10.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

10.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

<u>RESULTS</u>

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.048	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	44.0	260

Page 201 of 297

MOVE TIME

Page 202 of 297

CHANNEL CLOSING TIME

Page 203 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 204 of 297

Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 205 of 297

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 206 of 297

10.2.5. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

NON-OCCU	PANCY PERIC	D PLC	т		
🔆 Agilent 14:12:1	15 Jul 10, 2008			RT	Freq/Channel
Ref-30 dBm	Atten 10 dB		۵ ۸	/lkr1 1.8 ks -28.86 dB	Center Freq 5.55000000 GHz
log					
10 dB/					Start Freq 5.55000000 GHz
0ffst 26.3 ⊥R IB ♦					Stop Freq
) 64.0 🖬 dBm					CF Step
_gAv				1	3.0000000 MHz <u>Auto Ma</u>
M1 S2 53 FS					Freq Offset 0.00000000 Hz
‡(f): =Tun					Signal Track
Center 5.550 000 0 Res BW 3 MHz	GHz #VBW 3	3 MHz	Sweep 2	Span 0 Hz´ ks (8001 pts)	
Copyright 2000-200	7 Agilent Technologies				

Page 207 of 297

10.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5547	5553	6	4.526	132.6	80

Page 208 of 297

DETECTION BANDWIDTH PROBABILITY

DETECTION BA	NDWIDTH PROBAE	BILITY RESULTS		
Detection Bandw FCC Type 1 Wave	vidth Test Results eform: 1 us Pulse Wi	dth, 1428 us PRI, 18 F	Pulses per Bur	st
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5546	2	0	0	
5547	10	10	100	FL
5548	10	10	100	
5549	10	10	100	
5550	10	10	100	
5551	10	10	100	
5552	10	10	100	
5553	10	10	100	FH
5554	1	0	0	

Page 209 of 297

10.2.7. IN-SERVICE MONITORING

RESULTS

Signal Type	Number of Trials	Detection	Limit	Pass/Fail
2 71		(%)	(%)	
FCC TYPE 1	30	100.00	60	Pass
FCC TYPE 2	30	100.00	60	Pass
FCC TYPE 3	30	100.00	60	Pass
FCC TYPE 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC TYPE 5	30	100.00	80	Pass
FCC TYPE 6	35	100.00	70	Pass

Page 210 of 297

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Fixed Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst		
Trial	Successful Detection	
	(Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

Page 211 of 297

TYPE 2 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
2001	4.8	220.00	28	Yes
2002	4.5	225.00	28	Yes
2003	5	214.00	27	Yes
2004	1.4	186.00	27	Yes
2005	1.6	187.00	27	Yes
2006	4.8	192.00	27	Yes
2007	1.8	197.00	26	Yes
2008	2.6	182.00	28	Yes
2009	2.7	221.00	27	Yes
2010	1.5	209.00	26	Yes
2011	2.1	167.00	25	Yes
2012	4.1	183.00	23	Yes
2013	3	173.00	29	Yes
2014	4.6	176.00	25	Yes
2015	3.6	215.00	24	Yes
2016	2.2	192.00	28	Yes
2017	1.4	152.00	29	Yes
2018	2.4	182.00	29	Yes
2019	3.8	208.00	26	Yes
2020	1	176.00	26	Yes
2021	4.9	203.00	28	Yes
2022	1.1	201.00	23	Yes
2023	4.6	208.00	28	Yes
2024	2.1	207.00	23	Yes
2025	1.3	213.00	27	Yes
2026	5	200.00	25	Yes
2027	2.5	158.00	24	Yes
2028	4.2	151.00	26	Yes
2029	1.3	223.00	25	Yes
2030	2.6	178.00	28	Yes

Page 212 of 297

TYPE 3 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
3001	6.7	297.00	16	Yes
3002	8.9	341.00	18	Yes
3003	9	440.00	17	Yes
3004	6.2	318.00	17	Yes
3005	6.3	344.00	18	Yes
3006	9.7	326.00	17	Yes
3007	5.9	445.00	18	Yes
3008	6.1	409.00	17	Yes
3009	9.1	470.00	16	Yes
3010	6.3	285.00	17	Yes
3011	6.3	286.00	16	Yes
3012	6.9	285.00	16	Yes
3013	7.9	320.00	16	Yes
3014	5	426.00	17	Yes
3015	8.8	495.00	18	Yes
3016	5.5	321.00	17	Yes
3017	6.4	478.00	18	Yes
3018	5.5	267.00	18	Yes
3019	7	409.00	16	Yes
3020	9.6	304.00	16	Yes
3021	5.4	364.00	17	Yes
3022	9.9	468.00	17	Yes
3023	6.5	389.00	18	Yes
3024	5.1	362.00	17	Yes
3025	9.4	263.00	16	Yes
3026	5.3	259.00	17	Yes
3027	6.4	398.00	16	Yes
3028	8.6	413.00	16	Yes
3029	5.8	377	16	Yes
3030	5.2	483	16	Yes

Page 213 of 297

TYPE 4 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
4001	17.2	423.00	14	Yes
4002	11.8	280.00	13	Yes
4003	12.1	424.00	14	Yes
4004	11	476.00	16	Yes
4005	19.2	454.00	13	Yes
4006	18	402.00	12	Yes
4007	16.1	381.00	13	Yes
4008	16.6	490.00	14	Yes
4009	15.5	334.00	12	Yes
4010	12.4	436.00	12	Yes
4011	13.4	390.00	16	Yes
4012	18.6	281.00	13	Yes
4013	15	481.00	14	Yes
4014	15.4	486.00	16	Yes
4015	14.9	284.00	16	Yes
4016	12	297.00	12	Yes
4017	19.6	268.00	15	Yes
4018	10.9	393.00	15	Yes
4019	11	404.00	16	Yes
4020	15.2	336.00	12	Yes
4021	15.1	256.00	14	Yes
4022	17.1	400.00	12	Yes
4023	14.3	480.00	12	Yes
4024	19.1	325.00	13	Yes
4025	16.5	459.00	13	Yes
4026	10.2	411.00	13	Yes
4027	14.2	306.00	16	Yes
4028	14.8	403.00	16	Yes
4029	17.4	352.00	15	Yes
4030	12.3	393.00	13	Yes

Page 214 of 297

TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

Page 215 of 297

TYPE 6 DETECTION PROBABILITY

ΓIA Aug	ust 2005 Hopping Seq	uence		
Trial	Starting Index	Signal Generator	Hops within	Successful
Inai	Within Sequence	Frequency	Detection BW	Detection
	(Base 1)	(MHz)		(Yes/No)
1	349	5547	3	Yes
2	824	5548	2	Yes
3	1299	5549	1	Yes
4	1774	5550	1	Yes
5	2724	5551	3	Yes
6	3199	5552	1	Yes
7	3674	5553	1	Yes
8	4149	5547	2	Yes
9	4624	5548	3	Yes
10	5099	5549	2	Yes
11	5574	5550	1	Yes
12	6049	5551	1	Yes
13	6524	5552	2	Yes
14	6999	5553	1	Yes
15	7474	5547	3	Yes
16	7949	5548	2	Yes
17	8424	5549	2	Yes
18	8899	5550	3	Yes
19	9374	5551	1	Yes
20	10324	5552	1	Yes
21	10799	5553	2	Yes
22	11274	5547	2	Yes
23	11749	5548	2	Yes
24	12224	5549	1	Yes
25	12699	5550	3	Yes
26	13174	5551	2	Yes
27	13649	5552	2	Yes
28	14599	5553	1	Yes
29	15074	5547	1	Yes
30	15549	5548	1	Yes
31	16024	5549	1	Yes
32	16499	5550	3	Yes
33	16974	5551	1	Yes
34	17924	5552	3	Yes
35	18399	5553	1	Yes

Page 216 of 297

10.3. SLAVE DEVICE CONFIGURATION IN 5 MHz BANDWIDTH

10.3.1. TRAFFIC

PLOT OF TRAFFIC FROM SLAVE

Page 217 of 297

10.3.2. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.0	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	0.0	260

Page 218 of 297

MOVE TIME

Page 219 of 297

CHANNEL CLOSING TIME

Page 220 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 221 of 297

No transmissions are observed during the IC aggregate monitoring period.

Page 222 of 297

10.3.3. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

Agilent 07:17	:39 Jul 11, 2008		OUDIATE	R T	Freq/Channel
ef -36.3 dBm	#Atten 20 dl	3	Δ Μ	kr1 1.8 ks -37.99 dB	Center Freq
oq					3.33666666 0112
0 B/					Start Freq 5.55000000 GHz
16.3 ¢					Stop From
B					5.55000000 GHz
54.0 Bm					CF Step
gA∨					<u>Auto Ma</u>
1 S2					Freq Offset 0.00000000 Hz
(f): Tun					Signal Track On Ot
enter 5.550 000 es BW 3 MHz	GHz	#VBW 3 MHz	Sweep 2	Span 0 Hz (s (8001 pts)	

Page 223 of 297

10.4. MASTER DEVICE CONFIGURATION IN 10 MHz BANDWIDTH

10.4.1. TRAFFIC

PLOT OF TRAFFIC FROM MASTER

Page 224 of 297

10.4.2. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
17.91	134.8	116.9	56.9

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
18.34	77.6	59.3	2.4

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
18.07	131.8	113.7	56.8

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

Page 226 of 297

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 227 of 297

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 228 of 297

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 229 of 297

10.4.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.044	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	44.0	260

Page 230 of 297

MOVE TIME

Page 231 of 297

CHANNEL CLOSING TIME

Page 232 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 233 of 297

Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 234 of 297

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 235 of 297

10.4.4. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

Agilent 13:00):09 Jul 9, 2008			RT	Peak Search
ef -30 dBm	#Atten 10 dB			Mkr1 45.25 s -63.34 dBm	Next Peak
og) B/					Next Pk Right
ffst 6.3 ⊥ B ◊					Next Pk Left
4.0					Min Search
1 S2					Pk-Pk Search
f): Fun					Mkr © C
enter 5.550 000	GHz	*//RW 3 MHz	Swoop 2	Span 0 Hz	Mor 1 of 2

Page 236 of 297
10.4.5. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5545	5555	10	9.009	111.0	80

Page 237 of 297

DETECTION BANDWIDTH PROBABILITY

DETECTION BA	NDWIDTH PROBAE	BILITY RESULTS		
Detection Bandw FCC Type 1 Wav	vidth Test Results eform: 1 us Pulse Wi	dth, 1428 us PRI, 18 F	Pulses per Bur	st
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5545	10	10	100	FL
5546	10	10	100	
5547	10	10	100	
5548	10	10	100	
5549	10	10	100	
5550	10	10	100	
5551	10	10	100	
5552	10	10	100	
5553	10	10	100	
5554	10	10	100	
5555	10	10	100	FH

Page 238 of 297

10.4.6. IN-SERVICE MONITORING

RESULTS

FCC Radar Test	Summary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC TYPE 1	30	100.00	60	Pass
FCC TYPE 2	30	100.00	60	Pass
FCC TYPE 3	30	96.67	60	Pass
FCC TYPE 4	30	100.00	60	Pass
Aggregate		99.17	80	Pass
FCC TYPE 5	30	100.00	80	Pass
FCC TYPE 6	33	100.00	70	Pass

Page 239 of 297

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Fixed Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst				
Trial	Successful Detection (Yes/No)			
1	Yes			
2	Yes			
3	Yes			
4	Yes			
5	Yes			
6	Yes			
7	Yes			
8	Yes			
9	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	Yes			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	Yes			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	Yes			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

Page 240 of 297

TYPE 2 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
2001	4.8	220.00	28	Yes
2002	4.5	225.00	28	Yes
2003	5	214.00	27	Yes
2004	1.4	186.00	27	Yes
2005	1.6	187.00	27	Yes
2006	4.8	192.00	27	Yes
2007	1.8	197.00	26	Yes
2008	2.6	182.00	28	Yes
2009	2.7	221.00	27	Yes
2010	1.5	209.00	26	Yes
2011	2.1	167.00	25	Yes
2012	4.1	183.00	23	Yes
2013	3	173.00	29	Yes
2014	4.6	176.00	25	Yes
2015	3.6	215.00	24	Yes
2016	2.2	192.00	28	Yes
2017	1.4	152.00	29	Yes
2018	2.4	182.00	29	Yes
2019	3.8	208.00	26	Yes
2020	1	176.00	26	Yes
2021	4.9	203.00	28	Yes
2022	1.1	201.00	23	Yes
2023	4.6	208.00	28	Yes
2024	2.1	207.00	23	Yes
2025	1.3	213.00	27	Yes
2026	5	200.00	25	Yes
2027	2.5	158.00	24	Yes
2028	4.2	151.00	26	Yes
2029	1.3	223.00	25	Yes
2030	2.6	178.00	28	Yes

Page 241 of 297

TYPE 3 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
3001	6.7	297.00	16	Yes
3002	8.9	341.00	18	Yes
3003	9	440.00	17	Yes
3004	6.2	318.00	17	Yes
3005	6.3	344.00	18	Yes
3006	9.7	326.00	17	Yes
3007	5.9	445.00	18	Yes
3008	6.1	409.00	17	Yes
3009	9.1	470.00	16	Yes
3010	6.3	285.00	17	Yes
3011	6.3	286.00	16	Yes
3012	6.9	285.00	16	No
3013	7.9	320.00	16	Yes
3014	5	426.00	17	Yes
3015	8.8	495.00	18	Yes
3016	5.5	321.00	17	Yes
3017	6.4	478.00	18	Yes
3018	5.5	267.00	18	Yes
3019	7	409.00	16	Yes
3020	9.6	304.00	16	Yes
3021	5.4	364.00	17	Yes
3022	9.9	468.00	17	Yes
3023	6.5	389.00	18	Yes
3024	5.1	362.00	17	Yes
3025	9.4	263.00	16	Yes
3026	5.3	259.00	17	Yes
3027	6.4	398.00	16	Yes
3028	8.6	413.00	16	Yes
3029	5.8	377	16	Yes
3030	5.2	483	16	Yes

Page 242 of 297

TYPE 4 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
4001	17.2	423.00	14	Yes
4002	11.8	280.00	13	Yes
4003	12.1	424.00	14	Yes
4004	11	476.00	16	Yes
4005	19.2	454.00	13	Yes
4006	18	402.00	12	Yes
4007	16.1	381.00	13	Yes
4008	16.6	490.00	14	Yes
4009	15.5	334.00	12	Yes
4010	12.4	436.00	12	Yes
4011	13.4	390.00	16	Yes
4012	18.6	281.00	13	Yes
4013	15	481.00	14	Yes
4014	15.4	486.00	16	Yes
4015	14.9	284.00	16	Yes
4016	12	297.00	12	Yes
4017	19.6	268.00	15	Yes
4018	10.9	393.00	15	Yes
4019	11	404.00	16	Yes
4020	15.2	336.00	12	Yes
4021	15.1	256.00	14	Yes
4022	17.1	400.00	12	Yes
4023	14.3	480.00	12	Yes
4024	19.1	325.00	13	Yes
4025	16.5	459.00	13	Yes
4026	10.2	411.00	13	Yes
4027	14.2	306.00	16	Yes
4028	14.8	403.00	16	Yes
4029	17.4	352.00	15	Yes
4030	12.3	393.00	13	Yes

Page 243 of 297

TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

Page 244 of 297

TYPE 6 DETECTION PROBABILITY

1 2	Within Sequence			
1 2	(Bass 1)	Frequency	Detection BW	Detection
1 2	(Dase 1)	(MHz)		(Yes/No)
2	287	5545	2	Yes
	762	5546	2	Yes
3	1237	5547	2	Yes
4	1712	5548	3	Yes
5	2187	5549	1	Yes
6	2662	5550	3	Yes
7	3137	5551	1	Yes
8	3612	5552	2	Yes
9	4562	5553	4	Yes
10	5037	5554	3	Yes
11	5512	5555	4	Yes
12	5987	5545	2	Yes
13	6462	5546	2	Yes
14	6937	5547	2	Yes
15	7412	5548	1	Yes
16	7887	5549	5	Yes
17	8362	5550	3	Yes
18	8837	5551	1	Yes
19	9312	5552	2	Yes
20	9787	5553	1	Yes
21	10737	5554	1	Yes
22	11212	5555	4	Yes
23	11687	5545	2	Yes
24	12162	5546	1	Yes
25	13112	5547	3	Yes
26	13587	5548	3	Yes
27	14062	5549	3	Yes
28	14537	5550	3	Yes
29	15012	5551	1	Yes
30	15962	5552	2	Yes
31	16437	5553	3	Yes
32	16912	5554	3	Yes

Page 245 of 297

10.4.7. OVERLAPPING CHANNEL TESTS

PROCEDURE

The EUT was set to block all channels except 5545MHz, 5550 MHz and 5555 MHz, which are overlapping. The first active channel was 5550 MHz and the radar test frequency was 5550 MHz.

A link was established on the first active channel with the video file streaming.

A radar burst was triggered and a stopwatch timer was started.

The EUT was confirmed to vacate the first active channel then a second radar burst was triggered approximately 45 seconds after the first radar burst.

The EUT was confirmed to vacate the second active channel then a third radar burst was triggered approximately 45 seconds after the second radar burst.

The EUT was confirmed to vacate the third channel.

The spectrum was continuously monitored throughout the test.

<u>RESULTS</u>

After the first radar burst was transmitted the EUT display indicated that 5550 MHz was blocked.

The EUT display then indicated that a CAC was started on one of the remaining two unblocked channels.

After the second radar burst was transmitted the EUT displayed that the second channel was also blocked.

The EUT display then indicated that a CAC was started on the last unblocked channel.

After the third radar burst was transmitted the EUT displayed that all three channels were blocked.

No beacons or traffic was observed after the first radar burst was transmitted.

TEST RESULTS

No EUT transmissions were observed on the test channel during the observation time after the first radar burst.

Page 247 of 297

10.5. SLAVE DEVICE CONFIGURATION IN 10 MHz BANDWIDTH

10.5.1. TRAFFIC

PLOT OF TRAFFIC FROM SLAVE

Page 248 of 297

10.5.2. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.0	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	0.0	260

Page 249 of 297

MOVE TIME

Page 250 of 297

CHANNEL CLOSING TIME

Page 251 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 252 of 297

No transmissions are observed during the IC aggregate monitoring period.

Page 253 of 297

10.5.3. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

Agilent 15:55:0	01 Jul 9, 2008			RT	Freq/Channel
tef -36.3 dBm	#Atten 20 dB		MI	kr1 46.75 s -64.02 dBm	Center Freq 5.5500000 GHz
og 0 IB/					Start Freq
lffst 1 l6.3 Ø B					Stop Freq
I <mark></mark> ≽4.0 Bm gA∨					CF Step 3.0000000 MHz
11 S2 3 FS					Freq Offset 0.00000000 Hz
f): Tun					Signal Track On <u>O</u> t
enter 5.550 000 @	Hz #	VBW 3 MH7	Swaan 2 ks	Span 0 Hz [°] /8001 pts)	

Page 254 of 297

10.6. MASTER DEVICE CONFIGURATION IN 15 MHz BANDWIDTH

10.6.1. TRAFFIC

PLOT OF TRAFFIC FROM MASTER

Page 255 of 297

10.6.2. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
17.84	134.9	117.1	57.1

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
18.14	77.6	59.5	2.4

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
18.34	131.9	113.6	56.5

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

Page 257 of 297

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 258 of 297

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

Page 259 of 297

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

Page 260 of 297

10.6.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.046	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	46.0	260

Page 261 of 297

MOVE TIME

Page 262 of 297

CHANNEL CLOSING TIME

Page 263 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 264 of 297

Only intermittent transmissions are observed during the IC aggregate monitoring period.

Page 265 of 297

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 266 of 297

10.6.4. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

		OD PLO	/1	D	т	
W Aylient 15.51	. 10 JULO, 2000			R	-	BVWAVg
Ref -30_ <u>dBm</u>	Atten 10 dB		۵	Mkr1 1.8 -25.70	ks dB	Res E
Log					*	Video E 3.0 MI <u>Auto №</u> VBW/RI
01 0 64.0 0 dBm				1		Auto <u>M</u> Averag 0n <u>(</u>
M1 S2 S3 FS ¤(f): FTun						Avg/VBW Typ Log-Pwr (Video) <u>Auto №</u>
Center 5.550 000 Res BW 3 MHz	GHz VBW	/ 3 MHz	Sweep	Span 2 ks (8001 pt	0 Hz î s)	Span/RB 11 <u>Auto M</u>

Page 267 of 297

10.6.5. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5543	5557	14	13.503	103.7	80

Page 268 of 297

DETECTION BANDWIDTH PROBABILITY

DETECTION BA	NDWIDTH PROBAE	BILITY RESULTS		
Detection Bandw FCC Type 1 Wave	/idth Test Results eform: 1 us Pulse Wi	dth, 1428 us PRI, 18 F	Pulses per Bur	rst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHZ)			(%)	
5543	10	10	100	FL
5544	10	10	100	
5545	10	10	100	
5546	10	10	100	
5547	10	10	100	
5548	10	10	100	
5549	10	10	100	
5550	10	10	100	
5551	10	10	100	
5552	10	10	100	
5553	10	10	100	
5554	10	10	100	
5555	10	10	100	
5556	10	10	100	
5557	10	10	100	FH

Page 269 of 297

10.6.6. IN-SERVICE MONITORING

RESULTS

FCC Radar Test	Summary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC TYPE 1	30	100.00	60	Pass
FCC TYPE 2	30	100.00	60	Pass
FCC TYPE 3	30	100.00	60	Pass
FCC TYPE 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC TYPE 5	30	100.00	80	Pass
FCC TYPE 6	30	100.00	70	Pass

Page 270 of 297

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Fixed Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst				
Trial	Successful Detection (Yes/No)			
1	Yes			
2	Yes			
3	Yes			
4	Yes			
5	Yes			
6	Yes			
7	Yes			
8	Yes			
9	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	Yes			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	Yes			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	Yes			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

Page 271 of 297

TYPE 2 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
2001	4.8	220.00	28	Yes
2002	4.5	225.00	28	Yes
2003	5	214.00	27	Yes
2004	1.4	186.00	27	Yes
2005	1.6	187.00	27	Yes
2006	4.8	192.00	27	Yes
2007	1.8	197.00	26	Yes
2008	2.6	182.00	28	Yes
2009	2.7	221.00	27	Yes
2010	1.5	209.00	26	Yes
2011	2.1	167.00	25	Yes
2012	4.1	183.00	23	Yes
2013	3	173.00	29	Yes
2014	4.6	176.00	25	Yes
2015	3.6	215.00	24	Yes
2016	2.2	192.00	28	Yes
2017	1.4	152.00	29	Yes
2018	2.4	182.00	29	Yes
2019	3.8	208.00	26	Yes
2020	1	176.00	26	Yes
2021	4.9	203.00	28	Yes
2022	1.1	201.00	23	Yes
2023	4.6	208.00	28	Yes
2024	2.1	207.00	23	Yes
2025	1.3	213.00	27	Yes
2026	5	200.00	25	Yes
2027	2.5	158.00	24	Yes
2028	4.2	151.00	26	Yes
2029	1.3	223.00	25	Yes
2030	2.6	178.00	28	Yes

Page 272 of 297
TYPE 3 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detectio
	(us)	(us)		(Yes/No)
3001	6.7	297.00	16	Yes
3002	8.9	341.00	18	Yes
3003	9	440.00	17	Yes
3004	6.2	318.00	17	Yes
3005	6.3	344.00	18	Yes
3006	9.7	326.00	17	Yes
3007	5.9	445.00	18	Yes
3008	6.1	409.00	17	Yes
3009	9.1	470.00	16	Yes
3010	6.3	285.00	17	Yes
3011	6.3	286.00	16	Yes
3012	6.9	285.00	16	Yes
3013	7.9	320.00	16	Yes
3014	5	426.00	17	Yes
3015	8.8	495.00	18	Yes
3016	5.5	321.00	17	Yes
3017	6.4	478.00	18	Yes
3018	5.5	267.00	18	Yes
3019	7	409.00	16	Yes
3020	9.6	304.00	16	Yes
3021	5.4	364.00	17	Yes
3022	9.9	468.00	17	Yes
3023	6.5	389.00	18	Yes
3024	5.1	362.00	17	Yes
3025	9.4	263.00	16	Yes
3026	5.3	259.00	17	Yes
3027	6.4	398.00	16	Yes
3028	8.6	413.00	16	Yes
3029	5.8	377	16	Yes
3030	5.2	483	16	Yes

Page 273 of 297

TYPE 4 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	17.2	423.00	14	Yes
4002	11.8	280.00	13	Yes
4003	12.1	424.00	14	Yes
4004	11	476.00	16	Yes
4005	19.2	454.00	13	Yes
4006	18	402.00	12	Yes
4007	16.1	381.00	13	Yes
4008	16.6	490.00	14	Yes
4009	15.5	334.00	12	Yes
4010	12.4	436.00	12	Yes
4011	13.4	390.00	16	Yes
4012	18.6	281.00	13	Yes
4013	15	481.00	14	Yes
4014	15.4	486.00	16	Yes
4015	14.9	284.00	16	Yes
4016	12	297.00	12	Yes
4017	19.6	268.00	15	Yes
4018	10.9	393.00	15	Yes
4019	11	404.00	16	Yes
4020	15.2	336.00	12	Yes
4021	15.1	256.00	14	Yes
4022	17.1	400.00	12	Yes
4023	14.3	480.00	12	Yes
4024	19.1	325.00	13	Yes
4025	16.5	459.00	13	Yes
4026	10.2	411.00	13	Yes
4027	14.2	306.00	16	Yes
4028	14.8	403.00	16	Yes
4029	17.4	352.00	15	Yes
4030	12.3	393.00	13	Yes

Page 274 of 297

TYPE 5 DETECTION PROBABILITY

Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

Page 275 of 297

TYPE 6 DETECTION PROBABILITY

Trial	Starting Index	Signal Generator	Hops within	Successfu
mai	Within Sequence	Frequency	Detection BW	Detection
	(Base 1)	(MHz)		(Yes/No)
1	299	5543	2	Yes
2	774	5544	2	Yes
3	1249	5545	4	Yes
4	1724	5546	6	Yes
5	2199	5547	2	Yes
6	2674	5548	3	Yes
7	3149	5549	1	Yes
8	3624	5550	2	Yes
9	4099	5551	2	Yes
10	4574	5552	4	Yes
11	5049	5553	1	Yes
12	5524	5554	5	Yes
13	5999	5555	2	Yes
14	6474	5556	2	Yes
15	6949	5557	3	Yes
16	7424	5543	3	Yes
17	7899	5544	6	Yes
18	8374	5545	4	Yes
19	8849	5546	4	Yes
20	9324	5547	2	Yes
21	9799	5548	3	Yes
22	10274	5549	3	Yes
23	10749	5550	2	Yes
24	11224	5551	4	Yes
25	11699	5552	2	Yes
26	12174	5553	3	Yes
27	12649	5554	4	Yes
28	13124	5555	4	Yes
29	13599	5556	3	Yes
30	14074	5557	4	Yes

Page 276 of 297

10.6.7. OVERLAPPING CHANNEL TESTS

PROCEDURE

The EUT was set to block all channels except 5545MHz, 5550 MHz and 5555 MHz, which are overlapping. The first active channel was 5550 MHz and the radar test frequency was 5550 MHz.

A link was established on the first active channel with the video file streaming.

A radar burst was triggered and a stopwatch timer was started.

The EUT was confirmed to vacate the first active channel then a second radar burst was triggered approximately 45 seconds after the first radar burst.

The EUT was confirmed to vacate the second active channel then a third radar burst was triggered approximately 45 seconds after the second radar burst.

The EUT was confirmed to vacate the third channel.

The spectrum was continuously monitored throughout the test.

<u>RESULTS</u>

After the first radar burst was transmitted the EUT display indicated that 5550 MHz was blocked.

The EUT display then indicated that a CAC was started on one of the remaining two unblocked channels.

After the second radar burst was transmitted the EUT displayed that the second channel was also blocked.

The EUT display then indicated that a CAC was started on the last unblocked channel.

After the third radar burst was transmitted the EUT displayed that all three channels were blocked.

No beacons or traffic was observed after the first radar burst was transmitted.

Page 277 of 297

TEST RESULTS

No EUT transmissions were observed on the test channel during the observation time after the first radar burst.

Page 278 of 297

10.7. SLAVE DEVICE CONFIGURATION IN 15 MHz BANDWIDTH

10.7.1. TRAFFIC

PLOT OF TRAFFIC FROM SLAVE

🎋 Agilent 16:36:12 Jul	8, 2008	R T	Freq/Channel
Ref -36.3 dBm #A {Peak	tten 20 dB	Mkr1 5.328 s -74.67 dBm	Center Freq 5.55000000 GHz
.og 0 B/			Start Freq 5.55000000 GHz
46.3 IB DI			Stop Freq 5.55000000 GHz
64.0 IBm .gAv			CF Step 3.00000000 MHz <u>Auto Ma</u>
A1 S2 53 FC			Freq Offset 0.00000000 Hz
(f): Tun			Signal Track On <u>Of</u>
Center 5.550 000 GHz Res BW 3 MHz	#VBW 3 MHz	Span 0 Hz Sweep 16 s (8001 pts)	_] :

Page 279 of 297

10.7.2. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.0	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	0.0	260

Page 280 of 297

MOVE TIME

Page 281 of 297

CHANNEL CLOSING TIME

Page 282 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Page 283 of 297

No transmissions are observed during the IC aggregate monitoring period.

Page 284 of 297

10.7.3. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

- Aylient 17:55.	51 JULO, 2000			Mkr1 18 ks	Ted/Criannei
ef-36.3 dBm ⊃eak	#Atten 20 dB			-38.35 dB	Center Freq 5.55000000 GHz
og) B/					Start Freq 5.5500000 GHz
6.3 O					Stop Freq 5.5500000 GHz
4.0 Bm gA∨					CF Ste 3.00000000 MHz <u>Auto M</u> a
1 S2 3 FS					Freq Offset 0.00000000 Hz
f): Fun					Signal Track On <u>O</u>
enter 5.550 000 G es BW 3 MHz	GHz #VBW	/ 3 MH7	Sween 2	Span 0 Hz	

Page 285 of 297

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE T-LIMITS	FOR MAXIMUM P	ERMISSIBLE EXP	OSURE (MPE)					
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Limits for Occupational/Controlled Exposures								
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6				
(B) Limits for General Population/Uncontrolled Exposure								
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30				

TABLE 4 LIMITE FOR MAXIMUM REDNICEIDLE EXPOSURE (MRE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-posed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure across eacted every enter their exposure.

exposure or can not exercise control over their exposure.

Page 286 of 297

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5

Exposure Limits for Persons Not Classed As RF and Microwave Ex-
posed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/ <i>f</i>		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	<i>f</i> /150	6
1 500–15 000	61.4	0.163	10	6
15 000-150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000-300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

* Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

- 2. A power density of 10 W/m^2 is equivalent to 1 mW/cm^2 .
- A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

Page 287 of 297

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

where

and

E = Field Strength in Volts/meter

P = Power in Watts

 $S = E^{2}/3770$

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

d = 0.282 * 10 ^ ((P + G) / 20) / √ S

where

d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

 $S = 0.0795 * 10^{(P + G)} / 10) / (d^2)$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

Page 288 of 297

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Mode	Band	FCC	IC	Output	Antenna	MPE
		Limit	Limit			Distance
		(mW/cm^2)	(W/m^2)	(dBm)	(dBi)	(cm)
5 MHz BW	5 Ghz	1.0	10.0	2.47	23.00	5.29
10 MHz BW	5 GHz	1.0	10.0	-8.35	33.90	5.34

Page 289 of 297