONFIDENCE Page 3 of 31

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment)	Type 3 Aids-to-Navigation (AtoN) AIS designed for marking of offshore maritime installations, such as wind energy farms, navigational aids and hazards.
Manufacturer:	Saab AB (publ.) Transponder Tech
Model:	R60 AIS AtoN Station
Part Number:	7000 120-204
Hardware Version:	В
Software Version:	1.0.12

Table 3

<u>Transmitter Technical Characteristics – Frequency Characteristics</u>

Transmitter frequency alignment range:	156 - 162 MHz
Transmitter channel switching frequency range:	25 kHz

Table 4

Transmitter RF Power Characteristics

Maximum effective rated power (rated as stated by the manufacturer):		12.5 W
Average effected radiated power (rated as stated by the manufacturer):		N/A
Is transmitter intended for:	Continuous duty: Yes Intermittent duty: Yes I	
If intermittent state DUTY CYCLE:	Transmitter ON:	0.053 seconds
II Intermittent state DOTT CTGLE.	Transmitter OFF:	10 seconds
Is transmitter output power variable?	Continuous duty: Yes	⊠ No □
		W
Marianon	Continuously variable	
Maximum power:	Stepped	\boxtimes
		11 dB per step
Maximum RF output power:		12.5 W
Minimum RF output power:		1 W

Table 5

Transmitter Modulation Input Character Characteristics (FM)

Modulation input signal level for 60% of maximum deviation at:					
Microphone socket:		mV		Impe	edance (Ohms)
Accessory socket:		mV		Impe	edance (Ohms)
Other (4):		mV	Impedance (Ohms)		
Lowest audio modulation frequency transmitted by the equipment				Hz	

Table 6

Transmitter Modulation

Frequency	Phase ⊠	Other 🗆	
If Other, Please Detail:			
Channel spacing			25 kHz
State the maximum number of channels over which the equipment can operate: 240			

Table 7

Receiver Technical Characteristics – Frequency Characteristics

Receiver frequency alignment range:	156 - 162 MHz	
Receiver channel switching frequency:	25 kHz	
Method of Frequency Generation	Crystal □ Synthesizer □ Other ⊠ Please Detail: Subsampling	
Intermediate Frequencies:	1 st 2 nd 3 rd	
Is local oscillator injection frequency higher or lower than the receiver nominal frequency?	Higher □ Lower □	

Table 8

Receiver Audio (AF) Characteristics - Maximum Rated Audio (AF) Frequency Output Power

Into Loudspeaker:		W
Into Line:		W
Into Earpiece:		W
Balanced:	Yes □ No □	
Unbalanced:	Yes □ No □	
Does connection carry DC voltage?	Yes □ No □ if Yes, please state voltage	
Normal Audio load impedance:	At Loudspeaker:	Ohms
	At Line:	Ohms
	At Earpiece:	Ohms
At audio accessory connection or facility applied (if fitted)	Output:	W
At audio accessory connection or facility socket (if fitted):	Impedance:	W
May input level at audio accessory accepts	Output:	W
Max input level at audio accessory socket:	Impedance:	W

Table 9

AC Power Source

AC supply frequency:		47 – 63 Hz	
100 V 240 V		Max current: 3 A	
Single phase ⊠ Three phase □			

Table 10

DC Power Source

Nominal voltage:	12 – 24 V	
Extreme upper voltage:	28.8 V	
Extreme lower voltage:	10.8 V	
Max current:	20 A	

Table 11

Battery Power Source

Voltage:	V			
End-point voltage:	V (Point at which the battery will terminate)			
Alkaline ☐ Leclanche ☐ Lithium ☐ Nickel Cadmium ☐ Lead Acid* ☐ *(Vehicle regulated)				
Other Please detail:				

Table 12

Temperature (over which equipment is to be type tested)

Minimum Temperature:	-15 °C		
Maximum Temperature:	+55 °C		
Other, please specify:			

Table 13

Automatic Equipment Switch Off

If the equipment is designed to automatically switch off at a predetermined voltage level which is higher or lower in value than the battery minimum and minimum calculated values this shall be clearly stated.					
Applies □	Cut off voltage	V			
Does not apply □					

Table 14

Channel Identification

Each equipment, whether one or more submitted for tests shall carry clear identification (such as a serial number), together with the frequencies associated with the channel identification displayed on the equipment.					
Channel Position Channel Number Transmit Nominal Receive Nominal Frequency (MHz) Frequency (MHz)					

Table 15

I hereby declare that the information supplied is correct and complete.

Name: Christian Andersson Position held: Product Manager Date: 06-Decmeber-2023

1.5 Product Information

1.5.1 Technical Description

The EUT is a Type 3 AtoN AIS according to IEC 62320-2 and ITU-R M.1371-5, that supports the following:

- Reporting of virtual or synthetic AtoNs with AIS message 21 with individual reporting rates
- FATDMA and RATDMA access schemes
- · Reception of all applicable AIS messages

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State Description of Modification still fitted to EUT		Modification Fitted By	Date Modification Fitted		
Model: R60 AlS AtoN Station, Serial Number: 100098					
0	As supplied by the customer	Not Applicable	Not Applicable		

Table 16

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation	
Configuration and Mode: AIS Transceiver			
Modulation Spectrum Slotted Transmission	Thomas Biddlecombe	UKAS	
Transmitter Test Sequence and Modulation Accuracy	Thomas Biddlecombe	UKAS	
Transmitter Output Power Versus Time Function (FATDMA and RATDMA)	Thomas Biddlecombe	UKAS	
Blocking or Desensitisation	Thomas Biddlecombe	UKAS	

Table 17

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Modulation Spectrum Slotted Transmission

2.1.1 Specification Reference

IEC 62320-2, Clause 7.1.4

2.1.2 Equipment Under Test and Modification State

R60 AIS AtoN Station, S/N: 100098 - Modification State 0

2.1.3 Date of Test

13-December-2023

2.1.4 Test Method

This test was performed in accordance with IEC 62320-2, clause 7.1.4.2.

2.1.5 Environmental Conditions

Ambient Temperature 22.2 °C Relative Humidity 33.7 %

2.1.6 Test Results

AIS Transceiver

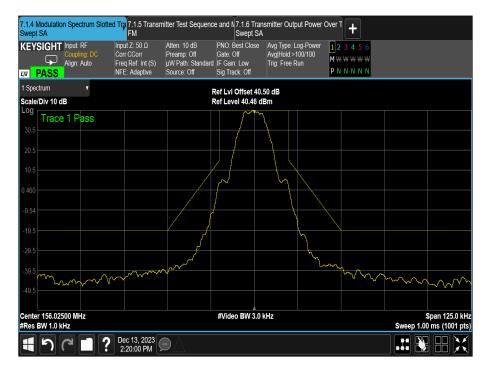


Figure 1 - 156.025 MHz

Figure 2 - 162.025 MHz

IEC 62320-2, Limit Clause 7.1.4.3

The spectrum for slotted transmission shall be within the emission mask as follows:

- in the region between the carrier and \pm 10 kHz removed from the carrier, the modulation and transient sidebands shall be below 0 dBc;
- \bullet at \pm 10 kHz removed from the carrier, the modulation and transient sidebands shall be below -25 dBc;
- at \pm 25 kHz to \pm 62,5 kHz removed from the carrier, the modulation and transient sidebands shall be below the lower value of -60 dBc or -30 dBm;
- in the region between \pm 10 kHz and \pm 25 kHz removed from the carrier, the modulation and transient sidebands shall be below a line specified between these two points.

The reference level for the measurement shall be the carrier power (conducted) recorded for the appropriate test frequency in 7.1.1.2.

For information the emission mask specified above is shown below.

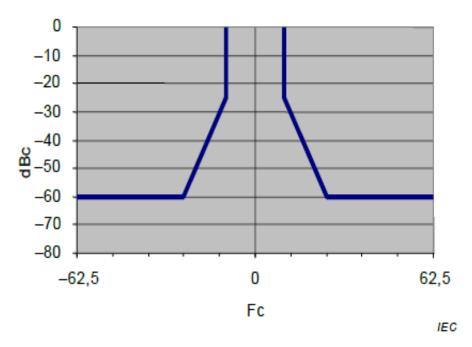


Figure 3 - Transmission Spectrum Mask Limit

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3159	12	21-May-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Attenuator (20 dB, 150 W)	Narda	769-20	3367	12	02-Aug-2024
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	06-Mar-2024
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5511	12	21-May-2024
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	5514	12	21-May-2024

Table 18

2.2 Transmitter Test Sequence and Modulation Accuracy

2.2.1 Specification Reference

IEC 62320-2, Clause 7.1.5

2.2.2 Equipment Under Test and Modification State

R60 AIS AtoN Station, S/N: 100098 - Modification State 0

2.2.3 Date of Test

13-December-2023 to 19-December-2023

2.2.4 Test Method

This test was performed in accordance with IEC 62320-2, clause 7.1.5.2.

2.2.5 Environmental Conditions

Ambient Temperature 21.8 - 22.2 °C Relative Humidity 33.7 - 52.1 %

2.2.6 Test Results

AIS Transceiver

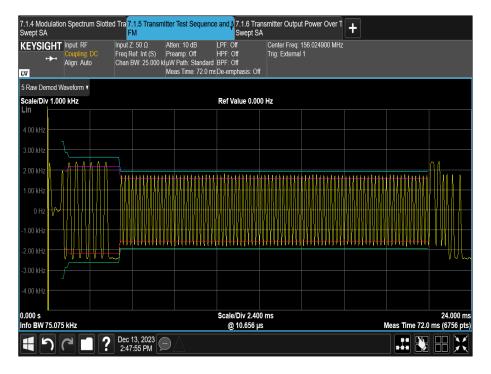


Figure 4 - 156.025 MHz, Test Signal #1, +22.2 °C, 24 V DC

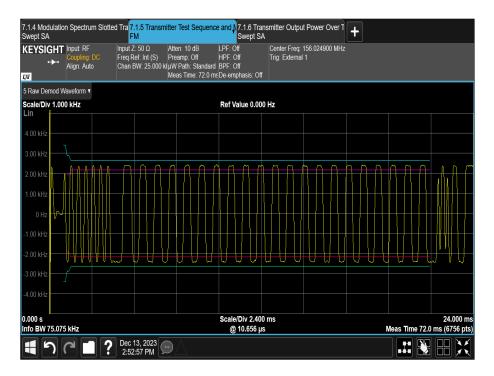


Figure 5 - 156.025 MHz, Test Signal #2, +22.2 °C, 24 V DC



Figure 6 - 162.025 MHz, Test Signal #1, +22.2 °C, 24 V DC

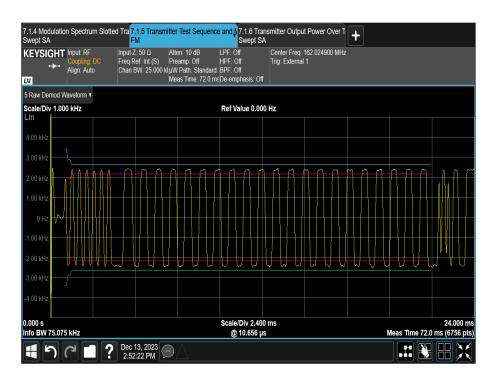


Figure 7 - 162.025 MHz, Test Signal #2, +22.2 °C, 24 V DC

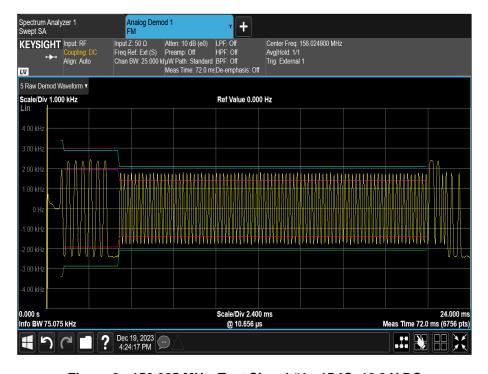


Figure 8 - 156.025 MHz, Test Signal #1, -15 °C, 10.8 V DC

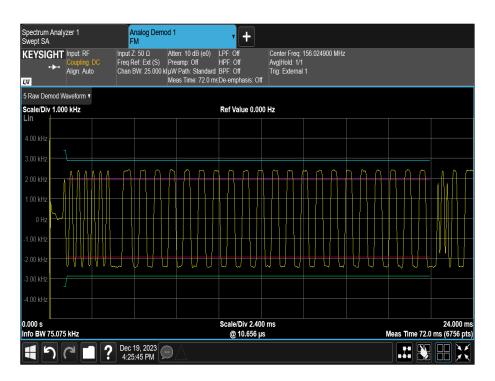


Figure 9 - 156.025 MHz, Test Signal #2, -15 °C, 10.8 V DC

Figure 10 - 162.025 MHz, Test Signal #1, -15 °C, 10.8 V DC

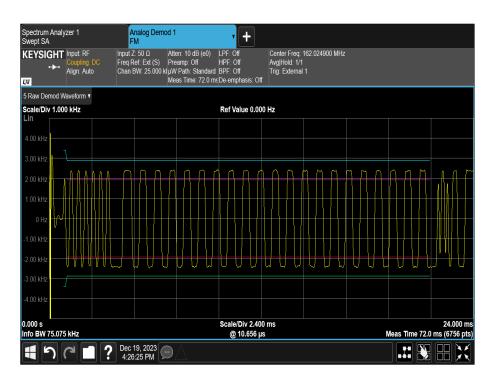


Figure 11 - 162.025 MHz, Test Signal #2, Tx1, -15 °C, 10.8 V DC

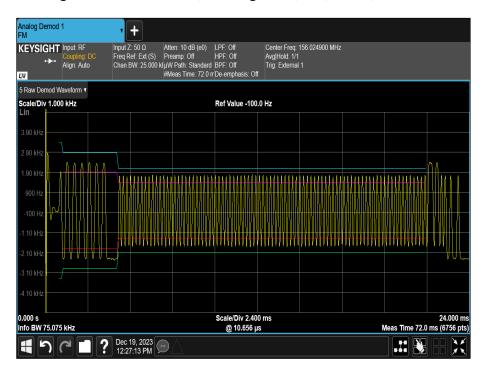


Figure 12 - 156.025 MHz, Test Signal #1, 55 °C, 31.2 V DC

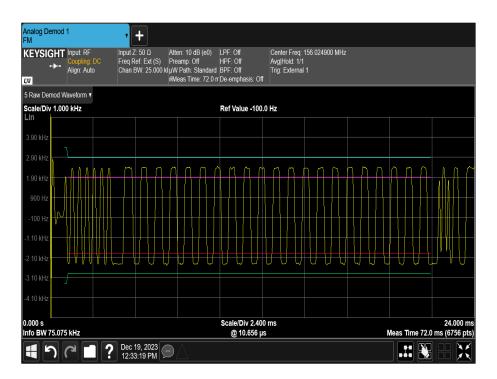


Figure 13 - 156.025 MHz, Test Signal #2, 55 °C, 31.2 V DC

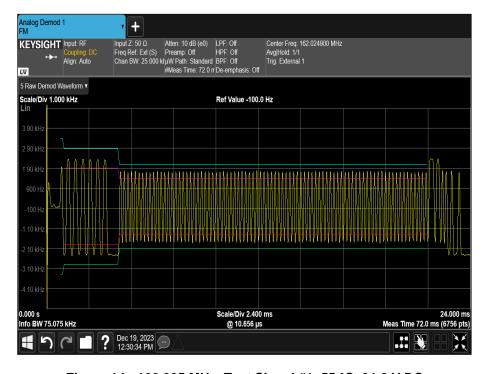


Figure 14 - 162.025 MHz, Test Signal #1, 55 °C, 31.2 V DC

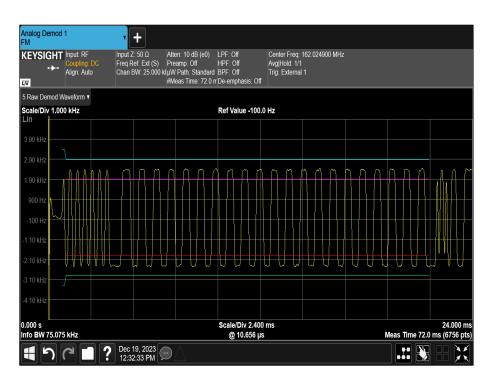


Figure 15 - 162.025 MHz, Test Signal #2, 55 °C, 31.2 V DC

IEC 62320-2, Limit Clause 7.1.5.3

Measurement Period from	Test Signal 1		Test Signal 2		
Centre to Centre of each Bit	Normal	Extreme	Normal	Extreme	
Bit 0 to Bit 1	< 3400 Hz				
Bit 2 to Bit 3	2400 ± 480 Hz				
Bit 4 to Bit 31	2400 ± 240 Hz	2400 ± 480 Hz	2400 ± 240 Hz	2400 ± 480 Hz	
Bit 32 to Bit 199	1740 ± 175 Hz	1740 ± 350 Hz	2400 ± 240 Hz	2400 ± 480 Hz	

Table 19 - Peak Frequency Deviation versus Time Limit

2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1 and RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Power Supply Unit	Farnell	H60-25	1092		O/P Mon
Multimeter	Iso-tech	IDM101	2421	12	08-Nov-2024
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3159	12	21-May-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Attenuator (20 dB, 150 W)	Narda	769-20	3367	12	02-Aug-2024
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	06-Mar-2024
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5511	12	21-May-2024
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	5514	12	21-May-2024
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB 40	5605	12	07-Nov-2024
Climatic Chamber	Weiss Technik	TempEvent T/180/40/3	5894	12	07-Jul-2024

Table 20

O/P Mon – Output Monitored using calibrated equipment

2.3 Transmitter Output Power Versus Time Function (FATDMA and RATDMA)

2.3.1 Specification Reference

IEC 62320-2, Clause 7.1.6

2.3.2 Equipment Under Test and Modification State

R60 AIS AtoN Station, S/N: 100098 - Modification State 0

2.3.3 Date of Test

13-December-2023

2.3.4 Test Method

This test was performed in accordance with IEC 62320-2, clause 7.1.6.2.

2.3.5 Environmental Conditions

Ambient Temperature 22.2 °C Relative Humidity 33.7 %

2.3.6 Test Results

AIS Transceiver

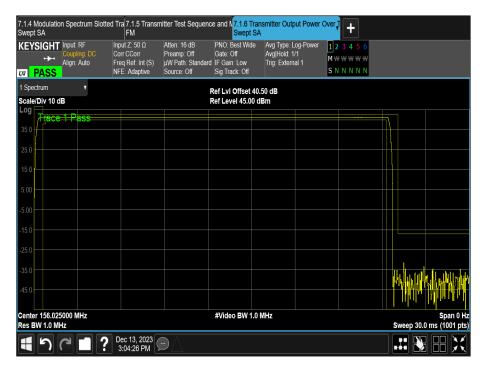


Figure 16 - 156.025 MHz - Complete Burst

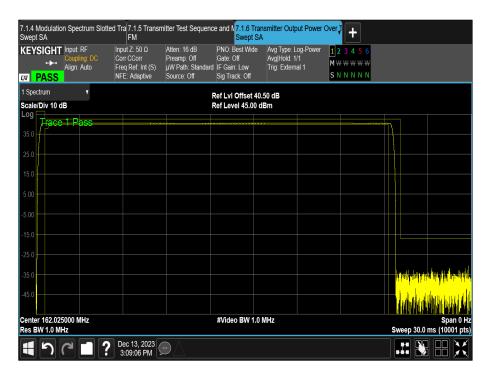


Figure 17 - 162.025 MHz - Complete Burst

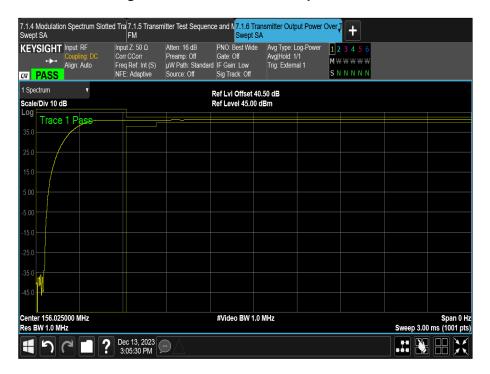


Figure 18 - 156.025 MHz - Ramp Up Zoomed

Figure 19 - 162.025 MHz - Ramp Up Zoomed

Figure 20 - 156.025 MHz - Ramp Down Zoomed

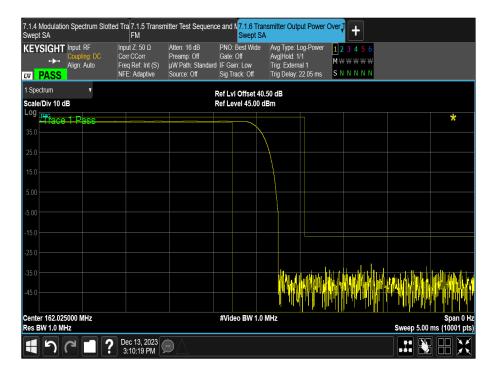


Figure 21 - 162.025 MHz - Ramp Down Zoomed

IEC 62320-2, Limit Clause 7.1.6.3

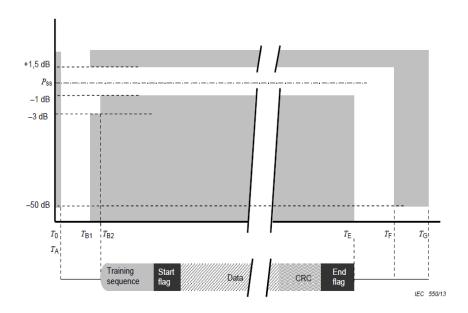


Figure 22 - Power Versus Time Mask

Referen	се	Bits	Time (ms)	Definitions
T ₀ 0		0	Start of transmission slot. Power shall NOT exceed -50 dB of P_{SS} before T_0	
T _A		0 to 6	0 to 0.624	Power exceeds -50 dB of P _{SS}
T _B	T _{B1}	6	0.624	Power shall be within ±1.5 or -3 dB of P _{SS}
	T _{B2}	8	0.8324	Power shall be within +1.5 or -1 dB of P_{SS} during the period T_{B2} to T_E (start of training sequence)
T _E (inclu		104-748	10,833 – 77,917	Power shall remain within +1.5 or -1 dB of P_{SS} during the period T_{BE} to T_{E}
				The Te can vary depending on message type, data content and bit stuffing bits from minimum 104 bits for the shortest possible message (Message 14 and no text content) to maximum length of 740 bits for a three-slot message. Te shall not exceed;
				• 236 bits for a one-slot message
				• 492 bits for a two-slot message
				• 748 bits for a three-slot message
one continuous transmiss overhead (ramp up, traini required for a long transm transmission packet shou		A station may occupy at maximum three consecutive slots for one continuous transmission. Only a single application of the overhead (ramp up, training sequence, flags, FCS, buffering) is required for a long transmission packet. The length of a long transmission packet should not be longer than necessary to transfer the data; i.e. the AIS should not add filler.		
T _F (inclustuffing I		112-756	11,667 – 78,787	Power shall be -50 dB of P _{SS} and stay below this
T_G		256, 512 or 768	26.667 one slot TX 53,333 two slot TX 80,000 three slot TX	Start of next transmission time period

Table 21 - Definitions of Timing for Power Versus Time Mask

2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Attenuator (20dB, 10W)	Aeroflex / Weinschel	23-20-34	3159	12	21-May-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Attenuator (20 dB, 150 W)	Narda	769-20	3367	12	02-Aug-2024
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	06-Mar-2024
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5511	12	21-May-2024
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	5514	12	21-May-2024

Table 22

2.4 Blocking or Desensitisation

2.4.1 Specification Reference

IEC 62320-2, Clause 7.2.7

2.4.2 Equipment Under Test and Modification State

R60 AIS AtoN Station, S/N: 100098 - Modification State 0

2.4.3 Date of Test

20-December-2023

2.4.4 Test Method

This test was performed in accordance with IEC 62320-2, clause 7.2.7.2.

The EUT is a type 3 AtoN, therefore the level of the wanted signal at the input to the receiver was -101 dBm and the unwanted signals were set to -23 dBm when the offset was less than 5 MHz and -15 dBm when the offset was equal to or greater than 5 MHz.

2.4.5 Environmental Conditions

Ambient Temperature 19.2 °C Relative Humidity 48.8 %

2.4.6 Test Results

AIS Transceiver

Unwanted Signal Frequency Offset (MHz)	Packet Error Ratio (%)				
	156.025 MHz		162.025 MHz		
	Rx1	Rx2	Rx1	Rx2	
-10	0	0	0	0	
-5	0	0	3	4.5	
-2	0	0	0	0	
-1	0	0	0	0	
-0.5	0.5	0.5	0	0	
0.5	0	0	0	0	
1	0.5	0.5	0	0	
2	0.5	0.5	0	0	
5	0	0	0.5	0.5	
10	0	0	0	0	

Table 23 - Blocking Results

IEC 62320-2, Limit Clause 7.2.7.3

The PER shall not exceed 20%.

2.4.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Power Splitter	Weinschel	1870A	3204	12	30-Nov-2024
Programmable Modulation Waveform Generator	Sine Qua Non	PMG1	3291	-	O/P Mon
Attenuator (20 dB, 150 W)	Narda	769-20	3367	12	02-Aug-2024
Vector Signal Generator	Rohde & Schwarz	SMU 200A	3493	12	02-Nov-2024
DC to TTL Converter	TUV SUD	-	3599	-	TU
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Vector Signal Generator	Keysight Technologies	ESG E4438C	4731	12	14-Feb-2024
Quad Power Supply	Rohde & Schwarz	HMP4040	4954	-	O/P Mon
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5511	12	21-May-2024
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB 40	5605	12	07-Nov-2024
Cable (N to N 2m)	Amphenol RF	N/A	5953	12	26-Jun-2024
Cable (N to N 1m)	Junkosha	MWX221- 01000NMSNMS/B	6020	12	05-Jun-2024
Cable (N to N 6m)	Junkosha	MWX221- 06000NMSNMS/B	6027	12	26-Jun-2024

Table 24

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment

3 Photographs

3.1 Equipment Under Test (EUT)

Figure 23 – Front of EUT

Figure 24 – Top of EUT

Figure 25 – Rear of EUT

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Modulation Spectrum Slotted Transmission	± 2.0 dB
Transmitter Test Sequence and Modulation Accuracy	± 2.0 dB
Transmitter Output Power Versus Time Function (FATDMA and RATDMA)	± 2.0 dB
Blocking or Desensitisation	± 2.6 dB

Table 25

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.