

8. RF Exposure Evaluation

According to FCC 1.1310 : The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in §1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength(V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time			
(A) Limits for Occupational /Control Exposures							
300 - 1500			F/300	6			
1500 - 100000			5	6			
(B) Limits for General Population/Uncontrol Exposures							
300 - 1500			F/1500	6			
<u>1500 - 100000</u>			<u>1</u>	<u>30</u>			

8.1. Friis transmission formula : Pd = (Pout*G)/(4*pi*R²)

Where $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

 $\mathbf{R}=$ distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

8.2. Test Result of RF Exposure Evaluation

Power Channel **Output Peak** Antenna LIMITS Density Channel Frequency **Power to Antenna** Gain (mW/cm^2) at 20cm (MHz) (dBm) (dBi) (mW/cm^2) Low 2412 7.76 3.48 0.00344 6.10 Middle 2437 3.48 0.00271 1 High 2462 4.95 3.48 0.00220

8.2.1. Output Power into Antenna & RF Exposure Evaluation Distance : 802.11b Mode

NOTE :

The power density Pd (4th column) at a distance of 20cm calculated from the friis transmission formula is far below the limit of 1 mW/ cm^2 .

8.2.2. Output Power into Antenna & RF Exposure Evaluation Distance : 802.11g Mode

Channel	Channel Frequency (MHz)	Output Peak Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at 20cm (mW/cm ²)	LIMITS (mW/cm ²)
Low	2412	10.34	3.48	0.00459	
Middle	2437	8.69	3.48	0.00386	1
High	2462	7.68	3.48	0.00341	

NOTE :

The power density Pd (4th column) at a distance of 20cm calculated from the friis transmission formula is far below the limit of 1 mW/ cm^2 .