

CETECOM ICT Services consulting - testing - certification >>>

TEST REPORT

Deutsche Akkreditierungsstelle D-PL-12076-01-00

Test report no.: 1-8297/14-02-07-B

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.cetecom.com</u> e-mail: <u>ict@cetecom.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

peiker acustic GmbH & Co. KGMax-Planck Str. 28-3261381 Friedrichsdorf / GERMANYPhone:-/-Fax:+49 6172 767-220Contact:Martin Fleckensteine-mail:martin.fleckenstein@peiker.dePhone:+49 6172 767-1379

Manufacturer

peiker acustic GmbH & Co. KG Max-Planck Str. 28-32 61381 Friedrichsdorf / GERMANY

Test standard/s

 47 CFR Part 24
 Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services

 DSS_122 losue 6
 Spectrum Management and Telesemmunications Delign. Dedia Standards

RSS - 133 Issue 6 Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services For further applied test standards please refer to section 3 of this test report.

Test Item

	i est item	
Kind of test item:	Advanced Telecommunication module (ATM)	Roof Version
Model name:	ATM-01 R1-US-4GW	
FCC ID:	QWY-ATM-R-522	
IC:	6588A-ATMR522	
Frequency:	LTE FDD 2:1850 MHz to 1910 MHz	
Technology tested:	LTE	
Antenna:	External antenna	
Power supply:	14.0 V DC by external power supply	
Temperature range:	-30°C to +60°C	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:

p.o.

Andreas Luckenbill Radio Communications & EMC **Test performed:**

Marco Bertolino Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
		Notes and disclaimer Application details	
3	Test s	tandard/s	3
4	Test e	nvironment	4
5	Test it	em	4
	5.1	Additional information	4
6	Test la	aboratories sub-contracted	4
7	Summ	ary of measurement results	5
	7.1	LTE band II	5
8	RF me	asurements	6
	8.1 8.1.1 8.1.2 8.2 8.2.1 8.2.2 8.2.3	Description of test setup	6 7 8 12
9	Test e	quipment and ancillaries used for tests	38
10	Obs	ervations	38
Anr	nex A	Document history	39
Anr	nex B	Further information	39
Anr	nex C	Accreditation Certificate	40

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2014-12-19
Date of receipt of test item:	2015-02-17
Start of test:	2015-02-27
End of test:	2015-03-07
Person(s) present during the test:	-/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 24	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
RSS - 133 Issue 6	01.01.2013	Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services

4 Test environment

Temperature:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +60 °C during high temperature tests -30 °C during low temperature tests 		
Relative humidity content:		42 %		
Barometric pressure:		not relevant for this kind of testing		
Power supply:	V _{nom} V _{max} V _{min}	14.0 V DC by external power supply18.0 V4.5 V		

5 Test item

Kind of test item	:	Advanced Telecommunication module (ATM) Roof Version	
HVIN	:	TM-01 R1-US-4GW	
PMN	:	ATM roof version	
S/N serial number	:	Radiated / conducted unit: 0000506765	
HW hardware status	:	112.010.016	
SW software status	:	001.017.047	
Frequency band	:	LTE FDD 2:1850 MHz to 1910 MHz	
Type of modulation	:	QPSK, 16-QAM	
Antenna	:	External antenna	
Power supply	:	14.0 V DC by external power supply	
Temperature range	:	-30°C to +60°C	

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-8297/14-02-01_AnnexA 1-8297/14-02-01_AnnexB 1-8297/14-02-01_AnnexC

6 Test laboratories sub-contracted

None

7 Summary of measurement results

				T (
TC identifier	Description	verdict	date	Remark
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.			
	There were deviations from the technical specifications ascertained			
	No deviations from the technical specifications were ascertained			

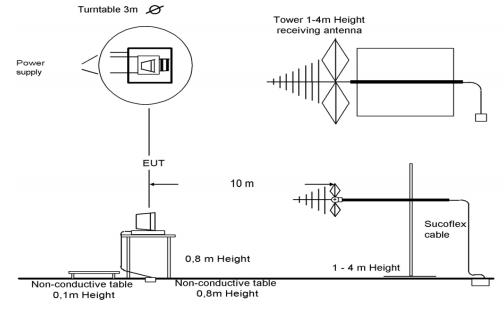
TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 24 RSS 133	See table!	2015-06-16	Tests according to manufacturer test plan.

7.1 LTE band II

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

8 **RF** measurements


8.1 Description of test setup

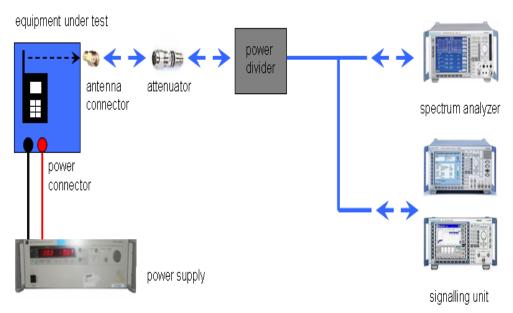
For the spurious measurements we use the substitution method according TIA/EIA 603.

8.1.1 Radiated measurements

The radiated emissions from the EUT are performed in a semi anechoic chamber. The EUT is placed on a conductive turntable and powered with nominal voltage. The signalling is performed either from outside the chamber with a signalling unit (AP or other) by air link using a signalling antenna or directly by special test software from the customer.

Semi anechoic chamber

Picture 1: Diagram radiated measurements


9 kHz - 30 MHz:	active loop antenna
30 MHz – 1 GHz:	tri-log antenna
> 1 GHz:	horn antenna

Frequency being measured f	Measuring receiver bandwidth 6 dB	Spectrum analyser bandwidth 3dB			
f < 150 kHz	200 Hz or	300 Hz			
150 kHz ≤ f < 25 MHz	9 kHz or	10 kHz			
25 MHz ≤ f < 1000 MHz	120 kHz or	100 kHz			
1000 MHz ≤ f		1 MHz			
NOTE: Specific requirements in CEPT/ERC/Recommendation 70-03 [2] shall be applied where applicable.					

8.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the signalling unit (AP or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm. If special software is used, there is no power divider necessary.

Picture 2: Diagram conducted measurements

The term measuring receiver refers to either a selective voltmeter or a spectrum analyser.

Frequency being measured f	Measuring receiver bandwidth 6 dB	Spectrum analyser bandwidth 3dB
f < 150 kHz	200 Hz or	300 Hz
150 kHz ≤ f < 25 MHz	9 kHz or	10 kHz
25 MHz ≤ f < 1000 MHz	120 kHz or	100 kHz
1000 MHz ≤ f		1 MHz
NOTE: Specific requirements in (CEPT/ERC/Recommendation 70-03 [2] shall be applied where applicable.

8.2 Results LTE band II

The EUT was set to transmit the maximum power.

8.2.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Macourod with CMW/500			
Resolution bandwidth:	Measured with CMW500			
Span:				
Trace-Mode:				

Limits:

FCC	IC			
CFR Part 24.232 CFR Part 2.1046	RSS 133, Issue 5, Section 6.4			
Nominal Peak Output Power				
+33.00 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.				

Used setup acc. chapter 8.1.2. Used equipment see table chapter 9

Results:

	Output Power (conducted)							
Bandwidth (MHz)	Frequency (MHz)	Resource block allocation	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB)		
		1 RB low	23.7	4.75	22.8	5.49		
	1850.7	1 RB high	23.7	4.86	22.8	5.58		
	1050.7	50% RB mid	23.6	4.68	22.5	6.20		
		100% RB	22.5	5.87	21.4	6.87		
		1 RB low	23.4	5.68	22.3	4.38		
1.4	1880.0	1 RB high	23.4	5.71	22.3	4.39		
1.4	1000.0	50% RB mid	23.4	6.01	22.5	5.01		
		100% RB	22.5	6.49	21.5	6.42		
		1 RB low	23.2	3.61	21.9	4.93		
	1909.3	1 RB high	23.1	3.54	21.8	4.82		
	1909.3	50% RB mid	23.2	3.92	22.3	4.77		
		100% RB	22.2	5.46	21.4	5.83		
		1 RB low	23.6	5.56	22.7	4.80		
	1851.5	1 RB high	23.8	5.64	22.8	4.90		
	1051.5	50% RB mid	22.6	6.73	21.3	5.81		
		100% RB	22.8	6.52	21.6	6.17		
		1 RB low	23.0	4.58	21.7	5.84		
3	1880.0	1 RB high	23.3	4.53	21.9	5.84		
5	1000.0	50% RB mid	22.4	5.84	21.6	6.26		
		100% RB	22.3	5.94	21.3	7.08		
		1 RB low	23.3	5.18	21.9	3.75		
	1908.5	1 RB high	23.1	5.12	21.6	3.60		
	1900.5	50% RB mid	22.2	5.53	21.3	4.73		
		100% RB	22.2	5.94	21.3	5.25		
		1 RB low	23.5	4.87	22.5	5.03		
	1852.5	1 RB high	23.9	4.89	22.8	5.05		
	1052.5	50% RB mid	22.6	5.79	21.6	6.51		
		100% RB	22.5	6.01	21.6	7.07		
		1 RB low	23.2	5.69	22.0	4.55		
5	1880.0	1 RB high	23.6	5.75	22.3	4.51		
5	1000.0	50% RB mid	22.3	6.51	21.3	5.78		
		100% RB	22.2	7.35	21.2	6.12		
		1 RB low	23.3	3.76	22.1	5.05		
	1907.5	1 RB high	23.2	3.46	22.0	4.80		
	1007.0	50% RB mid	22.3	4.75	21.3	5.76		
		100% RB	22.2	5.39	21.2	6.40		

		1				1
	1855	1 RB low	23.5	5.62	22.6	4.84
		1 RB high	23.7	5.75	22.8	5.05
		50% RB mid	22.7	6.95	21.6	5.88
		100% RB	22.5	7.15	21.4	6.14
		1 RB low	22.8	4.48	21.5	5.75
10	1880	1 RB high	23.5	4.50	22.0	5.87
10	1000	50% RB mid	22.2	5.86	21.3	7.01
		100% RB	22.1	6.35	21.1	7.14
		1 RB low	22.8	5.47	21.5	4.06
	1905	1 RB high	23.1	5.13	21.7	3.65
	1905	50% RB mid	22.0	6.31	21.0	5.13
		100% RB	21.9	6.94	20.8	5.82
		1 RB low	23.5	4.91	22.6	5.62
	1857.5	1 RB high	23.4	5.01	22.3	5.87
	1657.5	50% RB mid	22.4	6.2	21.5	7.24
		100% RB	22.3	6.52	21.3	7.08
		1 RB low	22.7	6.00	21.8	4.65
15	1880.0	1 RB high	23.3	6.16	22.4	4.78
15	1000.0	50% RB mid	22.0	7.08	21.0	5.93
		100% RB	21.9	7.29	20.9	6.25
		1 RB low	22.7	4.21	21.5	5.60
	1002 5	1 RB high	23.0	3.72	21.7	5.15
	1902.5	50% RB mid	21.8	5.37	20.8	6.38
		100% RB	21.7	6.19	20.8	6.80
		1 RB low	23.4	6.06	22.6	4.90
	1860	1 RB high	22.9	6.08	22.0	4.87
	1000	50% RB mid	22.3	7.47	21.3	6.30
		100% RB	22.2	7.27	21.2	6.21
		1 RB low	22.6	4.86	21.8	5.70
20	1000	1 RB high	23.3	4.82	22.1	5.84
20	1880	50% RB mid	22.0	6.06	21.0	7.02
		100% RB	22.0	6.37	21.0	7.14
		1 RB low	23.3	4.96	22.0	4.62
	1000	1 RB high	23.1	4.21	22.3	3.88
	1900	50% RB mid	21.5	6.65	20.6	5.62
			21.8	6.88	20.8	5.92
Measuremen	t uncertainty	100% RB			5 dB	•
•						

Output Power (radiated)						
Bandwidth (MHz)	Frequency (MHz)	Average Output Power (dBm) QPSK	Average Output Power (dBm) 16-QAM			
	1850.7	21.3	20.4			
1.4	1880.0	20.2	19.3			
	1909.3	20.3	19.4			
	1851.5	21.4	20.4			
3	1880.0	20.1	18.7			
	1908.5	20.4	19.0			
	1852.5	21.5	20.4			
5	1880.0	20.4	19.1			
	1907.5	20.4	19.2			
	1855.0	21.3	20.4			
10	1880.0	20.3	18.8			
	1905.0	20.2	18.8			
	1857.5	21.1	20.2			
15	1880.0	20.1	19.2			
	1902.5	20.1	18.8			
	1860.0	21.0	20.2			
20	1880.0	20.1	18.9			
	1900.0	20.4	19.4			
Measurem	nent uncertainty	± 3.0) dB			

The radiated output power is measured in the mode with the highest conducted output power.

Verdict: complies

8.2.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2014 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. Measured up to 26 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band II.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load (if possible).

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.

e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement parameters				
Detector:	Peak			
Sweep time:	2 sec.			
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Span:	100 MHz Steps			
Trace-Mode:	Max Hold			

Measurement:

Limits:

FCC	IC				
CFR Part 24.238 CFR Part 2.1053	RSS 133				
Spurious Emissions Radiated					
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13 dBm					

Used setup acc. chapter 8.1.1. Used equipment see table chapter 9

Results:

Radiated emissions measurements were made only at the center carrier frequency of the LTE band II (1880 MHz). It was decided that measurements at this carrier frequency would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE band II into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

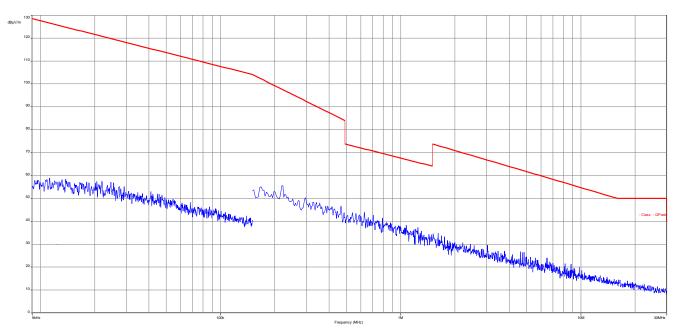
All measurements were done in horizontal and vertical polarization; the plots show the worst case. The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.

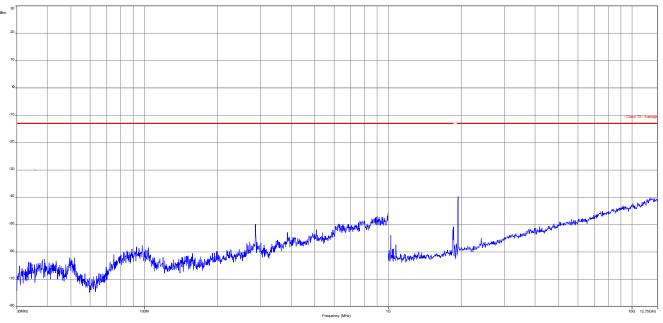
	Spurious Emission Level (dBm)							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
2	3710.0	-	2	3760.0	-	2	3810.0	-
3	5565.0	-	3	5640.0	-	3	5715.0	-
4	7420.0	-	4	7520.0	-	4	7620.0	-
5	9275.0	-	5	9400.0	-	5	9525.0	-
6	11130.0	-	6	11280.0	-	6	11430.0	-
7	12985.0	-	7	13160.0	-	7	13335.0	-
8	14840.0	-	8	15040.0	-	8	15240.0	-
9	16695.0	-	9	16920.0	-	9	17145.0	-
10	18550.0	-	10	18800.0	-	10	19050.0	-
	Measurement uncertainty					± 3dB		

QPSK:

	Spurious Emission Level (dBm)							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
2	3710.0	-	2	3760.0	-	2	3810.0	-
3	5565.0	-	3	5640.0	-	3	5715.0	-
4	7420.0	-	4	7520.0	-	4	7620.0	-
5	9275.0	-	5	9400.0	-	5	9525.0	-
6	11130.0	-	6	11280.0	-	6	11430.0	-
7	12985.0	-	7	13160.0	-	7	13335.0	-
8	14840.0	-	8	15040.0	-	8	15240.0	-
9	16695.0	-	9	16920.0	-	9	17145.0	-
10	18550.0	-	10	18800.0	-	10	19050.0	-
	Measurement uncertainty					± 3dB		

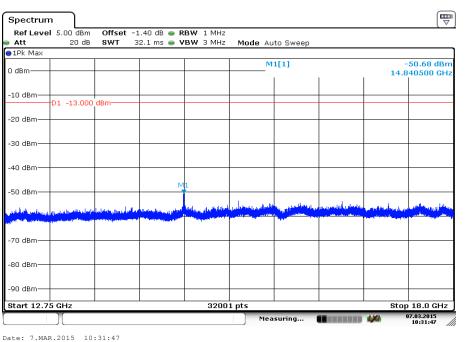

<u> 16-QAM:</u>

Verdict: complies

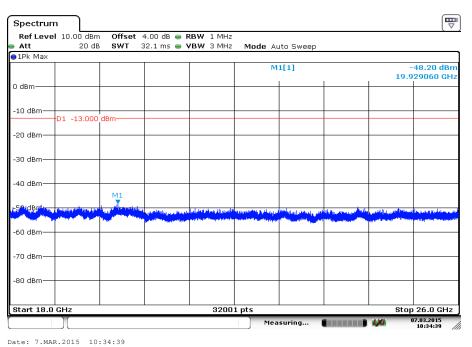


QPSK with 10 MHz channel bandwidth

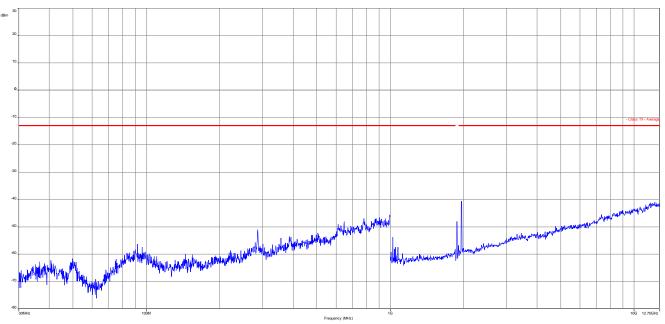
Plot 1: Channel 1880 MHz (Traffic mode up to 30 MHz)


Plot 2: Channel 1855 MHz (30 MHz - 12.75 GHz)

Carrier notched with 1.9 GHz rejection filter



Plot 3: Channel 1855 MHz (12.75 GHz - 18 GHz)

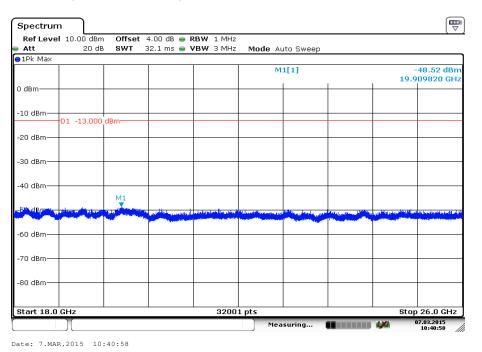

Date: /.MAR.2015 10:51:4/

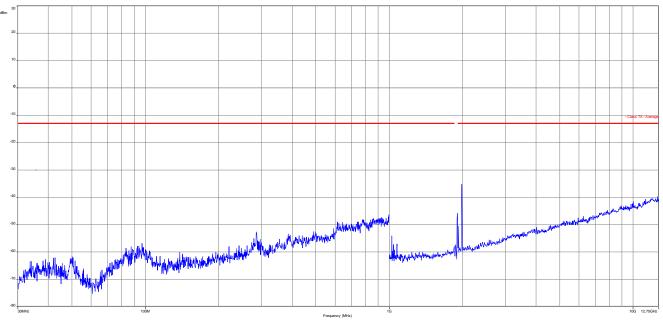
Plot 4: Channel 1855 MHz (18 GHz - 26 GHz)



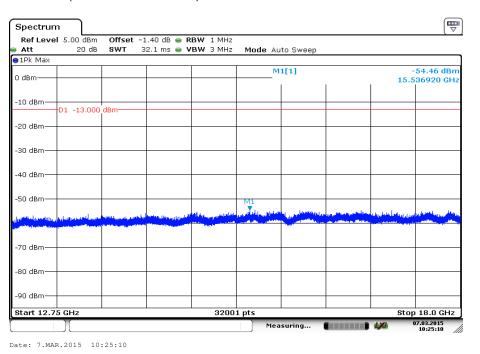
Plot 5: Channel 1880 MHz (30 MHz – 12.75 GHz)

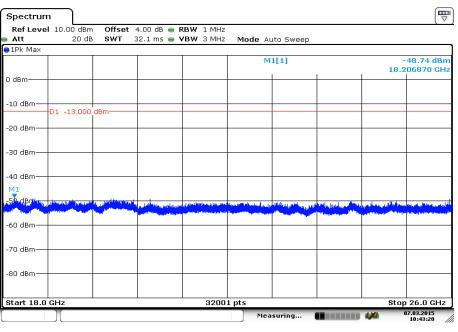
Carrier notched with 1.9 GHz rejection filter


Plot 6: Channel 1880 MHz (12.75 GHz - 18 GHz)


Date: 7.MAR.2015 10:27:54

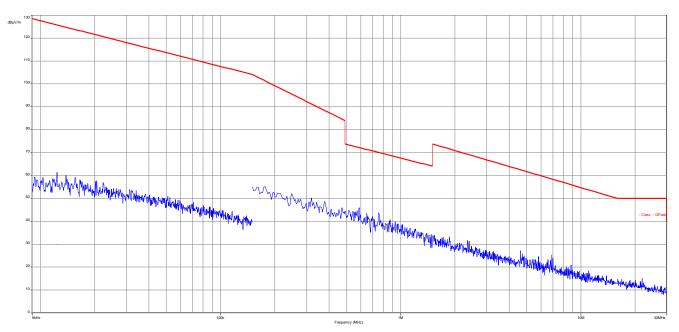
Plot 7: Channel 1880 MHz (18 GHz - 26 GHz)


Plot 8: Channel 1905 MHz (30 MHz - 12.75 GHz)

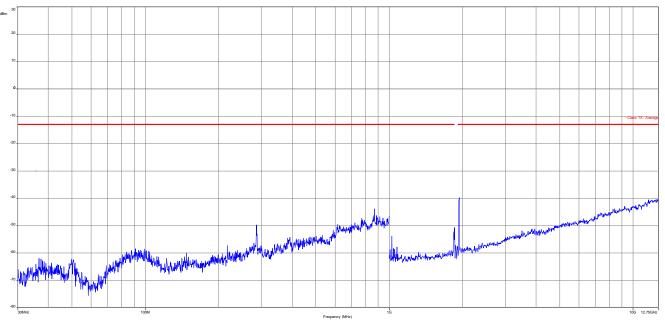

Carrier notched with 1.9 GHz rejection filter

Plot 9: Channel 1905 MHz (12.75 GHz - 18 GHz)

Plot 10: Channel 1905 MHz (18 GHz - 26 GHz)

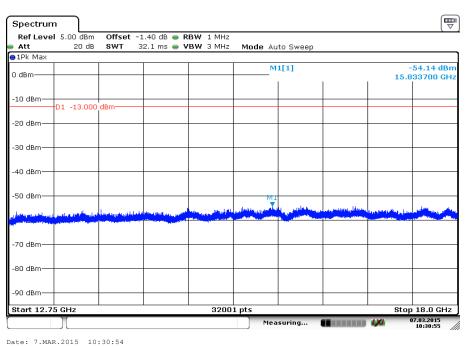


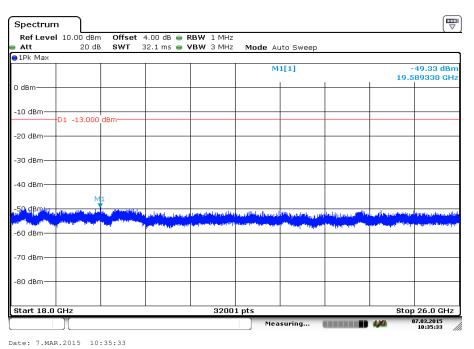
Date: 7.MAR.2015 10:43:20



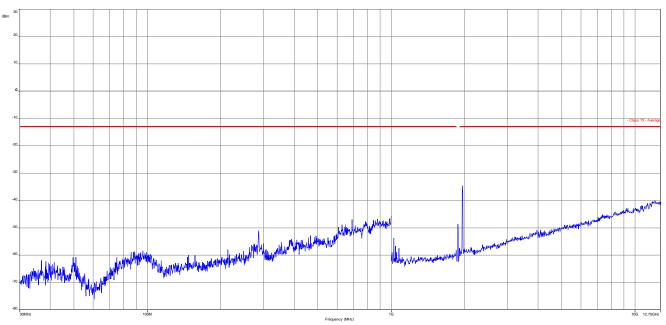
16-QAM with 10 MHz channel bandwidth

Plot 1: Channel 1880 MHz (Traffic mode up to 30 MHz)

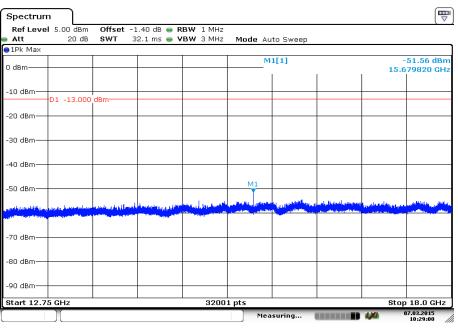

Plot 2: Channel 1855 MHz (30 MHz - 12.75 GHz)


Carrier notched with 1.9 GHz rejection filter

Plot 3: Channel 1855 MHz (12.75 GHz - 18 GHz)

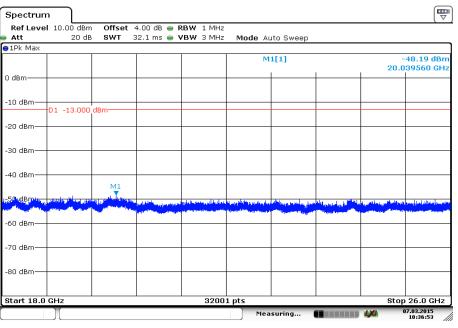


Plot 4: Channel 1855 MHz (18 GHz – 26 GHz)

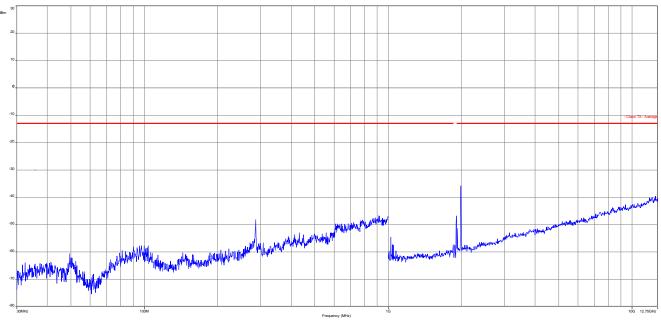


Plot 5: Channel 1880 MHz (30 MHz – 12.75 GHz)

Carrier notched with 1.9 GHz rejection filter

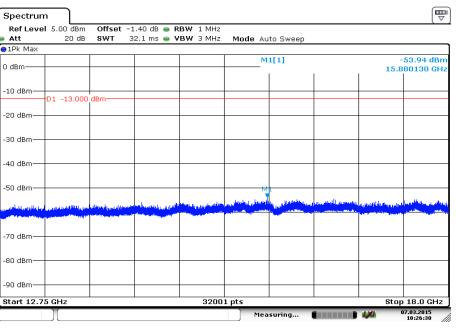

Plot 6: Channel 1880 MHz (12.75 GHz - 18 GHz)

Date: 7.MAR.2015 10:29:01

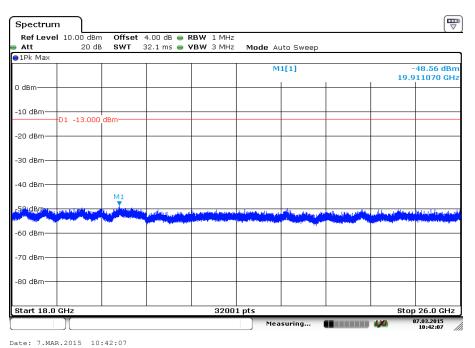


Plot 7: Channel 1880 MHz (18 GHz - 26 GHz)

Date: 7.MAR.2015 10:36:53


Plot 8: Channel 1905 MHz (30 MHz - 12.75 GHz)

Carrier notched with 1.9 GHz rejection filter



Plot 9: Channel 1905 MHz (12.75 GHz - 18 GHz)

Date: 7.MAR.2015 10:26:31

Plot 10: Channel 1905 MHz (18 GHz - 26 GHz)

8.2.3 Block edge compliance

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

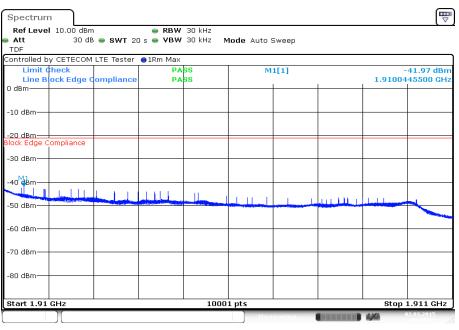
Measurement parameters				
Detector:	RMS			
Sweep time:	60 sec.			
Video bandwidth:	30 kHz			
Resolution bandwidth:	30 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC	IC				
CFR Part 24.238 CFR Part 2.1051	RSS 133				
Block Edge	Compliance				
Part 24.238 specifies that "the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."					
However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:					
"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 Log (P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."					
When using a 30 kHz bandwidth, this yields a -8.239 adjustment to the limit [10 log(30kHz/50kHz) = -8.239]. When this adjustment is applied to the limit, the limit becomes -21.24.					
-21.24 dBm					

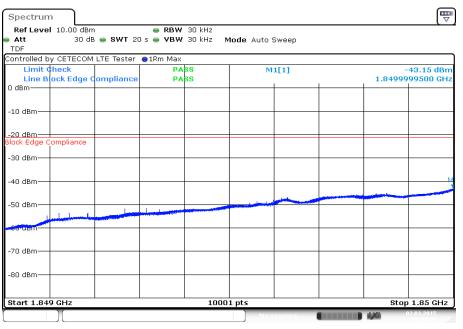
The limit line in the plots shows the over all LTE bands and channel bandwidths worst case -21.24 dBm.

Used setup acc. chapter 8.1.2. Used equipment see table chapter 9

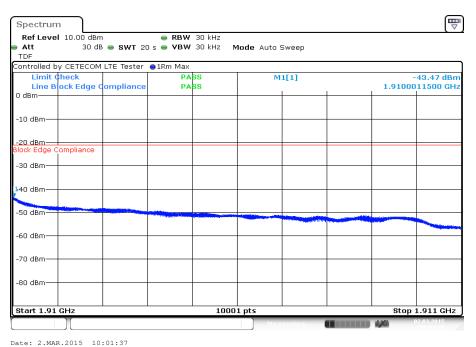

Results: 1.4 MHz channel bandwidth

Plot 1: Lowest channel - QPSK

Date: 2.MAR.2015 09:38:04

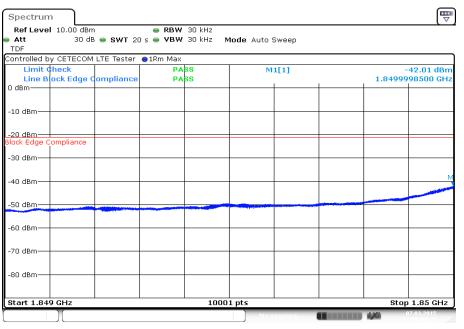

Plot 2: Highest channel – QPSK

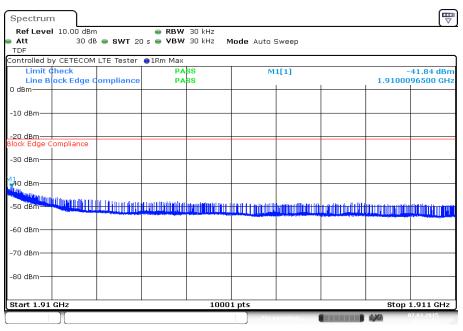
Date: 2.MAR.2015 09:57:05



Plot 3: Lowest channel - 16-QAM

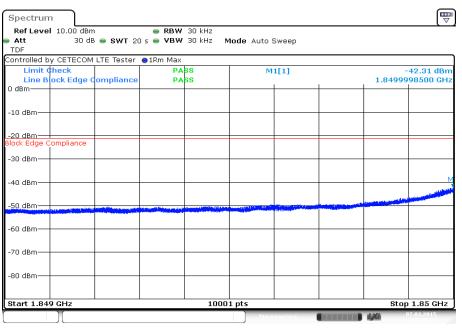
Date: 2.MAR.2015 09:42:37


Plot 4: Highest channel – 16-QAM

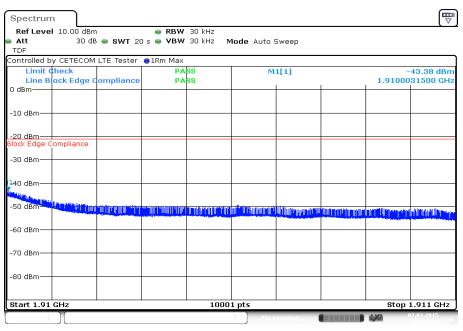

Results: 3 MHz channel bandwidth

Plot 1: Lowest channel - QPSK

Date: 7.MAR.2015 08:14:49


Plot 2: Highest channel – QPSK

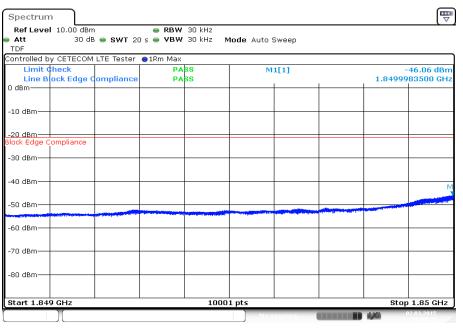
Date: 7.MAR.2015 08:33:54



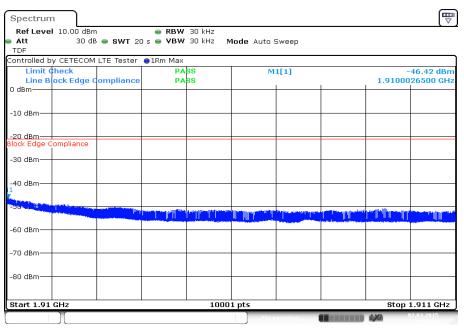
Plot 3: Lowest channel - 16-QAM

Date: 7.MAR.2015 08:19:24

Plot 4: Highest channel – 16-QAM

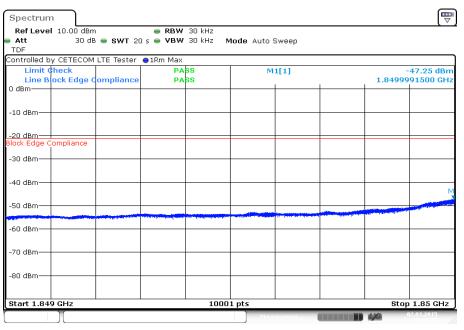


Date: 7.MAR.2015 08:38:27

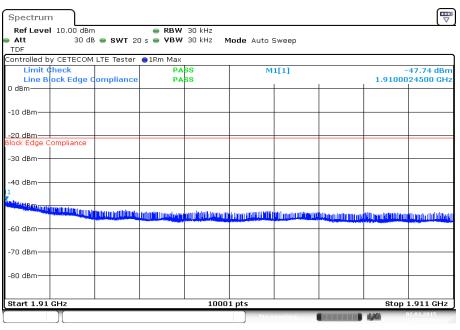

Results: 5 MHz channel bandwidth

Plot 1: Lowest channel - QPSK

Date: 2.MAR.2015 10:38:32


Plot 2: Highest channel – QPSK

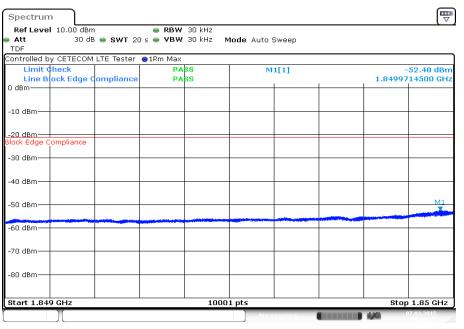
Date: 2.MAR.2015 10:57:32



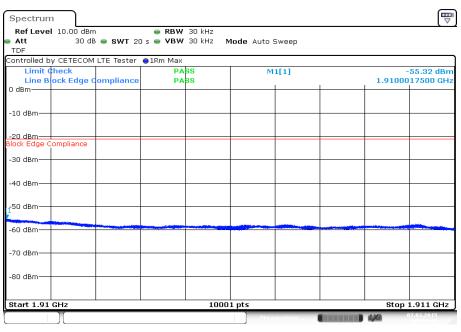
Plot 3: Lowest channel - 16-QAM

Date: 2.MAR.2015 10:43:05

Plot 4: Highest channel – 16-QAM

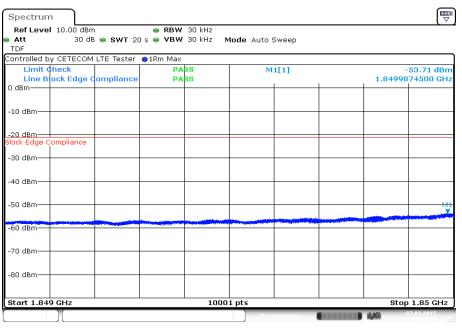


Date: 2.MAR.2015 11:02:05

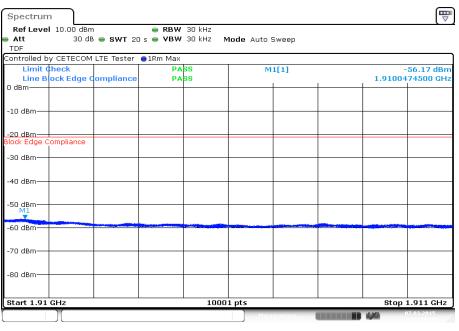

Results: 10 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Date: 7.MAR.2015 08:50:44


Plot 2: Highest channel – QPSK

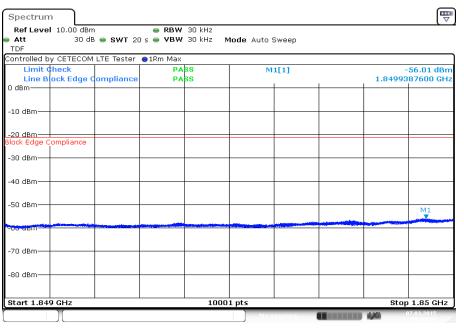
Date: 7.MAR.2015 09:09:45



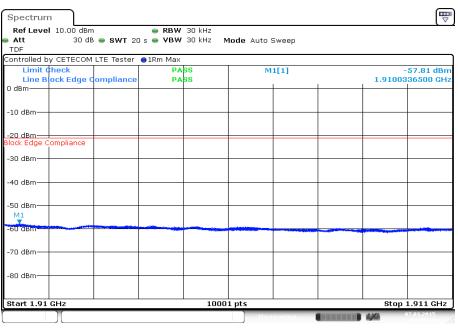
Plot 3: Lowest channel - 16-QAM

Date: 7.MAR.2015 08:55:17

Plot 4: Highest channel – 16-QAM

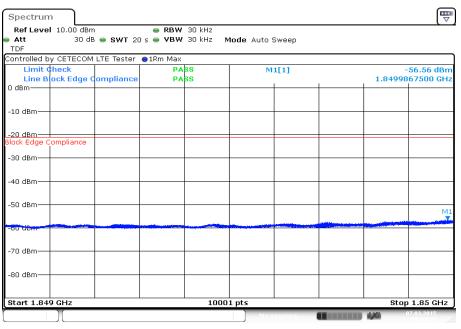


Date: 7.MAR.2015 09:14:18

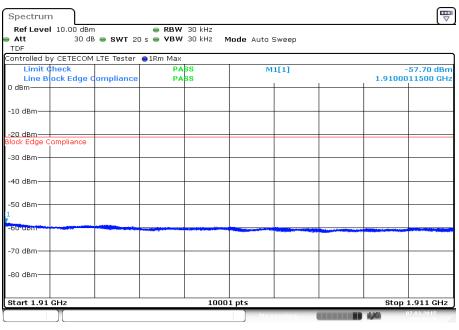

Results: 15 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Date: 7.MAR.2015 09:19:05


Plot 2: Highest channel – QPSK

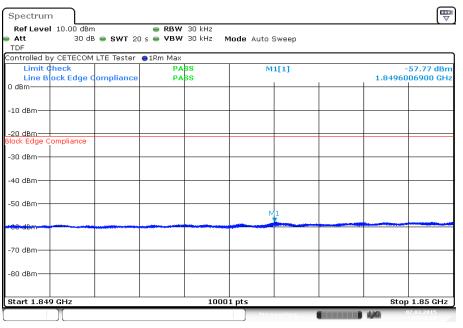
Date: 7.MAR.2015 09:41:57



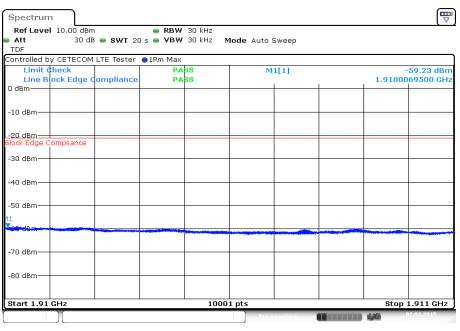
Plot 3: Lowest channel - 16-QAM

Date: 7.MAR.2015 09:23:38

Plot 4: Highest channel – 16-QAM

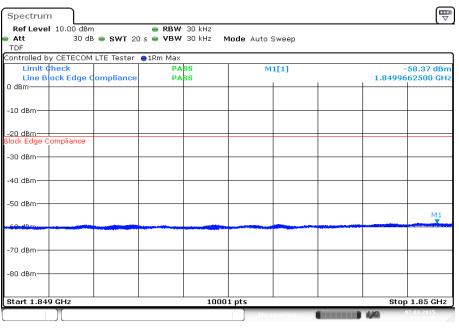


Date: 7.MAR.2015 09:46:30

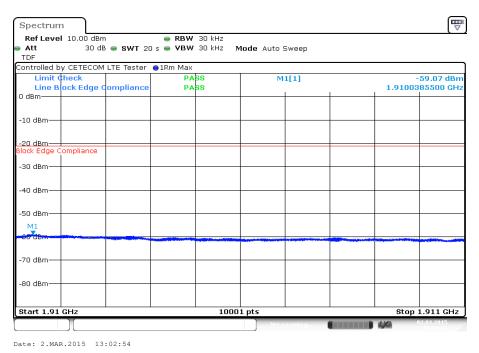

Results: 20 MHz channel bandwidth

Plot 1: Lowest channel – QPSK

Date: 7.MAR.2015 09:51:16


Plot 2: Highest channel – QPSK

Date: 2.MAR.2015 12:58:21



Plot 3: Lowest channel - 16-QAM

Date: 7.MAR.2015 09:55:49

Plot 4: Highest channel – 16-QAM

Verdict: complies

9 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a. DC power supply, 60Vdc, 50A, 1200 W		6032A	HP	2818A03450	300001040	Ve	20.01.2015	20.01.2018
2	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	08.05.2013	08.05.2015
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
4	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne		
5	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
6	90	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
7	90	Band Reject filter	WRCG1855/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev		
8	90	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	viKi!	29.10.2014	29.10.2017
9	90	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	13.03.2014	13.03.2015
10	11b	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev		
11	A026	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	22.07.2013	22.07.2015
12	A029	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442	k	19.07.2013	19.07.2015
13	A029	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
14	n. a.	Wideband Radio Communication Tester		R&S	102375	300004187	k	28.01.2015	28.01.2017
15	Universal n. a. Communication Tester		CMU200	R&S	106240	300003321	viKi!	12.06.2013	12.06.2015

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

10 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release	
	Initial release	2015-03-25	
A	A New editorial requirements (Canada)		
В	Editorial corrections	2015-06-16	

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software

Annex C Accreditation Certificate

Front side of certificate	Back side of certificate				
DAKKS Deutsche Aktreditierungsszelle					
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH				
Ackkreditierung	Standort Berlin Standort Frankfurt am Main Standort Braunschweig Spittelmarkt 10 Gartenstra 18 6 Bundesalles 100 10117 Jerlin 60594 Frankfurt am Main 38116 Braunschweig				
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium					
CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken					
die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:					
Drahtgebundene Kommunikation einschließlich XDSL VolP und DECT Akustik Funk einschließlich WLAN Short Range Devices (SRO) Rin Mobilitunk (SSM / DCS, Over the Air (OTA) Performance) Elektromagnetischer Produktischerheit SAR und Hearing Ald Compatibility (HAC) Umweltismulation Smart Card Terminals Bluetooth Wi-FI- Services Die Akkreditierungsurkundergilt nur in Verbindung mit dem Bescheid von 07.03.2014 mit der Akkreditierungsurkundergilt nur in Verbindung mit dem Bescheid von 07.03.2014 mit der Akkreditierungsurkundergilt nur in Verbindung mit dem Bescheid von 07.03.2014 mit der Akkreditierungsurkundergilt nur in Verbindung mit dem Bescheid von 07.03.2014 mit der Aktreditierungsurkundergilt nur in Verbindung mit dem Bescheid von 07.03.2014 mit der Aktreditierungsurkunder (Pri-12076-01.000)	Die auszugsweise Veröffentlichung der Akkreditierungsunkunde besam der verhanigen schriftlichen Zueimmung der Deutsche Akkreditierungsstelle Greht (DAMAS), Ausgenemmen dwon ist die separate Weitzveroneitung der Deutsche Akkreditierungstelle Greht (DAMAS), Ausgenemmen dwon ist die separate Weitzveroneitung der Deutsche Akkreditierungstelle Greht (DAMAS), Ausgenemmen dwon ist die separate wiese ist die der Bedeht mit der durch die unschließgenemit Konformittellawert ingestraße in unseit äuferter Form. Die Akkreditierung erfolgte gemößt dars Gestens über die Akkreditierung auch auf Bartelle erstrach, die über den durch die DAMS bestätigten Akkreditierungsbereich in nausgehen. Die Akkreditierung erfolgte gemößt dars Gestens über die Akkreditierung und Markeller() vom 31. Juli 2008 (Rein 15. 2672) vowei der Veronfung (FJV). (Pr. 755/2008 dasset zurgalsche Prachaments und des Altes vom 9. Juli 2008 über die Veronfung (FJV). (Pr. 755/2008 dasset zurgalsche Prachaments und des Altes vom 9. Juli 2008 über die Veronfung (FJV). (Pr. 755/2008 dasset zurgalsche Prachaments und des Altes vom 9. Juli 2008 über die Veronfung (FJV). (Pr. 755/2008 dasset zurgalsche Prachaments und des Altes vom 9. Juli 2008 über die Veronfung (FJV). (Die 2016 dasset zurgalsche Prache Foregener en ogeneristen für Arkreditierung zurgestellten (ALL 218 vom 21. 2012 dass. 20). Die DAKS ist Utererechnenis der Malifaberahls (CL), das Hertmitten Alterediter alle CL) zurgestellten vom 19. Juli 2008 dasset zurgestellten ersten alle Gestellten and der international Laberature Azerezitation Gestenzation (Duck). Die Unterzeichner elseer Abkommen entimenn in Ind Aktreditierung gestellten Altereschner elseer Abkommen erstenzen interverstenzen ausen lätion ong 19.45: www.istenzer j 19.45: www.istenzer j				
Frankfurr zm Main, 67.52.221.4 Im Aufred That - The Set Half Igner					

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html