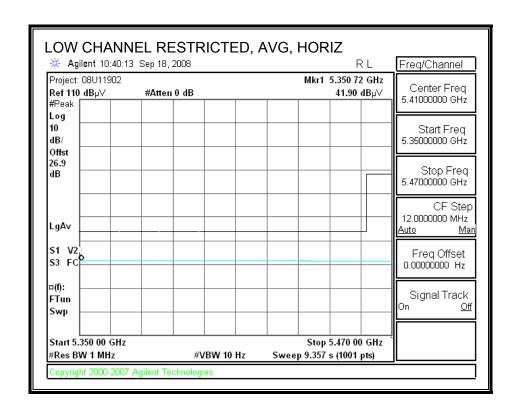
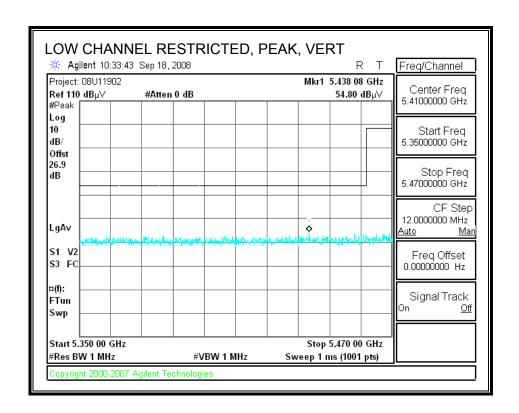
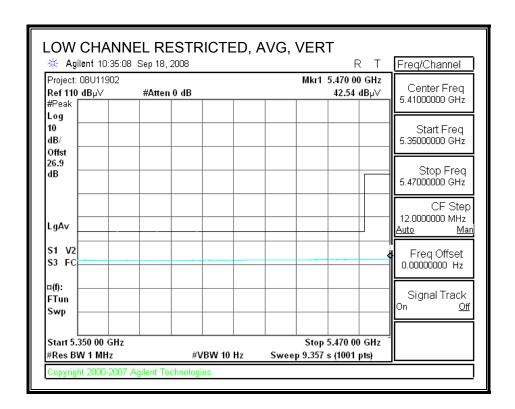
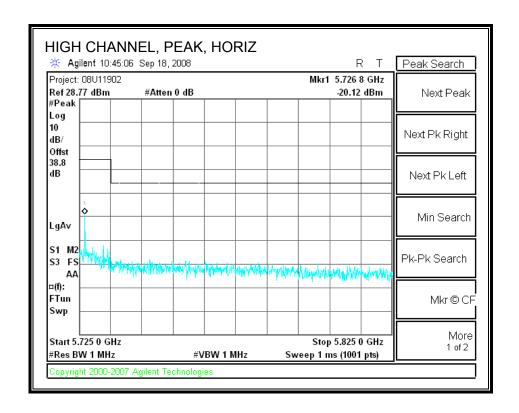
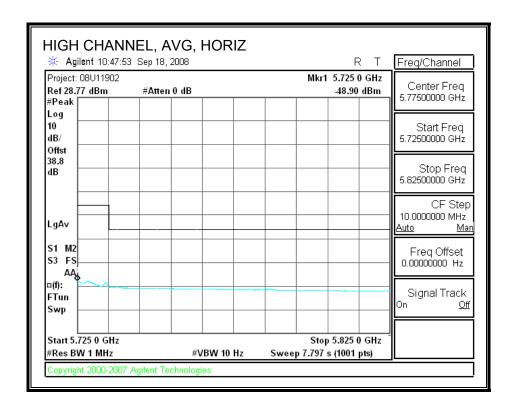

HARMONICS AND SPURIOUS EMISSIONS

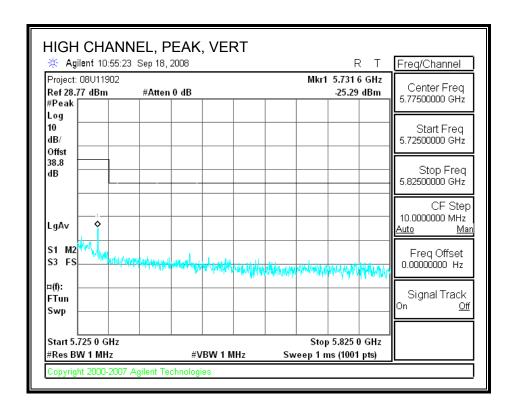


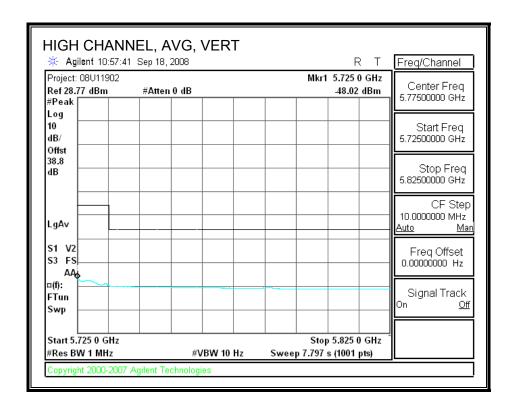

DATE: OCTOBER 10, 2008

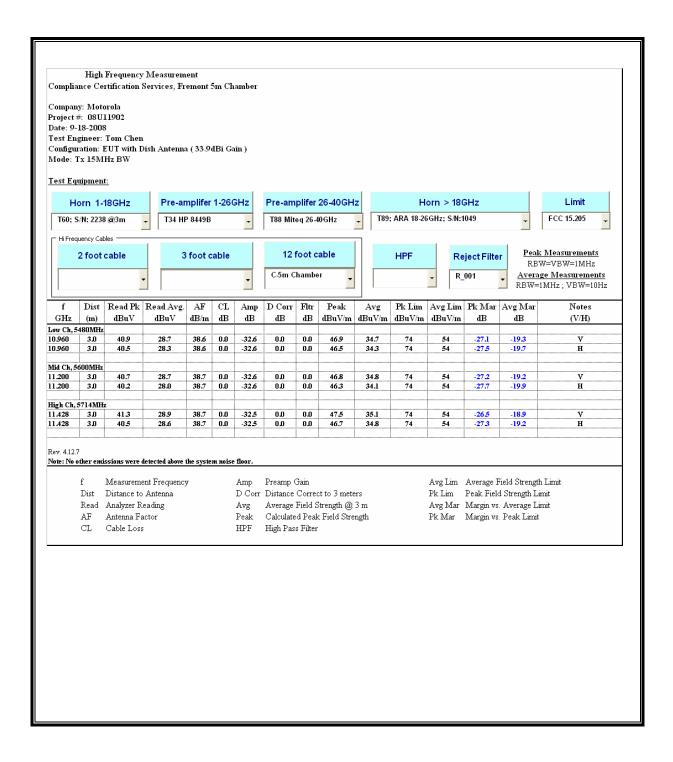

IC: 109AO-54100

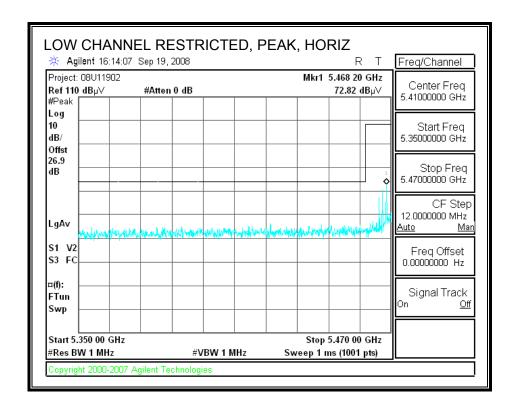

8.2.3. TRANSMITTER ABOVE 1 GHz FOR 15MHZ BANDWIDTH, DISH ANTENNA.

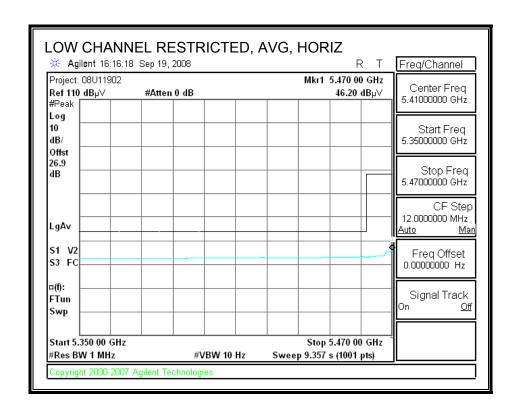


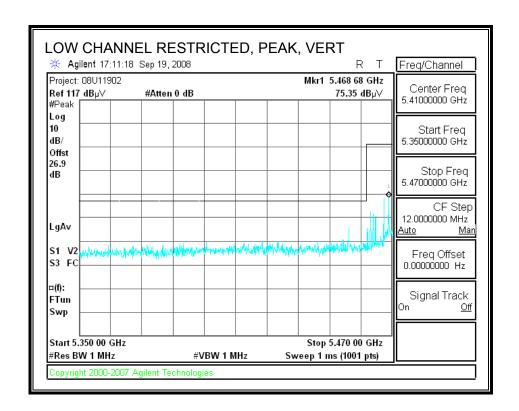


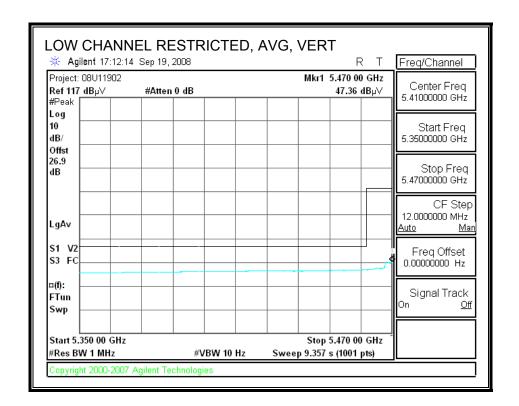


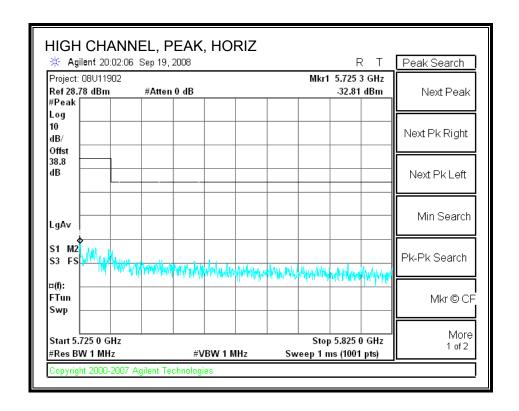


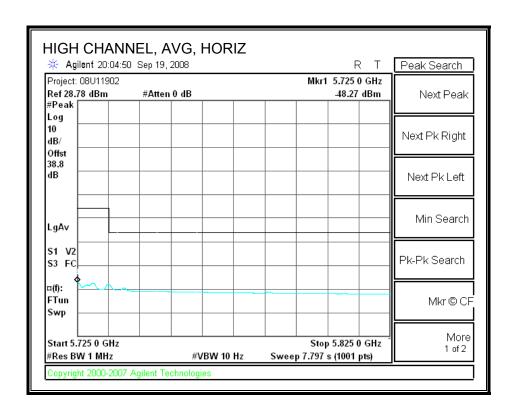

HARMONICS AND SPURIOUS EMISSIONS

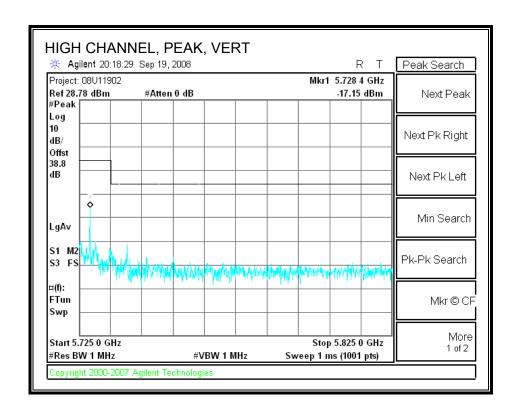


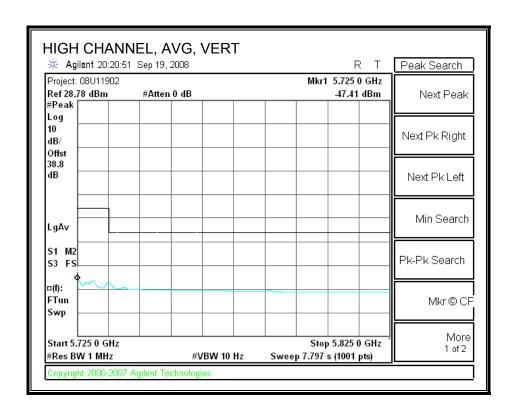

DATE: OCTOBER 10, 2008

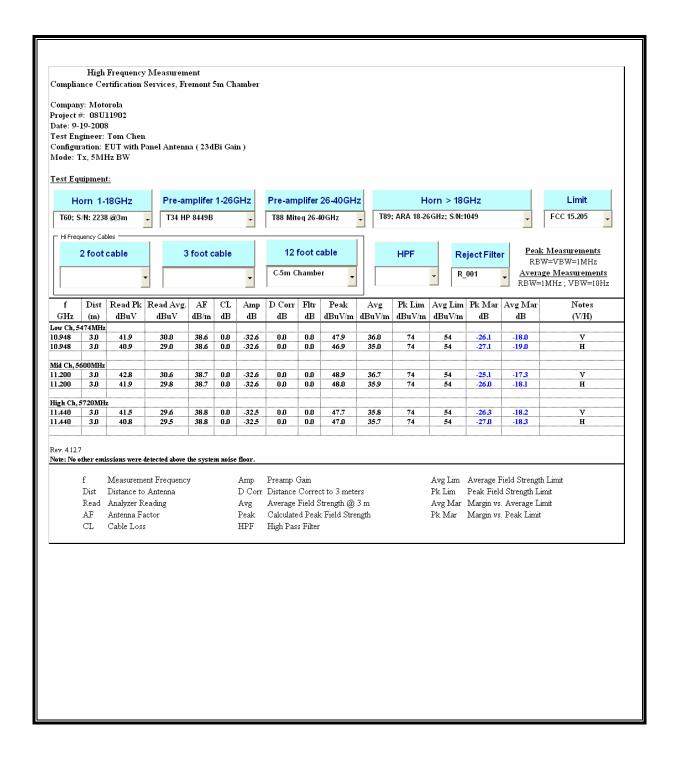

IC: 109AO-54100

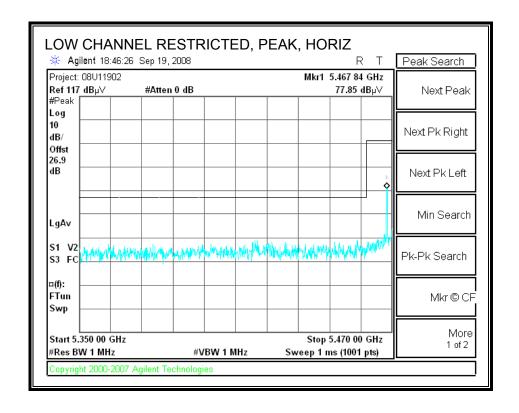

8.2.4. TRANSMITTER ABOVE 1 GHz FOR 5MHz BANDWIDTH, PANEL ANTENNA

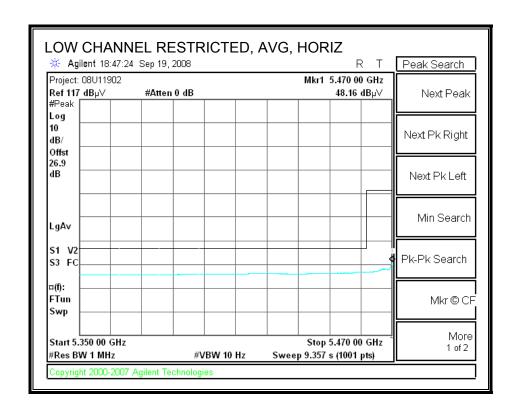


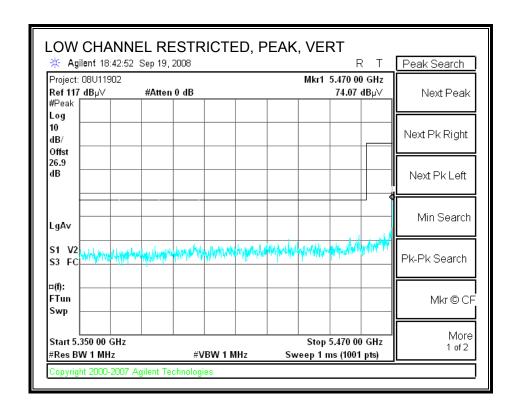


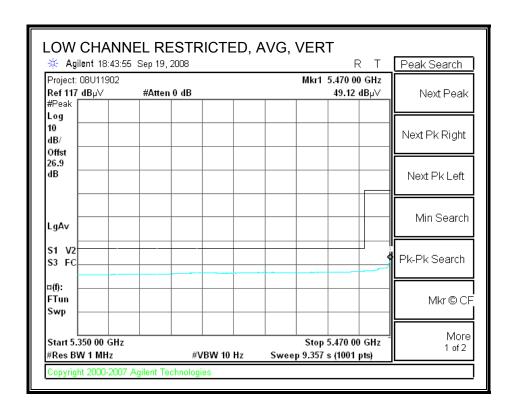


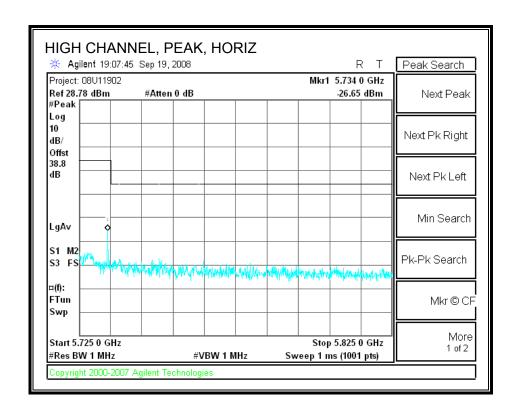


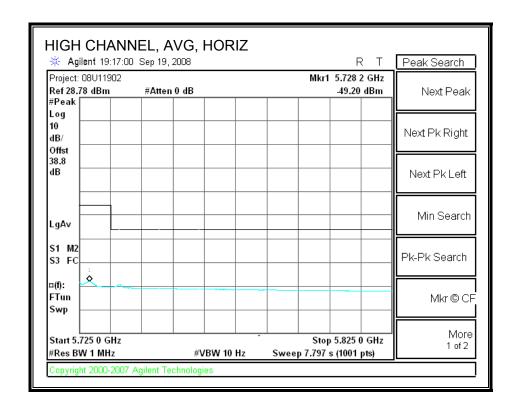


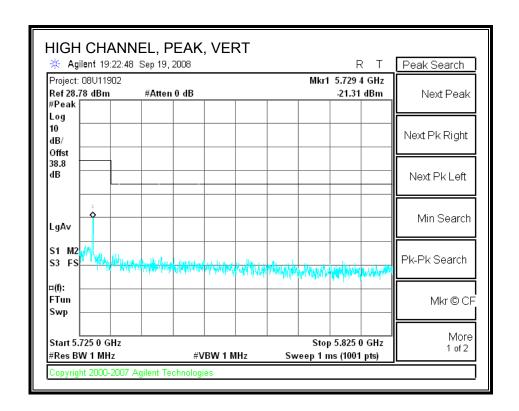


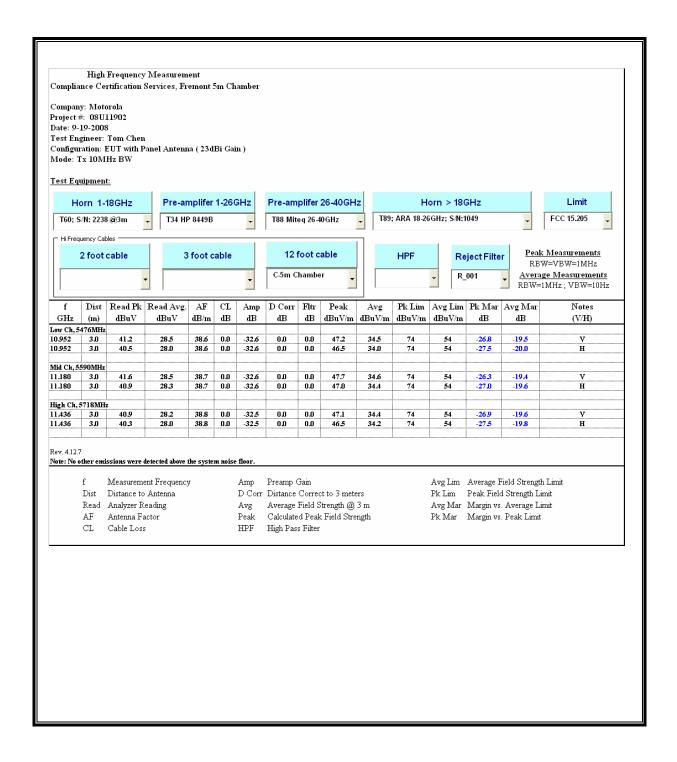

HARMONICS AND SPURIOUS EMISSIONS

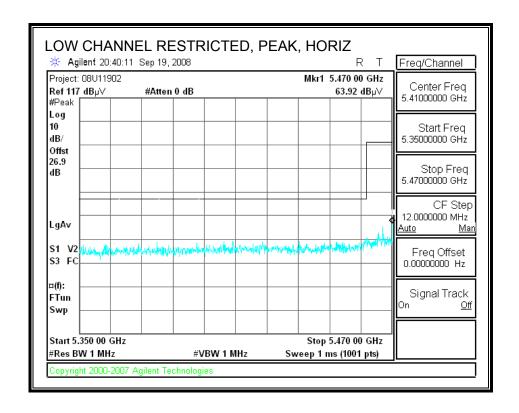


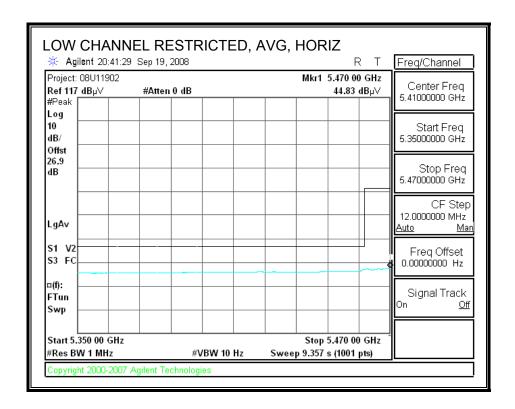

8.2.5. TRANSMITTER ABOVE 1 GHz FOR 10MHz, PANEL ANTENNA

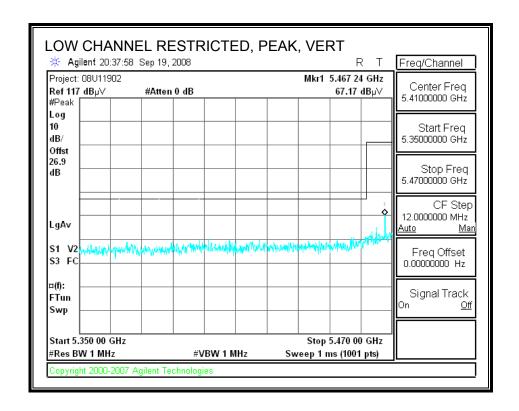


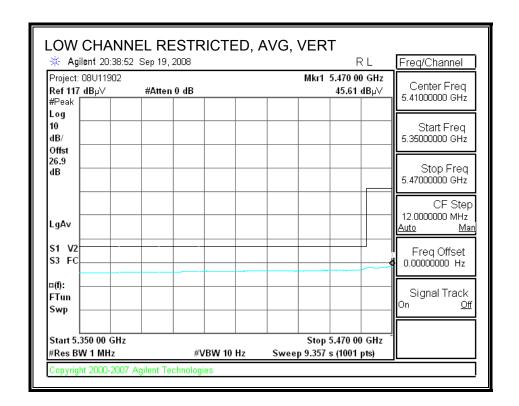


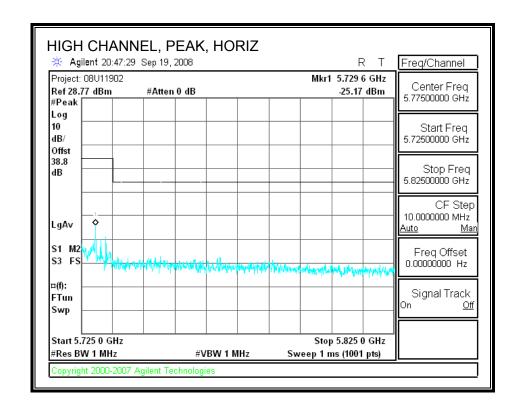


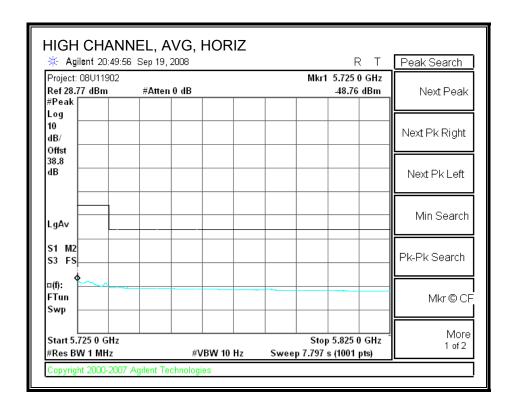


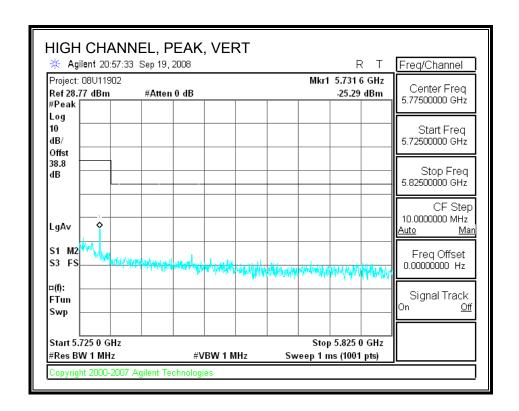

IC: 109AO-54100

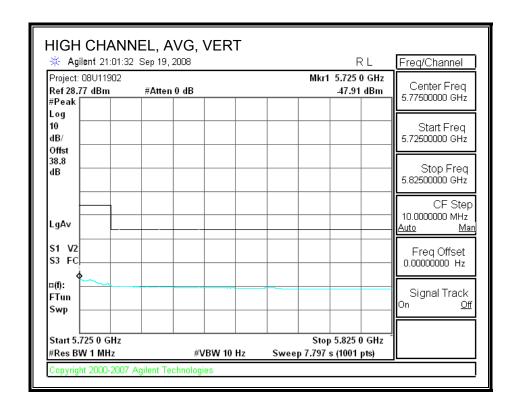

HARMONICS AND SPURIOUS EMISSIONS

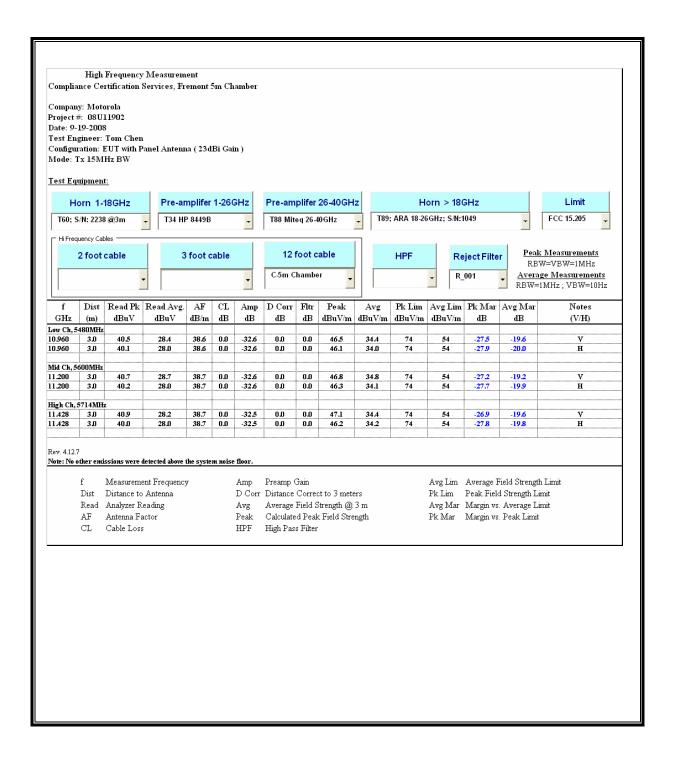



8.2.6. TRANSMITTER ABOVE 1 GHz FOR 15MHZ BANDWIDTH, PANEL ANTENNA.



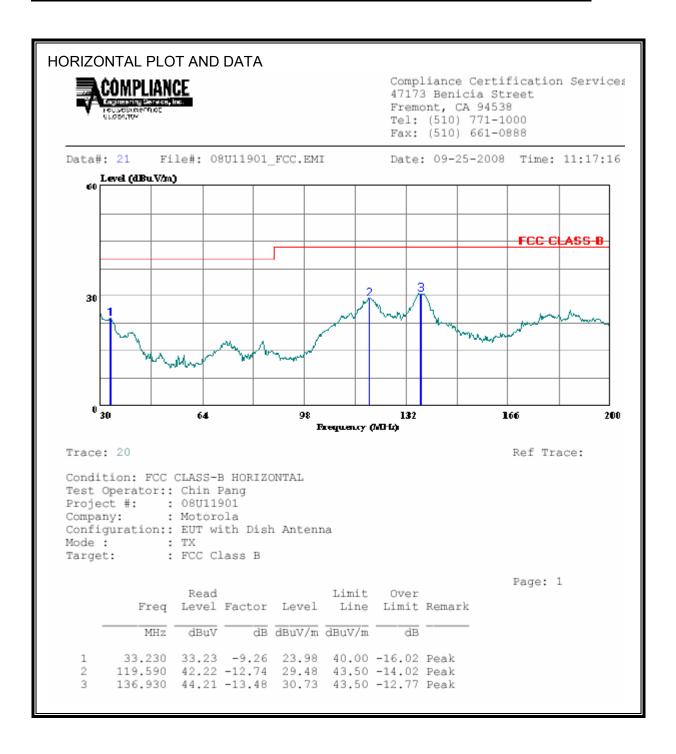




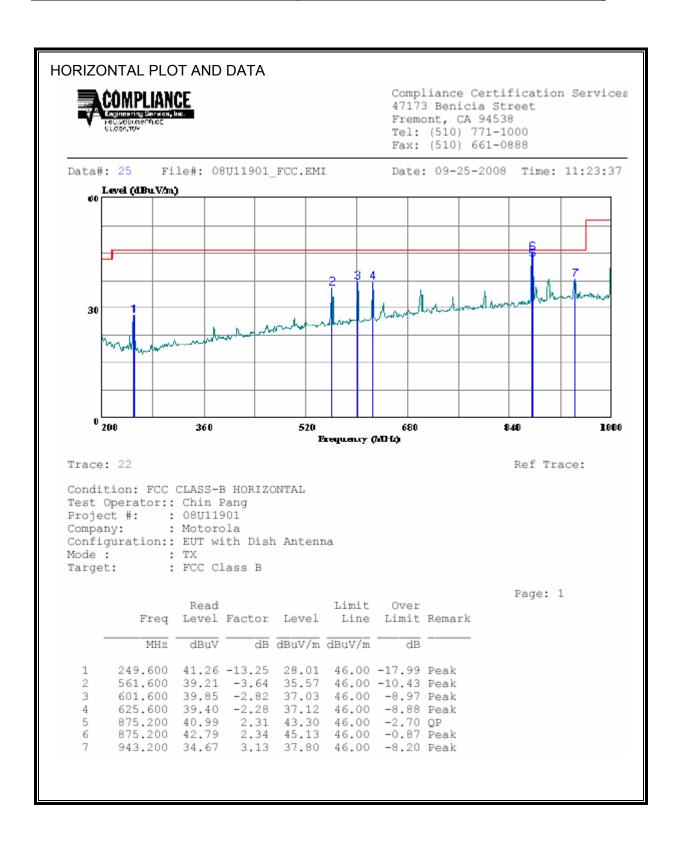


HARMONICS AND SPURIOUS EMISSIONS

DATE: OCTOBER 10, 2008

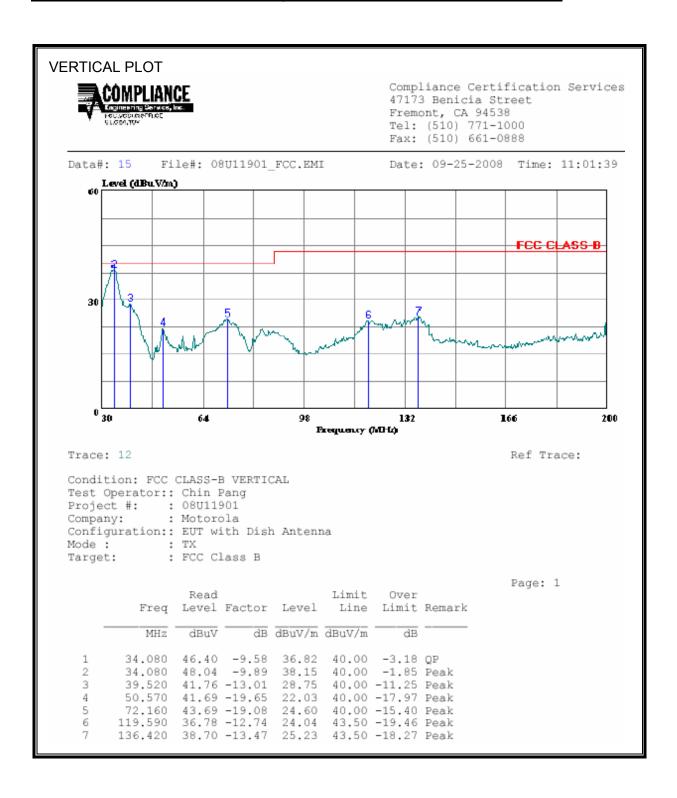

IC: 109AO-54100

8.3. RECEIVER RADIATED SPURIOUS

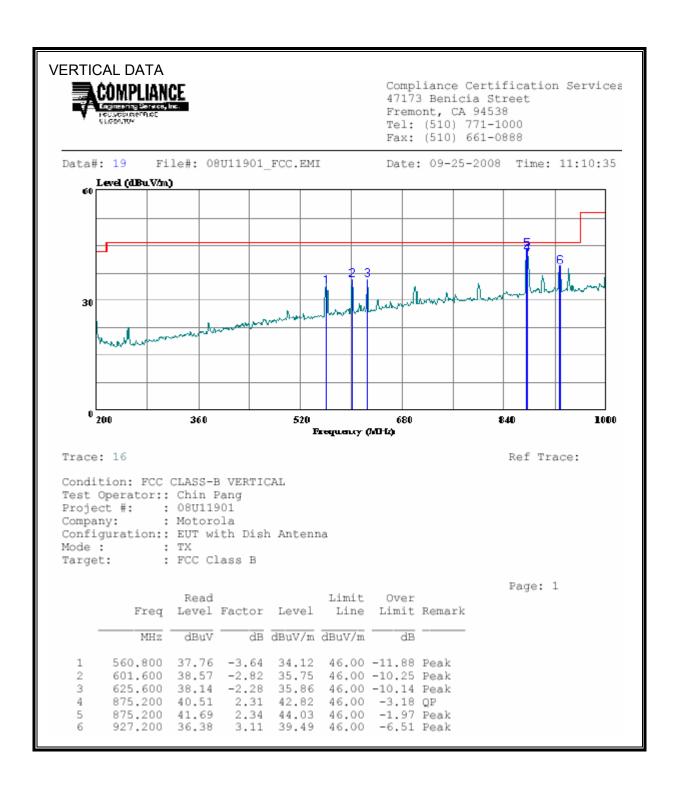

Note: No receive-only mode, test is not applicable

8.4. WORST-CASE BELOW 1 GHz (DISH ANTENNA)

SPURIOUS EMISSIONS 30 TO 230 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

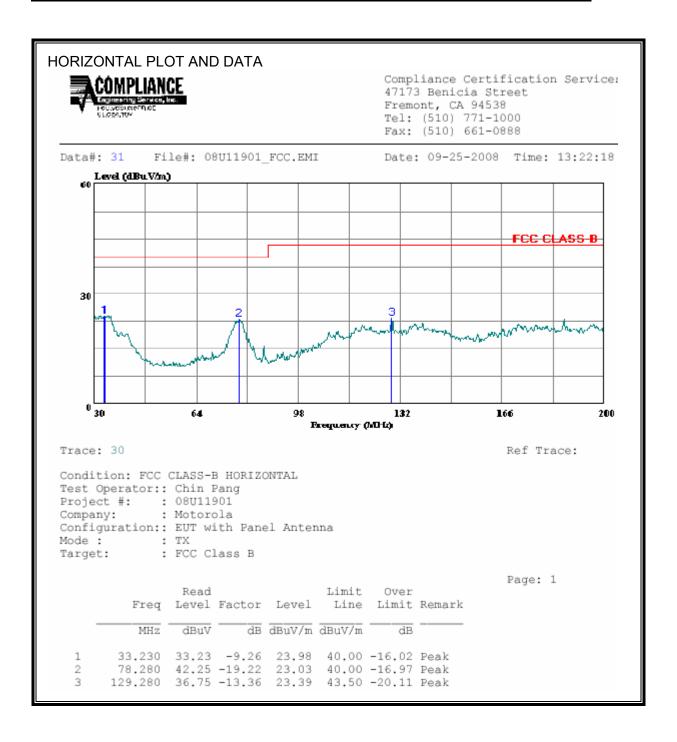


SPURIOUS EMISSIONS 200 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)



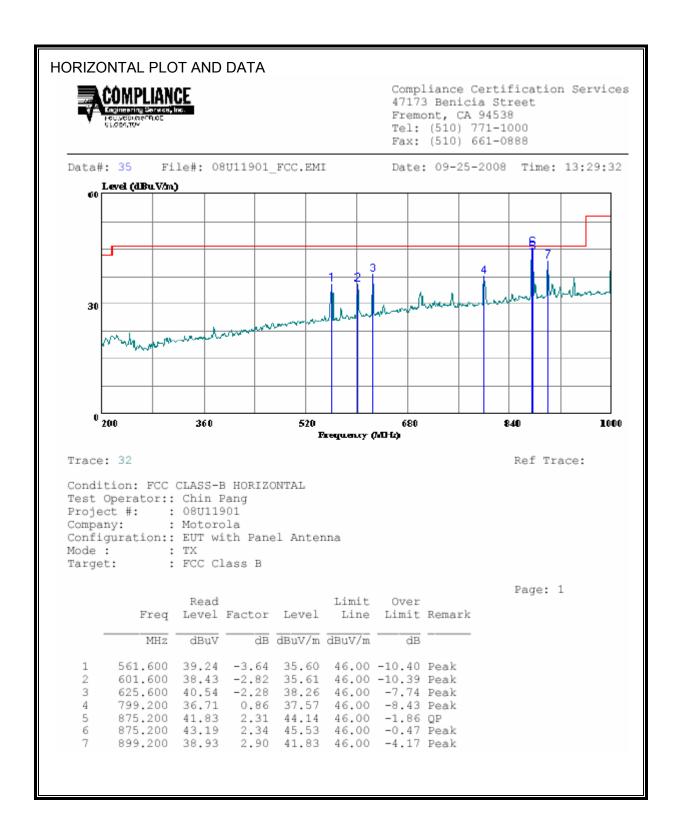
DATE: OCTOBER 10, 2008

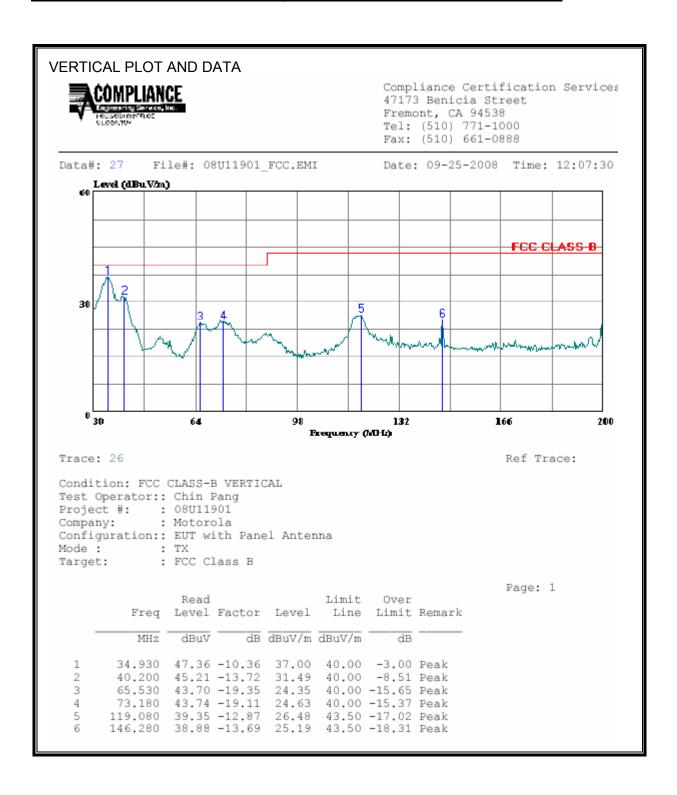
SPURIOUS EMISSIONS 30 TO 200 MHz (WORST-CASE CONFIGURATION VERTICAL



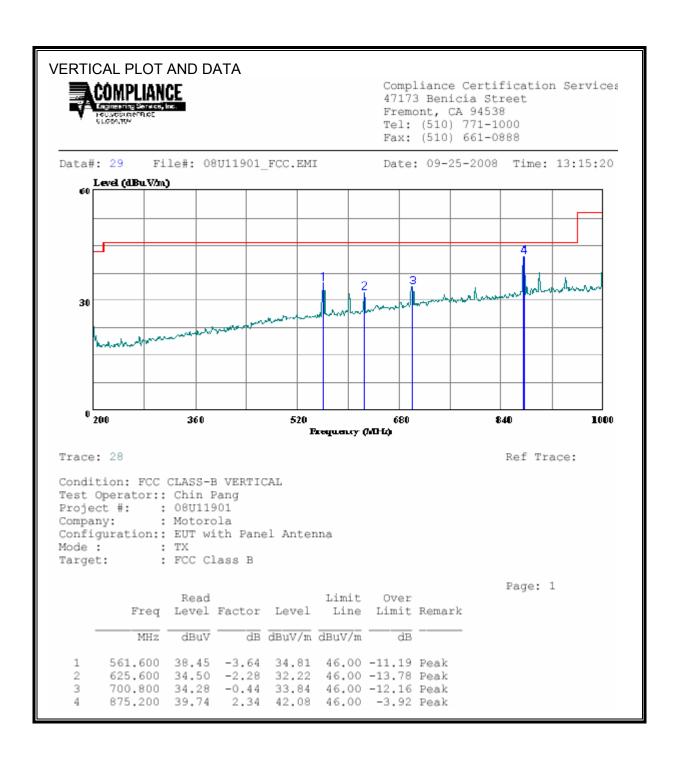
SPURIOUS EMISSIONS 200 TO 1000 MHz (WORST-CASE CONFIGURATION VERTICAL

8.5. WORST-CASE BELOW 1 GHz (PANEL ANTENNA)


SPURIOUS EMISSIONS 30 TO 230 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)


IC: 109AO-54100

DATE: OCTOBER 10, 2008


SPURIOUS EMISSIONS 200 TO 100 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 200 MHz (WORST-CASE CONFIGURATION VERTICAL

SPURIOUS EMISSIONS 200 TO 1000 MHz (WORST-CASE CONFIGURATION VERTICAL

IC: 109AO-54100

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

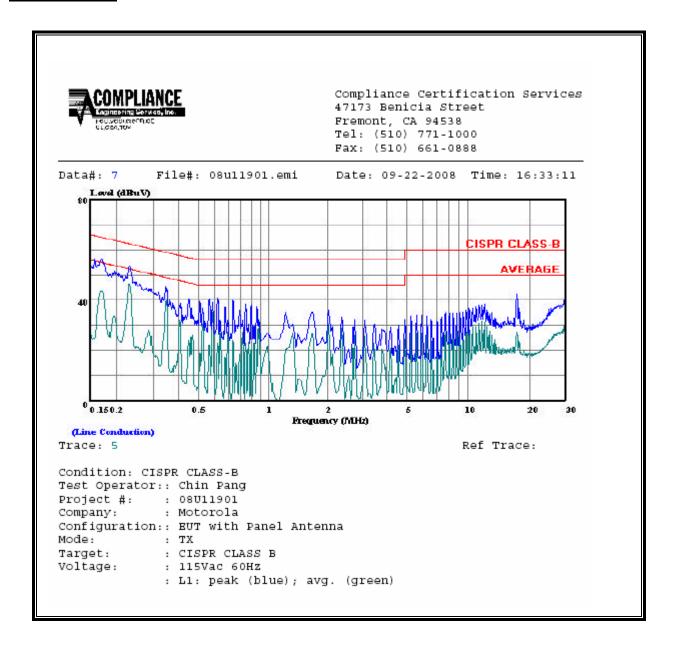
Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 °	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

Decreases with the logarithm of the frequency.

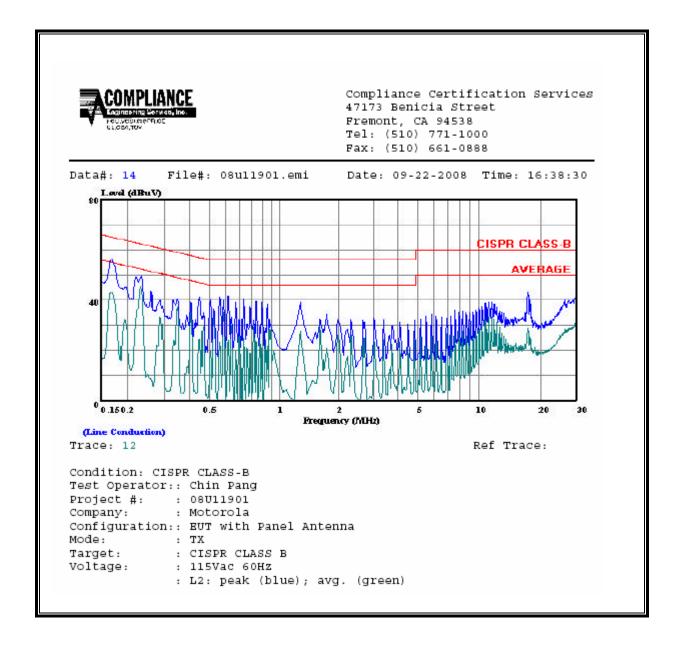
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.


Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS


6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.		Reading		Closs	Limit	EN_B	Marg	gin	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.17	55.72		43.61	0.00	64.86	54.86	-9.14	-11.25	L1
0.23	53.58		46.55	0.00	62.38	52.38	-8.80	-5.83	L1
11.74	38.23		31.58	0.00	60.00	50.00	-21.77	-18.42	L1
0.17	56.26		43.33	0.00	65.01	55.01	-8.75	-11.68	L2
0.23	48.45		45.34	0.00	62.38	52.38	-13.93	-7.04	L2
11.56	39.21		33.35	0.00	60.00	50.00	-20.79	-16.65	L2
6 Worst I) Data								

LINE 1 RESULTS

LINE 2 RESULTS

10. DYNAMIC FREQUENCY SELECTION

10.1. OVERVIEW

10.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

DATE: OCTOBER 10, 2008

IC: 109AO-54100

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode		
	Master	Client (without radar detection)	Client (with radar detection)
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
Uniform Spreading	Yes	Not required	Not required

Table 2: Applicability of DFS requirements during normal operation

rabio 117 (ppiloability 01 2)	rabio 117 (ppiloability of 11 o roquiromonio daring normal operation						
Requirement	Operationa	Operational Mode					
	Master	Client					
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum			
Type	(Microseconds)	(Microseconds)		Percentage of	Trials			
				Successful				
				Detection				
1	1	1428	18	60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
Aggregate (F	Aggregate (Radar Types 1-4) 80% 120							

Table 6 - Long Pulse Radar Test Signal

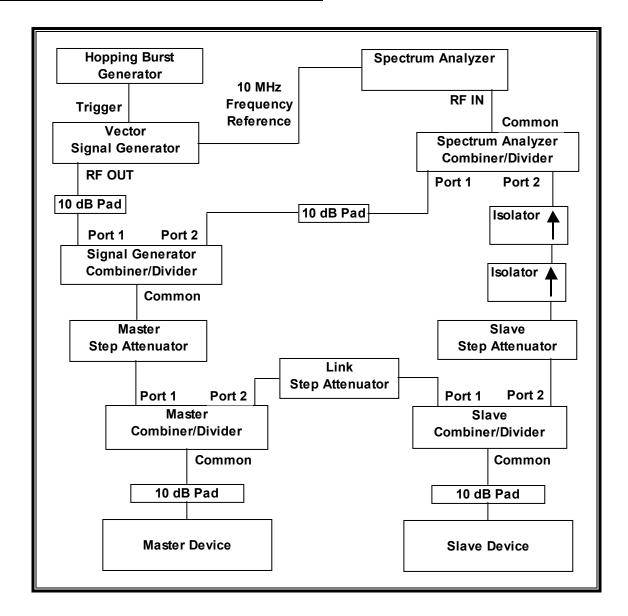

. 45.0	rabio o zong raioo raaar root orginar						
Radar	Bursts	Pulses	Pulse	Chirp	PRI	Minimum	Minimum
Waveform		per	Width	Width	(µsec)	Percentage	Trials
		Burst	(µsec)	(MHz)		of Successful	
						Detection	
5	8-20	1-3	50-100	5-20	1000-	80%	30
					2000		

Table 7 – Frequency Hopping Radar Test Signal

Table 1 Troquelley Hopping Radal Tool Olghai							
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

10.1.2. TEST AND MEASUREMENT SYSTEM

CONDUCTED METHOD SYSTEM BLOCK DIAGRAM

REPORT NO: 08U11901-1 FCC ID: QWP54100

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

DATE: OCTOBER 10, 2008

IC: 109AO-54100

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider, Measure the amplitude and calculate the difference from -64 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

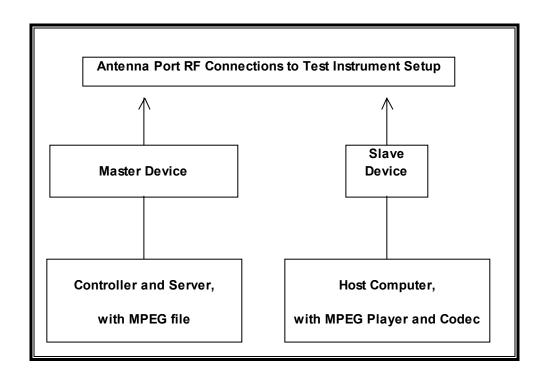
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	Cal Due	
Spectrum Analyzer 9 kHz ~ 26.5 GH	Agilent / HP	E4407B	US41444322	11/9/2008	
Vector Signal Generator 250kHz-					
20GHz	Agilent / HP	E8267C	US43320336	11/16/2008	
Arbitrary Waveform Generator	Agilent / HP	33220A	MY44026694	5/5/2009	

10.1.3. SETUP OF EUT

CONDUCTED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

	PERIPHERAL	SUPPORT EQU	IPMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
Wireless Ethernet				
Bridge (Master)	Motorola	PTP54600	000456803C	QWP54100
PIDU (Master)	Motorola	WB2521	732249782	DoC
Wireless Ethernet				
Bridge (Slave)	Motorola	PTP54600	000456804C5D	QWP54100
PIDU (Slave)	Motorola	WB2521	73629995	DoC
Notebook PC (Master)	Dell	PP18L	36778905757	DoC
			CN-0DF263-71615-	
AC Adapter (Master)	Dell	PA-1650-06D3	66C-2E22	DoC
Notebook PC (Slave)	Dell	PP18L	28071776413	DoC
			CN-0DF263-71615-	
AC Adapter (Slave)	Dell	PA-1650-06D3	72M-2925	DoC

Page 259 of 370

REPORT NO: 08U11901-1 FCC ID: QWP54100

10.1.4. DESCRIPTION OF EUT

The EUT operates over the 5470-5725 MHz range.

The EUT can be configured as a Master Device or a Slave Device without Radar Detection.

DATE: OCTOBER 10, 2008

IC: 109AO-54100

The highest power level within these bands is 30 dBm EIRP.

The highest gain antenna assembly utilized with the EUT is an external antenna with coaxial feed cable; the antenna has a gain of 34.9 dBi and the minimum cable loss is specified by the installation instructions. The lowest gain antenna assembly utilized with the EUT is an integral antenna, without any coax feed cable; this antenna assembly has a gain of 23 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is –64 dBm. After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is –64 + 23 + 1 = -40 dBm.

The calibrated conducted DFS Detection Threshold level is set to –41 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to a 50-ohm coaxial antenna port. The Vertical antenna ports are connected to the test system to perform conducted tests. The Horizontal antenna ports are connected via 70 dB attenuation.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

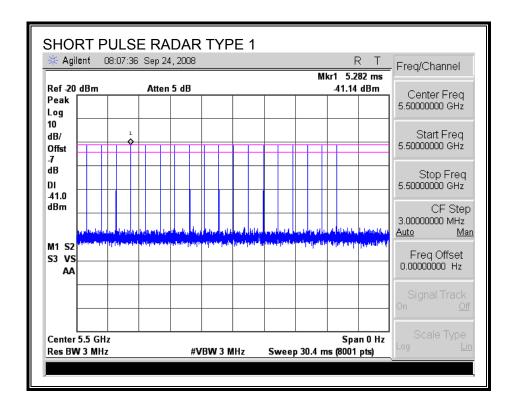
The EUT utilizes a proprietary, frame-based architecture. Three nominal channel bandwidths, 5, 10, and 15 MHz, are implemented. The channel spacing is 6, 6, and 10 MHz respectively.

The frame timing parameters are set in accordance with a test plan approved by the FCC.

The EUT has an initial power-up cycle time of 61.9 seconds in the 5 MHz BW mode, 63.2 seconds in the 10 MHz BW mode, and 61.8 seconds in the 15 MHz BW mode.

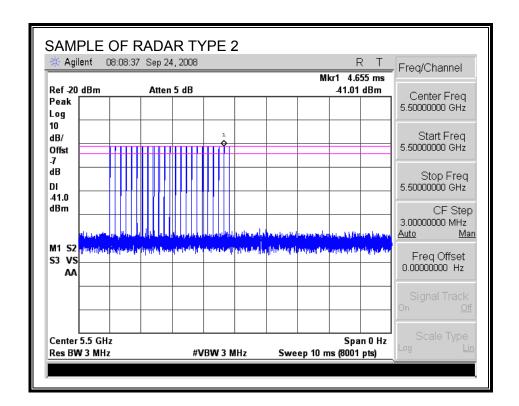
The software installed in the EUT is revision B1377.

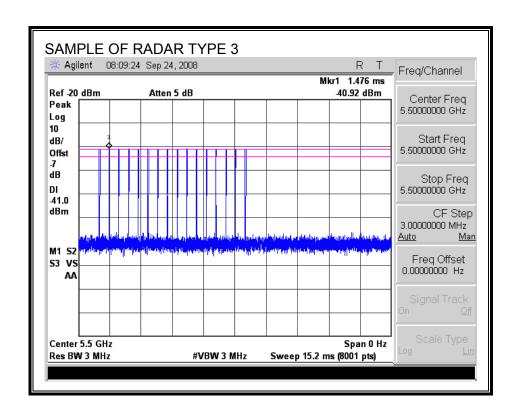
MANUFACTURER'S STATEMENT REGARDING UNIFORM CHANNEL SPREADING

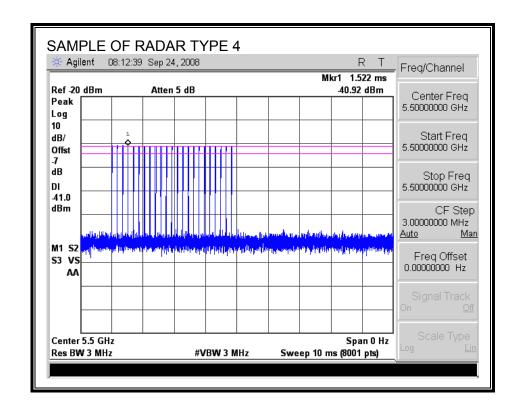

This statement is in a separate document.

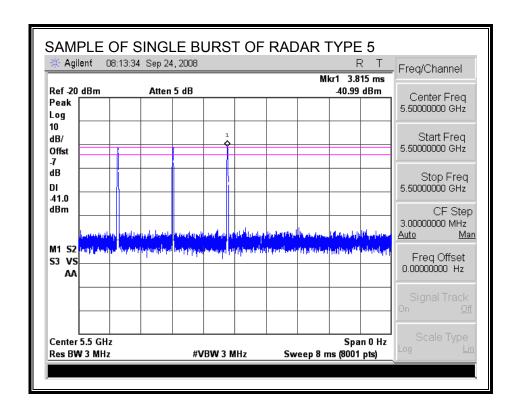
10.1.5. PLOTS OF RADAR WAVEFORMS

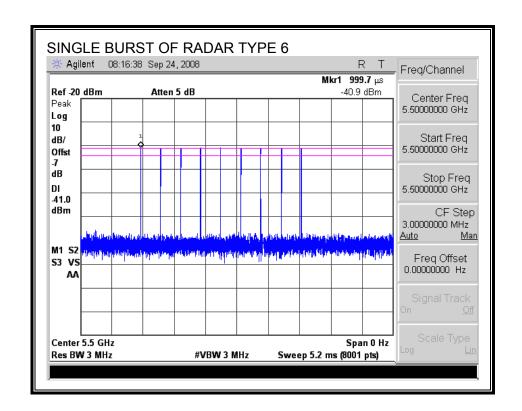
TEST CHANNEL

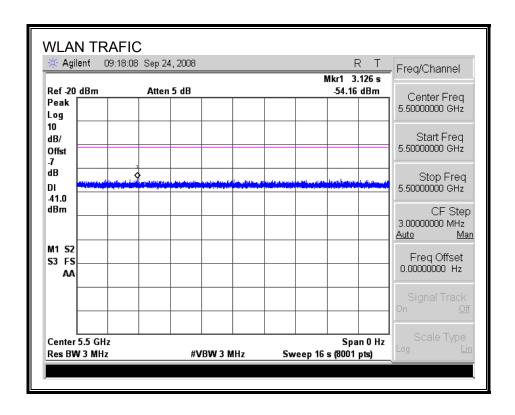

All tests were performed at a channel center frequency of 5500 MHz. Measurements were performed using conducted test methods.


PLOTS OF RADAR WAVEFORMS




DATE: OCTOBER 10, 2008


IC: 109AO-54100


10.2. RESULTS FOR 5 MHz BANDWIDTH MASTER CONFIGURATION

DATE: OCTOBER 10, 2008

IC: 109AO-54100

10.2.1. TRAFFIC

PLOT OF TRAFFIC FROM MASTER

10.2.2. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
24.3	146.2	121.9	61.9

Radar Near Beginning of CAC

- takan riban Buginining bi birib				
Timing of	Timing of	Radar Relative	Radar Relative	
Reboot	Radar Burst	to Reboot	to Start of CAC	
(sec)	(sec)	(sec)	(sec)	
24.0	86.4	62.4	0.5	

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
25.6	146.2	120.6	58.7

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING PLOT WITHOUT RADAR DURING CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC End of CAC Traffic is Initiated TIMNG PLOT WITHOU RADAR - NORMAL POWER-ON CYCLE Agilant 09:34:23 Sep 23, 2008 Freq/Channel Mkr2 146.2 s Ref -20 dem -65.08 dBm Atten 5 dF Center Freq Peak 5.50000000 GHz Log Start Freq dB/ 5.500000000 GHz Offst dΒ Stop Freq 5.50000000 GHz DI 41.0 dBm CF Step 3.00000000 MHz <u>Auto</u> <u>Man</u> Center 5.5 GHz Span 0 Hz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 240 s (8001 pts) 0.000000000 Hz Amplitude -63.82 dBm Time 24.33 s 146.2 s -65.08 dBm (1) Time

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH FADAR NEAR BEGINNING OF CAC Aglent 10:07:24 Sep 23, 2008 Marker Mkr2 86.4 s Ref -20 Bm dΒ 40.74 dBm Atten 5 Select Marker Peak <u>2</u> <u>3</u> Log 10 Marker Trace dB/ Offst <u>Auto 1 2 3</u> dΒ Readout, DΙ 41.0 dBm Function Off Span 0 Hz Center 5.5 GHz Res BW 3 MHz VBW 3 MHz Sweep 240 s (8001 pts) Marker Table Amplitude Marker Trace Туре X Axis Time (1) Time 86.4 s -40.74 dBm Marker All Off

No EUT transmissions were observed after the radar signal.

More 2 of 2

DATE: OCTOBER 10, 2008

IC: 109AO-54100

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RADAR NEAR END OF CAC Aglent 10:18:43 Sep 23, 200 Freq/Channel Mkr2 146.2 s Ref -20 Bm 40.44 dBm Atten 5 d Center Freq Peak 5.50000000 GHz Log 10 Start Freq dB/ 5.50000000 GHz Offst dΒ Stop Freq DΙ 5.500000000 GHz 41.0 dBm CF Step 3.00000000 MHz <u>Man</u> Span 0 Hz Center 5.5 GHz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 240 s (8001 pts) 0.000000000 Hz X Axis Amplitude Marker Trace Туре -63.92 dBm (1) Time Time 146.2 s -40.44 dBm

No EUT transmissions were observed after the radar signal.

IC: 109AO-54100

MOVE AND CLOSING TIME 10.2.3.

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

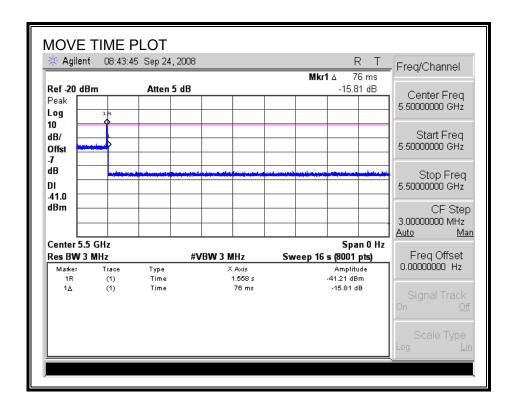
The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

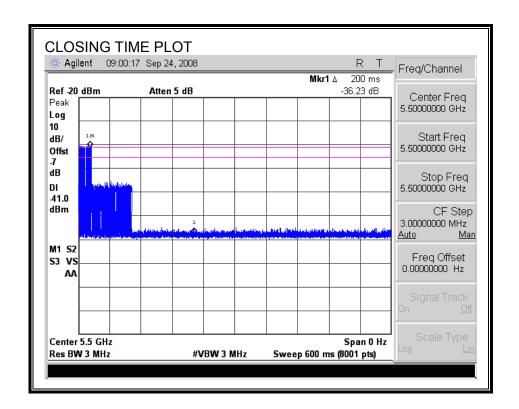
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

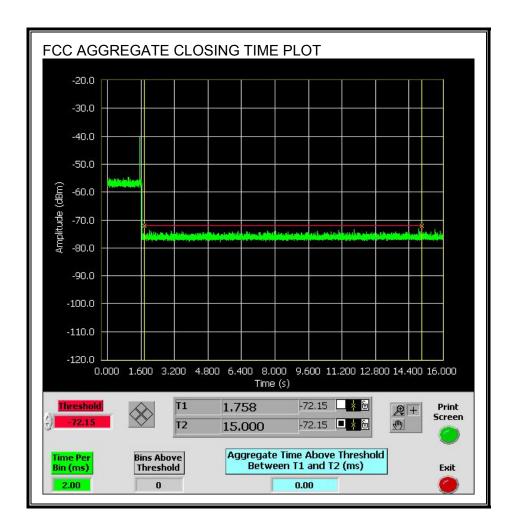

RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.076	10

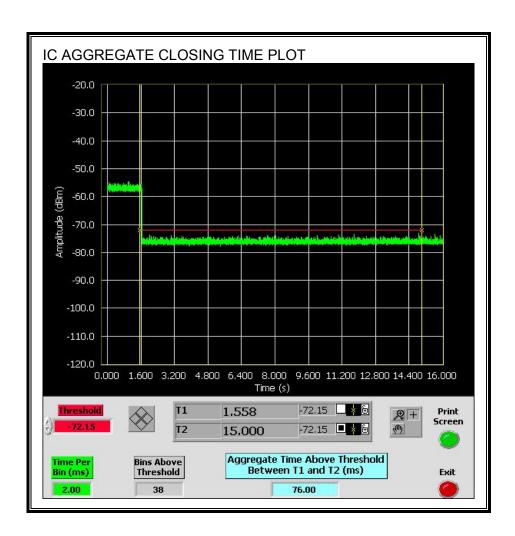

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	76.0	260

DATE: OCTOBER 10, 2008

MOVE TIME

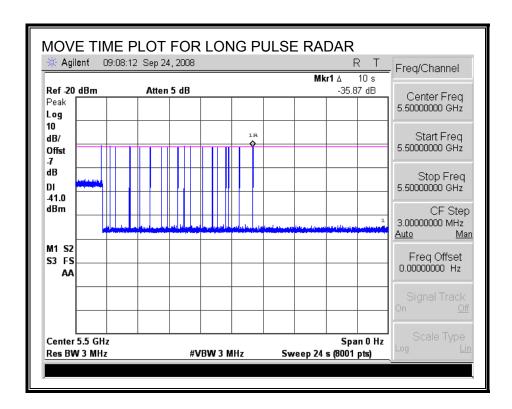


CHANNEL CLOSING TIME



AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

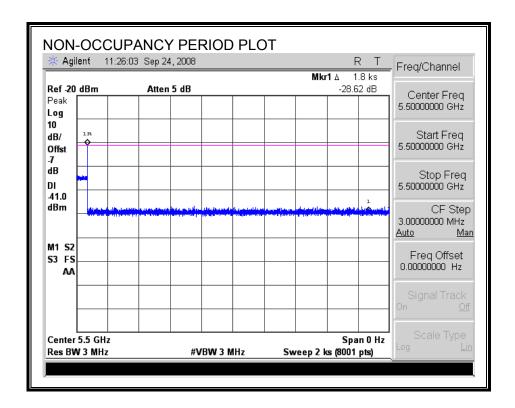
No transmissions are observed during the FCC aggregate monitoring period.



Only intermittent transmissions are observed during the IC aggregate monitoring period.

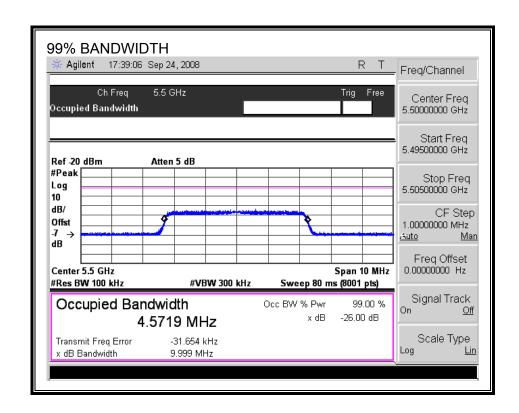
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.



10.2.4. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

DATE: OCTOBER 10, 2008

10.2.5. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5498	5502	4	4.572	87.5	80

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

DETECTION BANDWIDTH PROBABILITY

DETECTION BANDWIDTH PROBABILITY RESULTS

Detection Bandwidth Test Results

FCC Type 1 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst

Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5498	10	10	100	FL
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	FH

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

10.2.6. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summary							
Number of Trials	Detection	Limit	Pass/Fail				
30			Pass				
			Pass				
30	93.33	60	Pass				
30	96.67	60	Pass				
	95.00	80	Pass				
30	100.00	80	Pass				
30	90.00	70	Pass				
	30 30 30 30 30	(%) 30 100.00 30 90.00 30 93.33 30 96.67 95.00 30 100.00	(%) (%) 30 100.00 60 30 90.00 60 30 93.33 60 30 96.67 60 95.00 80 30 100.00 80				

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Fixed Radar Type 1 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst Trial Successful Detection (Yes/No) 1 Yes 2 Yes 3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes 25 Yes		ata Sheet for ECC F				
Trial Successful Detection (Yes/No) 1 Yes 2 Yes 3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes						
(Yes/No) 1 Yes 2 Yes 3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes						
1 Yes 2 Yes 3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		11101				
2 Yes 3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		1				
3 Yes 4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes						
4 Yes 5 Yes 6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 111 Yes 112 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes						
6 Yes 7 Yes 8 Yes 9 Yes 10 Yes 111 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes						
7 Yes 8 Yes 9 Yes 10 Yes 111 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		5				
8 Yes 9 Yes 10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes						
9 Yes 10 Yes 11 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes						
10 Yes 11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		8				
11 Yes 12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		9				
12 Yes 13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		10				
13 Yes 14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		11				
14 Yes 15 Yes 16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		12				
15 Yes 16 Yes 17 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		13				
16 Yes 17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		14				
17 Yes 18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		15				
18 Yes 19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		16				
19 Yes 20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		17				
20 Yes 21 Yes 22 Yes 23 Yes 24 Yes		18				
21 Yes 22 Yes 23 Yes 24 Yes		19				
22 Yes 23 Yes 24 Yes		20				
23 Yes 24 Yes						
24 Yes		22				
		23				
25 Yes						
		25				
26 Yes						
27 Yes						
28 Yes						
29 Yes						
30 Yes		30				

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	2.5	174.00	23	Yes
2002	4.3	222.00	25	Yes
2003	3	163.00	27	Yes
2004	3.1	223.00	29	Yes
2005	4.6	179.00	28	Yes
2006	1.5	160.00	27	Yes
2007	3.4	180.00	29	Yes
2008	4.4	193.00	26	Yes
2009	3.3	160.00	28	No
2010	4.2	205.00	27	Yes
2011	3.6	225.00	24	Yes
2012	2.9	182.00	28	Yes
2013	1.1	181.00	27	Yes
2014	1.7	187.00	29	Yes
2015	4.7	204.00	28	Yes
2016	3.5	210.00	28	Yes
2017	1.4	198.00	25	Yes
2018	4	163.00	25	Yes
2019	3.3	159.00	23	No
2020	4.2	153.00	27	Yes
2021	4	163.00	27	Yes
2022	3.8	193.00	29	Yes
2023	3.9	208.00	24	No
2024	1	182.00	24	Yes
2025	3.9	160.00	28	Yes
2026	4.8	188.00	24	Yes
2027	1.2	180.00	29	Yes
2028	1.1	167.00	24	Yes
2029	2	155.00	28	Yes
2030	4.7	157.00	27	Yes

TYPE 3 DETECTION PROBABILITY

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013	(us) 7.4 6.7 5.5 8.7 8.6 5.7 5.4 8 5.2 7.6	(us) 474.00 349.00 416.00 453.00 369.00 257.00 404.00 419.00	16 16 18 17 18 16 17	(Yes/No) Yes Yes Yes Yes Yes Yes Yes Yes
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012	6.7 5.5 8.7 8.6 5.7 5.4 8 5.2	349.00 416.00 453.00 369.00 257.00 404.00 419.00	16 18 17 18 16 17	Yes Yes Yes Yes Yes
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012	5.5 8.7 8.6 5.7 5.4 8 5.2	416.00 453.00 369.00 257.00 404.00 419.00	18 17 18 16 17	Yes Yes Yes Yes
3004 3005 3006 3007 3008 3009 3010 3011 3012	8.7 8.6 5.7 5.4 8 5.2	453.00 369.00 257.00 404.00 419.00	17 18 16 17	Yes Yes Yes
3005 3006 3007 3008 3009 3010 3011 3012	8.6 5.7 5.4 8 5.2	369.00 257.00 404.00 419.00	18 16 17	Yes Yes
3006 3007 3008 3009 3010 3011 3012	5.7 5.4 8 5.2	257.00 404.00 419.00	16 17	Yes
3007 3008 3009 3010 3011 3012	5.4 8 5.2	404.00 419.00	17	
3008 3009 3010 3011 3012	8 5.2	419.00		Yes
3009 3010 3011 3012	5.2		47	100
3010 3011 3012			17	Yes
3011 3012	7.6	296.00	17	Yes
3012		353.00	16	Yes
	8.7	312.00	17	Yes
2042	9.9	494.00	17	Yes
3013	6	304.00	18	Yes
3014	7.8	283.00	16	Yes
3015	8	303.00	16	Yes
3016	9.1	348.00	17	Yes
3017	6.7	360.00	18	Yes
3018	7.8	375.00	17	Yes
3019	7.8	382.00	16	Yes
3020	7.6	273.00	16	Yes
3021	9.9	365.00	18	Yes
3022	7.7	487.00	18	Yes
3023	8.8	442.00	17	Yes
3024	6	434.00	18	Yes
3025	6.3	296.00	18	Yes
3026	6	369.00	18	No
3027	5.4	490.00	17	Yes
3028	7.4	284.00	18	Yes
3029	9.5	274	18	No
3030	7	404	17	Yes

TYPE 4 DETECTION PROBABILITY

4001 4002 4003	(us) 13.8	(us)		
4002 4003	13 Q	(40)		(Yes/No)
4003	13.0	413.00	14	Yes
	14.4	489.00	15	Yes
	13	306.00	16	Yes
4004	10.5	497.00	13	Yes
4005	11.3	359.00	13	Yes
4006	13.5	251.00	13	No
4007	11.2	272.00	16	Yes
4008	14.1	451.00	15	Yes
4009	17.1	378.00	14	Yes
4010	17.2	284.00	12	Yes
4011	19.2	332.00	13	Yes
4012	11.2	313.00	12	Yes
4013	18.1	389.00	15	Yes
4014	16.2	473.00	15	Yes
4015	12.5	356.00	15	Yes
4016	18.7	326.00	14	Yes
4017	12.6	297.00	16	Yes
4018	16.4	270.00	13	Yes
4019	13.4	335.00	14	Yes
4020	13	404.00	12	Yes
4021	13.4	429.00	16	Yes
4022	15.6	328.00	14	Yes
4023	17.6	453.00	14	Yes
4024	19.8	319.00	13	Yes
4025	14	344.00	14	Yes
4026	19.5	280.00	14	Yes
4027	10.2	424.00	16	Yes
4028	14.6	277.00	15	Yes
4029	10.2	353.00	14	Yes
4030	14.7	351.00	15	Yes

TYPE 5 DETECTION PROBABILITY

Data Sheet for FCC Long Pulse Radar Type 5					
Trial	Successful Detection				
	(Yes/No)				
1	Yes				
2	Yes				
3	Yes				
4	Yes				
5	Yes				
6	Yes				
7	Yes				
8	Yes				
9	Yes				
10	Yes				
11	Yes				
12	Yes				
13	Yes				
14	Yes				
15	Yes				
16	Yes				
17	Yes				
18	Yes				
19	Yes				
20	Yes				
21	Yes				
22	Yes				
23	Yes				
24	Yes				
25	Yes				
26	Yes				
27	Yes				
28	Yes				
29	Yes				
30	Yes				

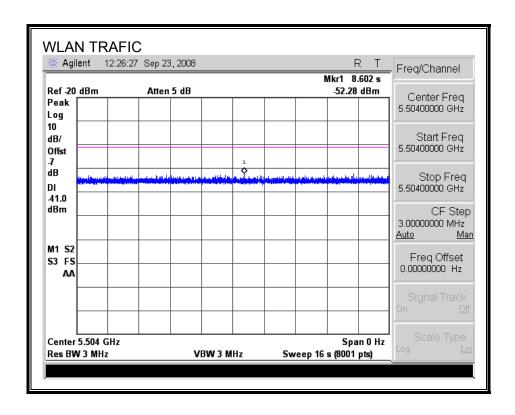
Note: The Type 5 randomized parameters are shown in a separate document.

FAX: (510) 661-0888

TYPE 6 DETECTION PROBABILITY

Data Sheet for FCC Hopping Radar Type 6

1 us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop


NTIA August 2005 Hopping Sequence

Trial	Starting Index	Signal Generator	Hops within	Successful
mai	Within Sequence	Frequency	Detection BW	Detection
	(Base 1)	(MHz)		(Yes/No)
1	259	5498	4	Yes
2	734	5499	1	Yes
3	1684	5500	1	Yes
4	2159	5501	2	Yes
5	3109	5502	1	No
6	3584	5498	1	Yes
7	4059	5499	2	Yes
8	5009	5500	1	Yes
9	5484	5501	2	No
10	5959	5502	2	Yes
11	6434	5498	2	Yes
12	6909	5499	3	Yes
13	7384	5500	1	Yes
14	7859	5501	1	Yes
15	9284	5502	1	Yes
16	9759	5498	1	Yes
17	10234	5499	3	Yes
18	11184	5500	1	Yes
19	11659	5501	1	Yes
20	12134	5502	2	Yes
21	12609	5498	1	Yes
22	13559	5499	3	Yes
23	14509	5500	1	Yes
24	14984	5501	1	Yes
25	15459	5502	2	Yes
26	15934	5498	2	Yes
27	16409	5499	1	Yes
28	17359	5500	2	Yes
29	17834	5501	1	Yes
30	18309	5502	1	No

10.3. RESULTS FOR 10 MHz BANDWIDTH MASTER CONFIGURATION

10.3.1. TRAFFIC

PLOT OF TRAFFIC FROM MASTER

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

10.3.2. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 IC: 109AO-54100 FCC ID: QWP54100

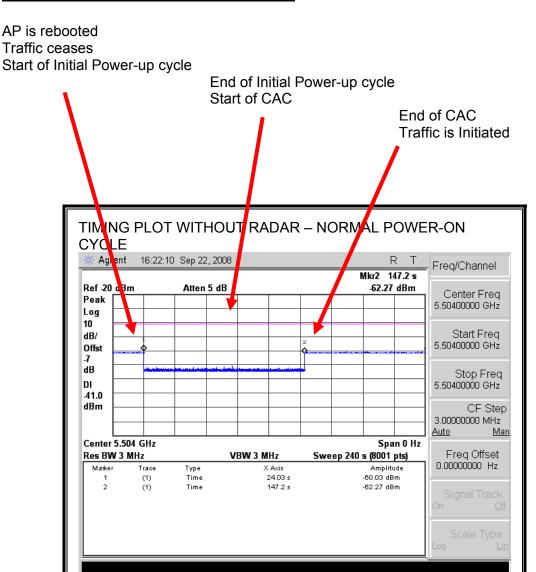
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
24.03	147.2	123.2	63.2

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
24.6	88.4	63.8	0.6


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
23.7	145.3	121.6	58.4

QUALITATIVE RESULTS

Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING PLOT WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC Aglent 16:29:11 Sep 22, 208. Freq/Channel Mkr1 24.63 s Ref -20 Bm Atten dB -61.58 dBm Center Freq Peak 5.50400000 GHz Log 10 Start Freq dB/ 5.50400000 GHz Offst dΒ Stop Freq DΙ 5.50400000 GHz 41.0 dBm CF Step 3.00000000 MHz <u>Man</u> Span 0 Hz Center 5.504 GHz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 240 s (8001 pts) 0.000000000 Hz X Axis Amplitude Marker Trace Туре -61.58 dBm (1) Time Time 88.41 s -41.24 dBm

No EUT transmissions were observed after the radar signal.

DATE: OCTOBER 10, 2008

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TIMING PLOT WITH RAIDAR NEAR END OF CAC Aglent 17:32:10 Sep 22, 2008 Freq/Channel Mkr1 23.73 s Ref -20 Bm Atten 5 df -61.43 dBm Center Freq Peak 5.50400000 GHz Log 10 Start Freq dB/ 5.50400000 GHz Offst dΒ Stop Freq DΙ 5.50400000 GHz 41.0 dBm CF Step 3.00000000 MHz <u>Man</u> Span 0 Hz Center 5.504 GHz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 240 s (8001 pts) 0.000000000 Hz X Axis Amplitude Marker Trace Туре -61.43 dBm (1) Time Time 145.3 s -41.36 dBm

No EUT transmissions were observed after the radar signal.

10.3.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

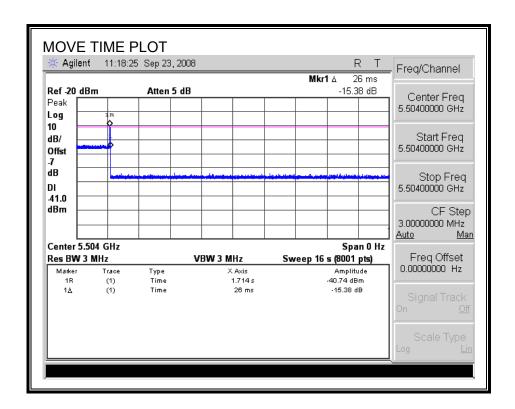
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

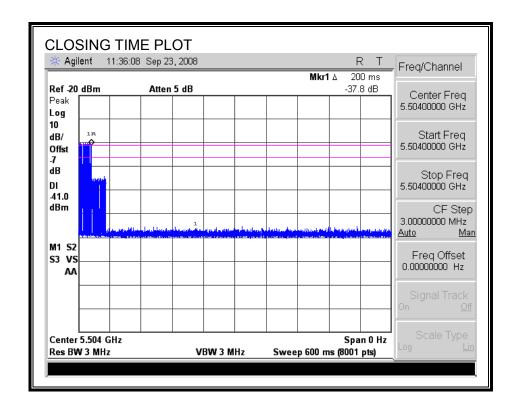
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

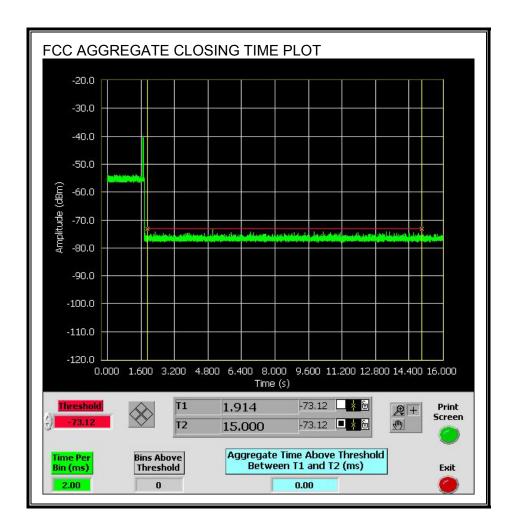

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.026	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	30.0	260

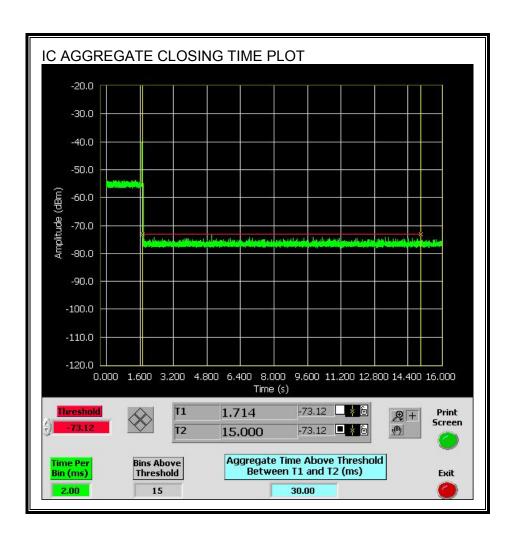

FAX: (510) 661-0888

DATE: OCTOBER 10, 2008

MOVE TIME

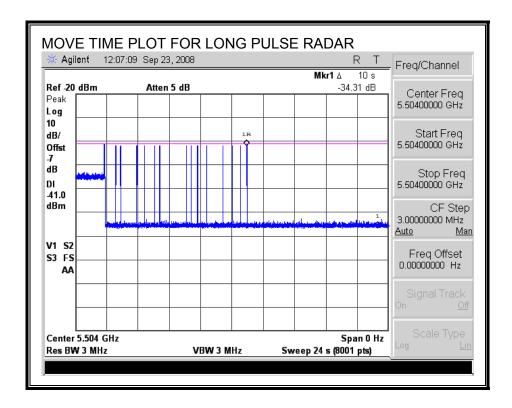


CHANNEL CLOSING TIME



AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

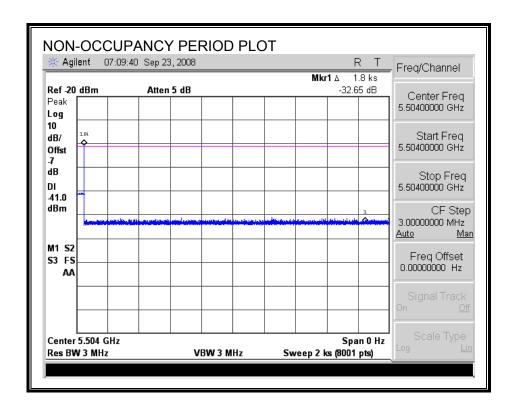
No transmissions are observed during the FCC aggregate monitoring period.



Only intermittent transmissions are observed during the IC aggregate monitoring period.

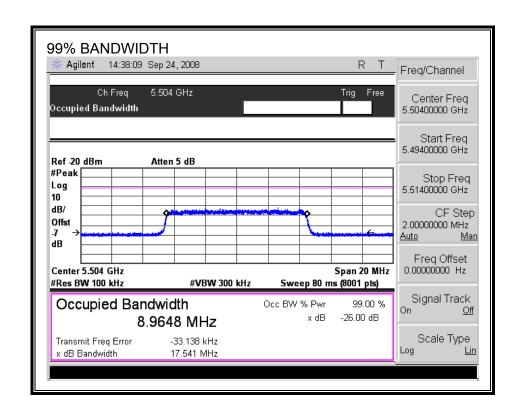
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.



10.3.4. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

DATE: OCTOBER 10, 2008

10.3.5. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5500	5508	8	8.965	89.2	80

DETECTION BANDWIDTH PROBABILITY

DETECTION BANDWIDTH PROBABILITY RESULTS

Detection Bandwidth Test Results

FCC Type 1 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst

Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5500	10	10	100	FL
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	FH

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

10.3.6. IN-SERVICE MONITORING

RESULTS

FCC Radar Test	: Summary			
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
FCC TYPE 4	20	(%)	(%)	Dana
FCC TYPE 1	30	100.00	60	Pass
FCC TYPE 2	30	100.00	60	Pass
FCC TYPE 3	30	100.00	60	Pass
FCC TYPE 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC TYPE 5	30	100.00	80	Pass
FCC TYPE 6	36	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC F	
	28 us PRI, 18 Pulses per Burst
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	2.5	174.00	23	Yes
2002	4.3	222.00	25	Yes
2003	3	163.00	27	Yes
2004	3.1	223.00	29	Yes
2005	4.6	179.00	28	Yes
2006	1.5	160.00	27	Yes
2007	3.4	180.00	29	Yes
2008	4.4	193.00	26	Yes
2009	3.3	160.00	28	Yes
2010	4.2	205.00	27	Yes
2011	3.6	225.00	24	Yes
2012	2.9	182.00	28	Yes
2013	1.1	181.00	27	Yes
2014	1.7	187.00	29	Yes
2015	4.7	204.00	28	Yes
2016	3.5	210.00	28	Yes
2017	1.4	198.00	25	Yes
2018	4	163.00	25	Yes
2019	3.3	159.00	23	Yes
2020	4.2	153.00	27	Yes
2021	4	163.00	27	Yes
2022	3.8	193.00	29	Yes
2023	3.9	208.00	24	Yes
2024	1	182.00	24	Yes
2025	3.9	160.00	28	Yes
2026	4.8	188.00	24	Yes
2027	1.2	180.00	29	Yes
2028	1.1	167.00	24	Yes
2029	2	155.00	28	Yes
2030	4.7	157.00	27	Yes

TYPE 3 DETECTION PROBABILITY

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016	(us) 7.4 6.7 5.5 8.7 8.6 5.7 5.4 8 5.2 7.6 8.7 9.9 6 7.8	(us) 474.00 349.00 416.00 453.00 369.00 257.00 404.00 419.00 296.00 353.00 312.00 494.00 304.00 283.00	16 16 18 17 18 16 17 17 17 16 17	Yes/No) Yes
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015	6.7 5.5 8.7 8.6 5.7 5.4 8 5.2 7.6 8.7 9.9 6 7.8	349.00 416.00 453.00 369.00 257.00 404.00 419.00 296.00 353.00 312.00 494.00 304.00	16 18 17 18 16 17 17 17 16 17	Yes
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015	5.5 8.7 8.6 5.7 5.4 8 5.2 7.6 8.7 9.9 6 7.8	416.00 453.00 369.00 257.00 404.00 419.00 296.00 353.00 312.00 494.00 304.00	18 17 18 16 17 17 17 16 17	Yes
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015	8.7 8.6 5.7 5.4 8 5.2 7.6 8.7 9.9 6 7.8	453.00 369.00 257.00 404.00 419.00 296.00 353.00 312.00 494.00 304.00	17 18 16 17 17 17 16 17	Yes
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015	8.6 5.7 5.4 8 5.2 7.6 8.7 9.9 6 7.8	369.00 257.00 404.00 419.00 296.00 353.00 312.00 494.00 304.00	18 16 17 17 17 16 17	Yes
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015	5.7 5.4 8 5.2 7.6 8.7 9.9 6 7.8	257.00 404.00 419.00 296.00 353.00 312.00 494.00 304.00	16 17 17 17 16 17	Yes Yes Yes Yes Yes Yes
3007 3008 3009 3010 3011 3012 3013 3014 3015	5.4 8 5.2 7.6 8.7 9.9 6 7.8	404.00 419.00 296.00 353.00 312.00 494.00 304.00	17 17 17 16 17	Yes Yes Yes Yes Yes Yes
3008 3009 3010 3011 3012 3013 3014 3015	8 5.2 7.6 8.7 9.9 6 7.8	419.00 296.00 353.00 312.00 494.00 304.00	17 17 16 17 17	Yes Yes Yes Yes Yes
3009 3010 3011 3012 3013 3014 3015	5.2 7.6 8.7 9.9 6 7.8	296.00 353.00 312.00 494.00 304.00	17 16 17 17	Yes Yes Yes Yes
3010 3011 3012 3013 3014 3015	7.6 8.7 9.9 6 7.8	353.00 312.00 494.00 304.00	16 17 17	Yes Yes Yes
3011 3012 3013 3014 3015	8.7 9.9 6 7.8	312.00 494.00 304.00	17 17	Yes Yes
3012 3013 3014 3015	9.9 6 7.8	494.00 304.00	17	Yes
3013 3014 3015	6 7.8	304.00		
3014 3015	7.8		18	V
3015		283.00		Yes
	•	_00.00	16	Yes
2016	8	303.00	16	Yes
3010	9.1	348.00	17	Yes
3017	6.7	360.00	18	Yes
3018	7.8	375.00	17	Yes
3019	7.8	382.00	16	Yes
3020	7.6	273.00	16	Yes
3021	9.9	365.00	18	Yes
3022	7.7	487.00	18	Yes
3023	8.8	442.00	17	Yes
3024	6	434.00	18	Yes
3025	6.3	296.00	18	Yes
3026	6	369.00	18	Yes
3027	5.4	490.00	17	Yes
3028	7.4	284.00	18	Yes
3029	9.5	274	18	Yes
3030	7	404	17	Yes

TYPE 4 DETECTION PROBABILITY

Naveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	13.8	413.00	14	Yes
4002	14.4	489.00	15	Yes
4003	13	306.00	16	Yes
4004	10.5	497.00	13	Yes
4005	11.3	359.00	13	Yes
4006	13.5	251.00	13	Yes
4007	11.2	272.00	16	Yes
4008	14.1	451.00	15	Yes
4009	17.1	378.00	14	Yes
4010	17.2	284.00	12	Yes
4011	19.2	332.00	13	Yes
4012	11.2	313.00	12	Yes
4013	18.1	389.00	15	Yes
4014	16.2	473.00	15	Yes
4015	12.5	356.00	15	Yes
4016	18.7	326.00	14	Yes
4017	12.6	297.00	16	Yes
4018	16.4	270.00	13	Yes
4019	13.4	335.00	14	Yes
4020	13	404.00	12	Yes
4021	13.4	429.00	16	Yes
4022	15.6	328.00	14	Yes
4023	17.6	453.00	14	Yes
4024	19.8	319.00	13	Yes
4025	14	344.00	14	Yes
4026	19.5	280.00	14	Yes
4027	10.2	424.00	16	Yes
4028	14.6	277.00	15	Yes
4029	10.2	353.00	14	Yes
4030	14.7	351.00	15	Yes

TYPE 5 DETECTION PROBABILITY

Data Sheet for FCC L	ong Pulse Radar Type 5
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

Data Sheet for FCC Hopping Radar Type 6

1 us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop

NTIA Augu	NTIA August 2005 Hopping Sequence				
Trial	Starting Index	Signal Generator	Hops within	Successful	
Trial	Within Sequence	Frequency	Detection BW	Detection	
	(Base 1)	(MHz)		(Yes/No)	
1	110	5500	1	Yes	
2	585	5501	1	Yes	
3	1060	5502	1	Yes	
4	2010	5503	2	Yes	
5	2485	5504	3	Yes	
6	2960	5505	4	Yes	
7	3435	5506	1	Yes	
8	3910	5507	1	Yes	
9	4385	5508	1	Yes	
10	4860	5500	4	Yes	
11	5335	5501	2	Yes	
12	5810	5502	2	Yes	
13	6285	5503	2	Yes	
14	6760	5504	3	Yes	
15	7235	5505	3	Yes	
16	8185	5506	3	Yes	
17	8660	5507	1	Yes	
18	9135	5508	2	Yes	
19	9610	5500	2	Yes	
20	10085	5501	3	Yes	
21	10560	5502	4	Yes	
22	11985	5503	5	Yes	
23	12460	5504	4	Yes	
24	12935	5505	4	Yes	
25	13410	5506	2	Yes	
26	13885	5507	1	Yes	
27	14360	5508	2	Yes	
28	14835	5500	1	Yes	
29	15310	5501	3	Yes	
30	15785	5502	2	Yes	
31	16260	5503	2	Yes	
32	17210	5504	1	Yes	
33	17685	5505	2	Yes	
34	18160	5506 5507	4	Yes	
35 36	18635	5507	2	Yes	
36	19110	5508	3	Yes	

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

10.3.7. OVERLAPPING CHANNELS

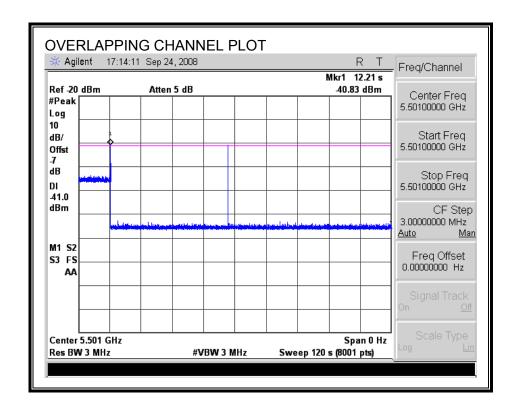
PROCEDURE

The EUT was set to block all channels except 5498 MHz and 5504 MHz, which are overlapping. The active channel was 5504 MHz and the radar test frequency was 5501 MHz. The radar test frequency was chosen to be within the detection bandwidth of both unblocked (overlapping) channels.

A link was established on the active channel with the video file streaming.

A radar burst was triggered and a stopwatch timer was started.

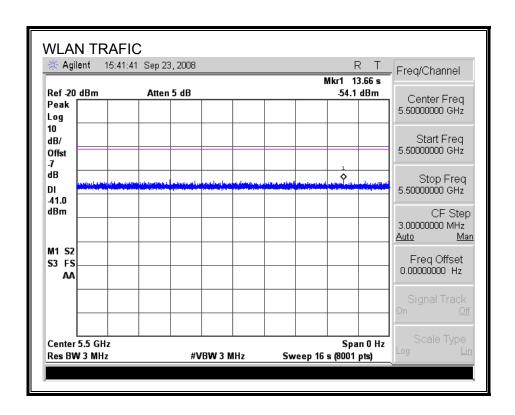
The EUT was confirmed to vacate the active channel then a second radar burst was triggered approximately 45 seconds after the first and again the EUT was confirmed to vacate that active channel.


RESULTS

The EUT display indicated that 5504 MHz was blocked after the first radar burst was transmitted. The EUT switched to the remaining channel and a second burst was transmitted 45 seconds later, at which time the EUT displayed that channel was blocked.

No beacons or traffic were observed on the spectrum analyzer after the first radar burst was transmitted.

TEST RESULTS


No EUT transmissions were observed on the test channels during the observation time.

10.4. RESULTS FOR 15 MHz BANDWIDTH MASTER CONFIGURATION

10.4.1. TRAFFIC

PLOT OF TRAFFIC FROM MASTER

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

10.4.2. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
24.7	146.5	121.8	61.8

Radar Near Beginning of CAC

	gg v		
Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
24.5	86.8	62.37	0.53

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
24.6	145.1	120.5	58.7

QUALITATIVE RESULTS

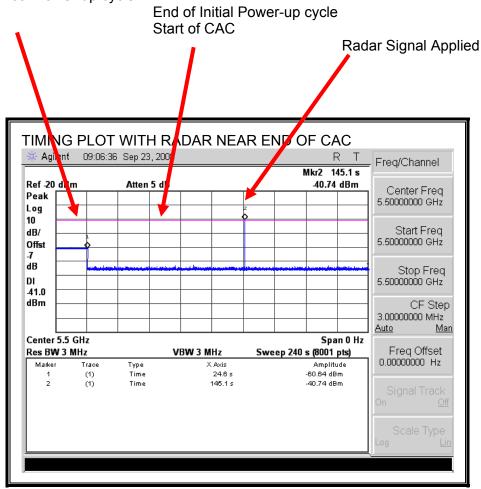
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel

TIMING PLOT WITHOUT RADAR DURING CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC End of CAC Traffic is Initiated TIMING PLOT WITHOUT RADAR – NORMAL POWER-ON CYCLE Aglent 08:31:47 Sep 23, 2008 Freq/Channel Mkr2 146.5 s Ref -20 dBm Atten 5 di -60.94 dBm Center Freq Peak 5.50000000 GHz Log Start Freq dB/ 5.500000000 GHz Offst dΒ Stop Freq 5.50000000 GHz DI 41.0 dBm CF Step 3.00000000 MHz <u>Auto</u> <u>Man</u> Center 5.5 GHz Span 0 Hz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 240 s (8001 pts) 0.000000000 Hz Amplitude -61.16 dBm Time 24.66 s 146.5 s -60.94 dBm (1) Time

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC


AP is rebooted Traffic ceases Start of Initial Power-up cycle End of Initial Power-up cycle Start of CAC Radar Signal Applied TINING PLOT WITH KADAR NEAR BEGINNING OF CAC 🔆 Agilent 08:54:31 Sep 23, 7 08 Freq/Channel Mkr1 24.45 s Atten **→** dB -61.36 dBm Ref -20 dBm Center Freq Peak 5.50000000 GHz Log 10 Start Freq dB/ 5.50000000 GHz Offst dΒ Stop Freq DΙ 5.500000000 GHz 41.0 dBm CF Step 3.00000000 MHz <u>Man</u> Span 0 Hz Center 5.5 GHz Freq Offset Res BW 3 MHz VBW 3 MHz Sweep 240 s (8001 pts) 0.000000000 Hz X Axis Amplitude Marker Trace Туре -61.36 dBm (1) Time Time 86.82 s -40.38 dBm

No EUT transmissions were observed after the radar signal.

IC: 109AO-54100

TIMING PLOT WITH RADAR NEAR END OF CAC

AP is rebooted Traffic ceases Start of Initial Power-up cycle

No EUT transmissions were observed after the radar signal.

DATE: OCTOBER 10, 2008

IC: 109AO-54100

10.4.3. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

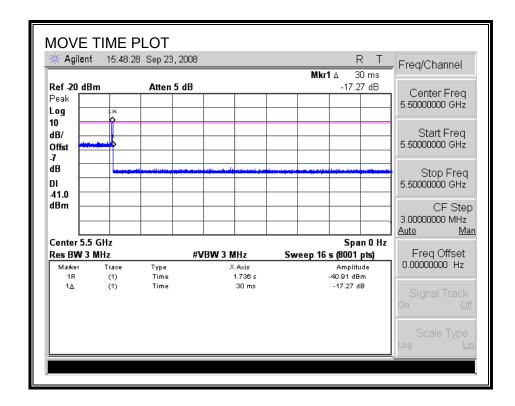
DATE: OCTOBER 10, 2008

IC: 109AO-54100

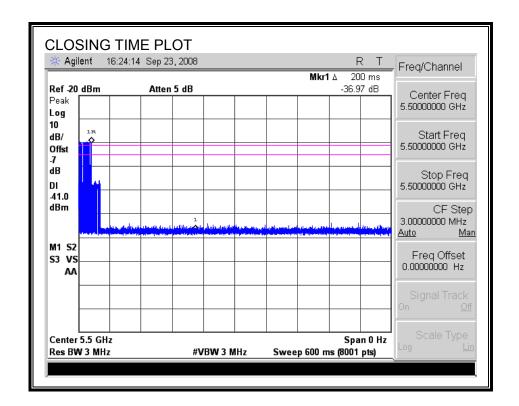
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

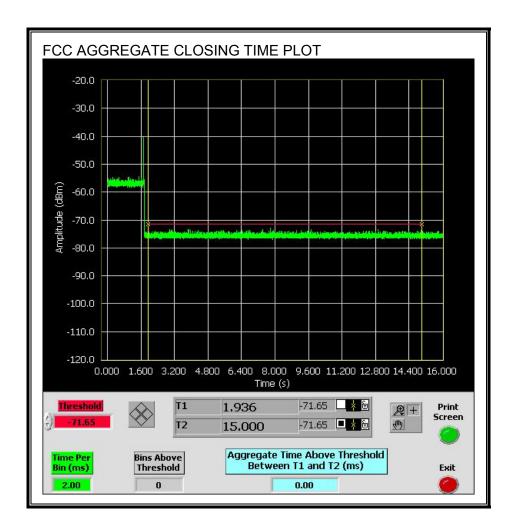

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

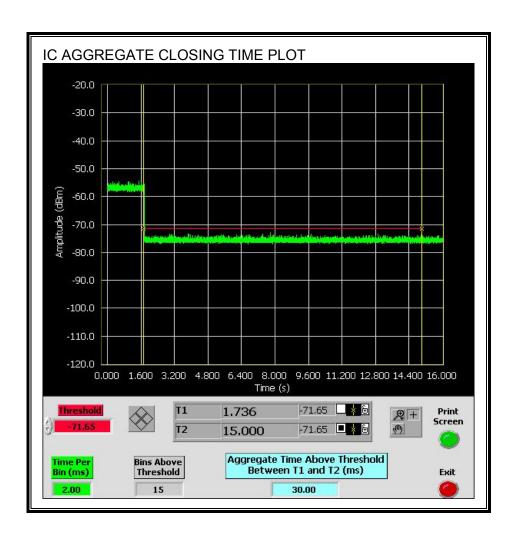

Agency	Channel Move Time	
	(sec)	(sec)
FCC / IC	0.030	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	30.0	260

MOVE TIME

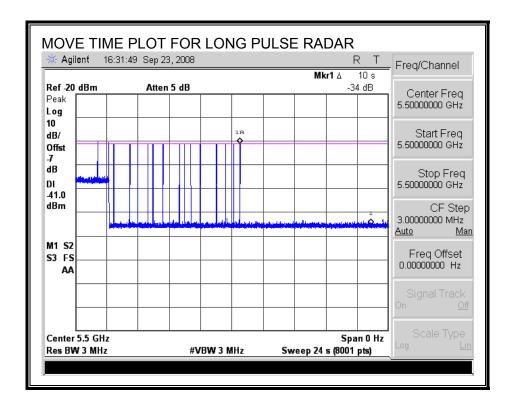


CHANNEL CLOSING TIME



AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

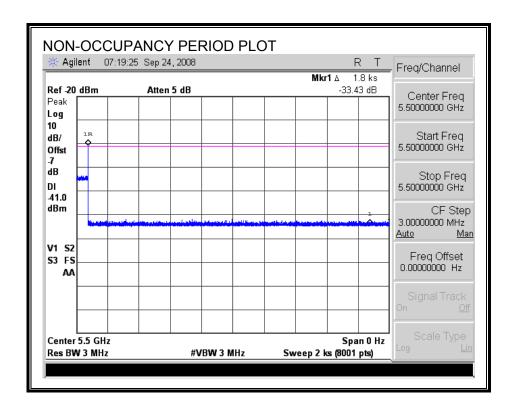
No transmissions are observed during the FCC aggregate monitoring period.



Only intermittent transmissions are observed during the IC aggregate monitoring period.

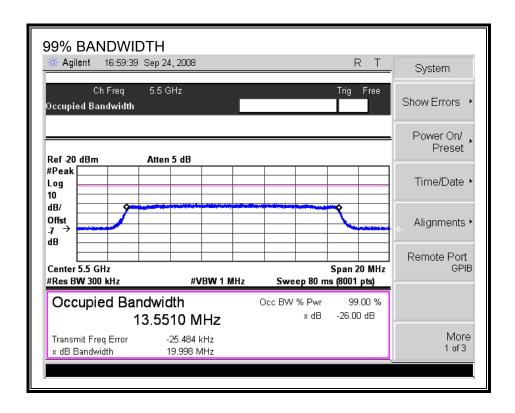
LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.


10.4.4. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.


DATE: OCTOBER 10, 2008

IC: 109AO-54100

10.4.5. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5494	5506	12	13.551	88.6	80

DETECTION BANDWIDTH PROBABILITY

DETECTION BANDWIDTH PROBABILITY RESULTS

Detection Bandwidth Test Results

FCC Type 1 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst

Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5494	10	10	100	FL
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	FH

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

10.4.6. IN-SERVICE MONITORING

RESULTS

FCC Radar Test	t Summary			
Signal Type	Number of Trials	Detection (%)	Limit (%)	Pass/Fail
FCC TYPE 1	30	100.00	60	Pass
FCC TYPE 2	30	100.00	60	Pass
FCC TYPE 3	30	100.00	60	Pass
FCC TYPE 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC TYPE 5	30	100.00	80	Pass
FCC TYPE 6	39	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

Data Sheet for FCC Fixed Radar Type 1			
1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst			
Trial	Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	Yes		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	Yes		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
2001	2.5	174.00	23	Yes
2002	4.3	222.00	25	Yes
2003	3	163.00	27	Yes
2004	3.1	223.00	29	Yes
2005	4.6	179.00	28	Yes
2006	1.5	160.00	27	Yes
2007	3.4	180.00	29	Yes
2008	4.4	193.00	26	Yes
2009	3.3	160.00	28	Yes
2010	4.2	205.00	27	Yes
2011	3.6	225.00	24	Yes
2012	2.9	182.00	28	Yes
2013	1.1	181.00	27	Yes
2014	1.7	187.00	29	Yes
2015	4.7	204.00	28	Yes
2016	3.5	210.00	28	Yes
2017	1.4	198.00	25	Yes
2018	4	163.00	25	Yes
2019	3.3	159.00	23	Yes
2020	4.2	153.00	27	Yes
2021	4	163.00	27	Yes
2022	3.8	193.00	29	Yes
2023	3.9	208.00	24	Yes
2024	1	182.00	24	Yes
2025	3.9	160.00	28	Yes
2026	4.8	188.00	24	Yes
2027	1.2	180.00	29	Yes
2028	1.1	167.00	24	Yes
2029	2	155.00	28	Yes
2030	4.7	157.00	27	Yes

TYPE 3 DETECTION PROBABILITY

ata Sheet fo Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)	1 4.1000 1 0.1 2 4.100	(Yes/No)
3001	7.4	474.00	16	Yes
3002	6.7	349.00	16	Yes
3003	5.5	416.00	18	Yes
3004	8.7	453.00	17	Yes
3005	8.6	369.00	18	Yes
3006	5.7	257.00	16	Yes
3007	5.4	404.00	17	Yes
3008	8	419.00	17	Yes
3009	5.2	296.00	17	Yes
3010	7.6	353.00	16	Yes
3011	8.7	312.00	17	Yes
3012	9.9	494.00	17	Yes
3013	6	304.00	18	Yes
3014	7.8	283.00	16	Yes
3015	8	303.00	16	Yes
3016	9.1	348.00	17	Yes
3017	6.7	360.00	18	Yes
3018	7.8	375.00	17	Yes
3019	7.8	382.00	16	Yes
3020	7.6	273.00	16	Yes
3021	9.9	365.00	18	Yes
3022	7.7	487.00	18	Yes
3023	8.8	442.00	17	Yes
3024	6	434.00	18	Yes
3025	6.3	296.00	18	Yes
3026	6	369.00	18	Yes
3027	5.4	490.00	17	Yes
3028	7.4	284.00	18	Yes
3029	9.5	274	18	Yes
3030	7	404	17	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	13.8	413.00	14	Yes
4002	14.4	489.00	15	Yes
4003	13	306.00	16	Yes
4004	10.5	497.00	13	Yes
4005	11.3	359.00	13	Yes
4006	13.5	251.00	13	Yes
4007	11.2	272.00	16	Yes
4008	14.1	451.00	15	Yes
4009	17.1	378.00	14	Yes
4010	17.2	284.00	12	Yes
4011	19.2	332.00	13	Yes
4012	11.2	313.00	12	Yes
4013	18.1	389.00	15	Yes
4014	16.2	473.00	15	Yes
4015	12.5	356.00	15	Yes
4016	18.7	326.00	14	Yes
4017	12.6	297.00	16	Yes
4018	16.4	270.00	13	Yes
4019	13.4	335.00	14	Yes
4020	13	404.00	12	Yes
4021	13.4	429.00	16	Yes
4022	15.6	328.00	14	Yes
4023	17.6	453.00	14	Yes
4024	19.8	319.00	13	Yes
4025	14	344.00	14	Yes
4026	19.5	280.00	14	Yes
4027	10.2	424.00	16	Yes
4028	14.6	277.00	15	Yes
4029	10.2	353.00	14	Yes
4030	14.7	351.00	15	Yes

TYPE 5 DETECTION PROBABILITY

Data Sheet for FCC Long Pulse Radar Type 5				
Trial	Successful Detection			
4	(Yes/No)			
1	Yes Yes			
2 3	res Yes			
4	res Yes			
5	Yes			
6	Yes			
7	Yes			
8 9	Yes			
	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	Yes			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	Yes			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	Yes			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

Note: The Type 5 randomized parameters are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

Data Sheet for FCC Hopping Radar Type 6

1 us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop

NTIA August 2005 Hopping Sequence					
Trial	Starting Index	Signal Generator	Hops within	Successful	
Trial	Within Sequence	Frequency	Detection BW	Detection	
	(Base 1)	(MHz)		(Yes/No)	
1	257	5494	5	Yes	
2	732	5495	3	Yes	
3	1207	5496	2	Yes	
4	1682	5497	1	Yes	
5	2157	5498	1	Yes	
6	2632	5499	4	Yes	
7	3107	5500	4	Yes	
8	3582	5501	4	Yes	
9	4057	5502	4	Yes	
10	5007	5503	3	Yes	
11	5482	5504	4	Yes	
12	5957	5505	2	Yes	
13	6432	5506	2	Yes	
14	6907	5494	4	Yes	
15	7382	5495	1	Yes	
16	7857	5496	1	Yes	
17	8332	5497	1	Yes	
18	9282	5498	1	Yes	
19	9757	5499	1	Yes	
20	10232	5500	1	Yes	
21	10707	5501	4	Yes	
22	11182	5502	2	Yes	
23	11657	5503	2	Yes	
24	12132	5504	2	Yes	
25	12607	5505	2	Yes	
26	13082	5506	4	Yes	
27	13557	5494	2	Yes	
28	14032	5495	4	Yes	
29	14507	5496	3	Yes	
30	14982	5497	2	Yes	
31	15457	5498	3	Yes	
32	15932	5499	5	Yes	
33	16407	5500	4	Yes	
34	16882	5501	3	Yes	
35	17357	5502	4	Yes	
36	17832	5503	2	Yes	
37	18307	5504	2	Yes	
38	18782	5505 5506	2	Yes	
39	19257	5506	2	Yes	

10.4.7. OVERLAPPING CHANNELS

PROCEDURE

The EUT was set to block all channels except 5494MHz, 5500 MHz and 5506 MHz, which are overlapping. The active channel was 5500 MHz and the radar test frequency was 5500 MHz.

DATE: OCTOBER 10, 2008

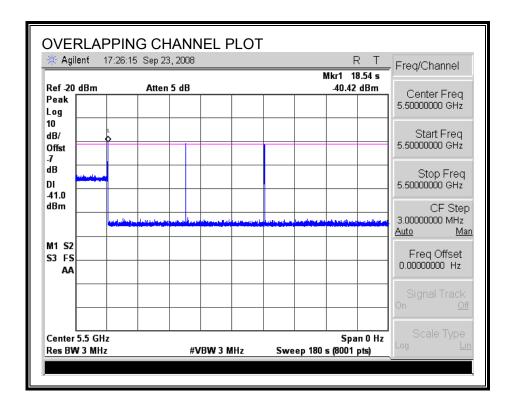
IC: 109AO-54100

A link was established on the active channel with the video file streaming.

A radar burst was triggered and a stopwatch timer was started.

The EUT was confirmed to vacate the active channel then a second radar burst was triggered approximately 45 seconds after the first again the EUT was confirmed to vacate that active channel

A third radar burst was triggered approximately 45 seconds after the second and again the EUT was confirmed to vacate that third channel.


RESULTS

The EUT display indicated that 5550 MHz was blocked after the first radar burst was transmitted. The EUT switched to one of the remaining two channels and a second burst was transmitted 45 seconds later, at which time the EUT displayed that channel was blocked and the EUT moved to the remaining channel. When the third radar burst was transmitted 45 seconds later the EUT display that all three channels were blocked.

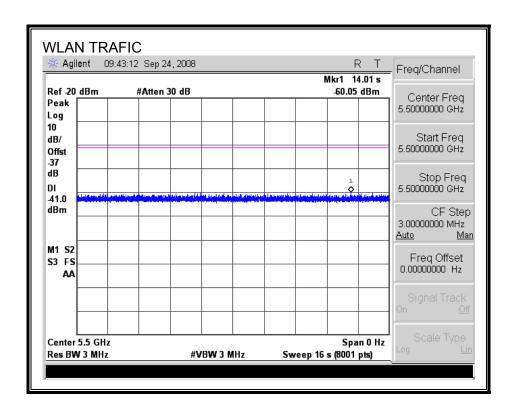
No beacons or traffic was observed on the spectrum analyzer after the first radar burst was transmitted.

TEST RESULTS

No EUT transmissions were observed on the test channels during the observation time.

10.5. RESULTS FOR 5 MHz BANDWIDTH SLAVE CONFIGURATION

10.5.1. RADAR DETECTION BY THE SLAVE DEVICE


The Slave is identical to the Master, therefore the above results for the Master device are also applicable to demonstrate the In-Service Monitoring and the Channel Shutdown performance characteristics of the Slave device, for the situation when the Slave detects a radar.

10.5.2. RADAR DETECTION BY THE MASTER DEVICE

The Slave is tested separately for compliance with the Channel Shutdown requirements, for the situation when the Slave device vacates the channel in response to detection of a radar by the Master.

10.5.3. TRAFFIC

PLOT OF TRAFFIC FROM SLAVE

10.5.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

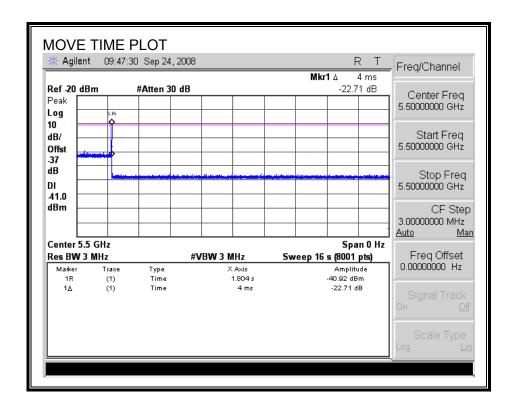
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

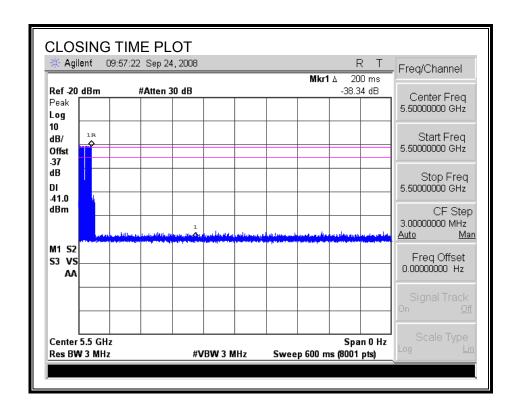
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

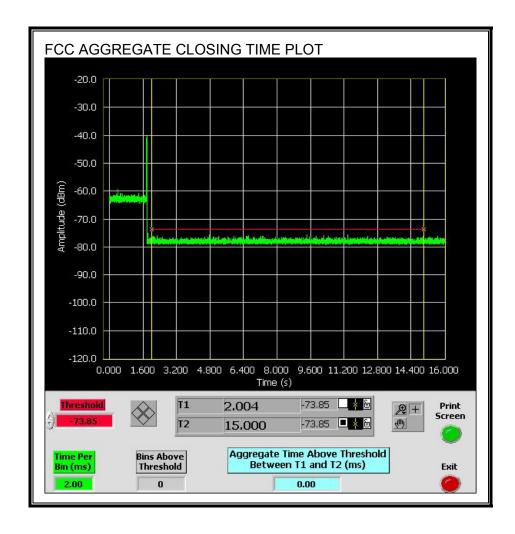

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.004	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	4.0	260

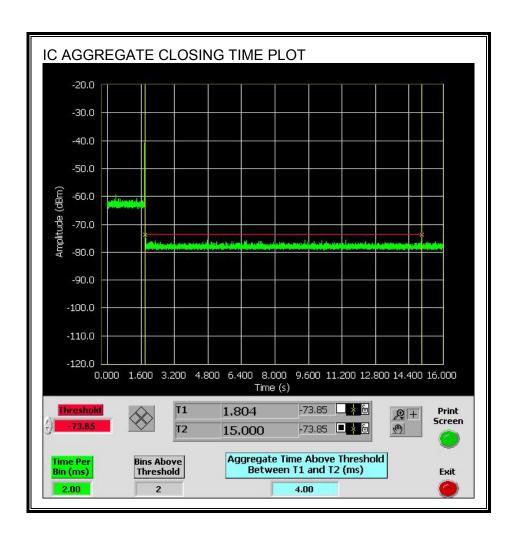

DATE: OCTOBER 10, 2008

IC: 109AO-54100

MOVE TIME



CHANNEL CLOSING TIME



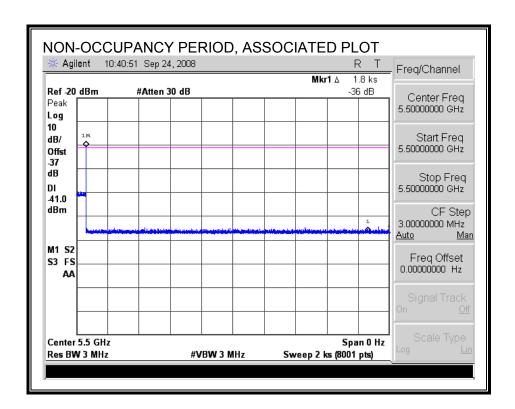
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the FCC aggregate monitoring period.

No transmissions are observed during the IC aggregate monitoring period.

SLAVE NON-OCCUPANCY 10.5.5.

TEST PROCEDURE


The spectrum analyzer is monitoring the emissions from the Slave.

The AP and Slave are linked in a 5 MHz bandwidth mode, with streaming video. The spectrum analyzer trace is started, then the radar is triggered, and the channel is monitored for > 30 minutes.

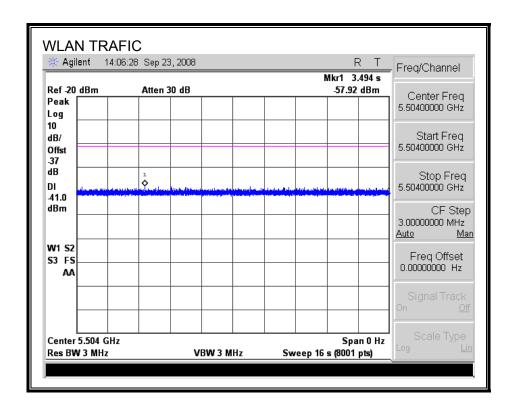
Then the AP is powered down. The spectrum analyzer trace is started, then the Slave is rebooted, and the channel is monitored for > 30 minutes.

ASSOCIATED TEST RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

10.6. RESULTS FOR 10 MHz BANDWIDTH SLAVE CONFIGURATION

10.6.1. RADAR DETECTION BY THE SLAVE DEVICE


The Slave is identical to the Master, therefore the above results for the Master device are also applicable to demonstrate the In-Service Monitoring and the Channel Shutdown performance characteristics of the Slave device, for the situation when the Slave detects a radar.

10.6.2. RADAR DETECTION BY THE MASTER DEVICE

The Slave is tested separately for compliance with the Channel Shutdown requirements, for the situation when the Slave device vacates the channel in response to detection of a radar by the Master.

10.6.3. TRAFFIC

PLOT OF TRAFFIC FROM SLAVE

DATE: OCTOBER 10, 2008

IC: 109AO-54100

MOVE AND CLOSING TIME 10.6.4.

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

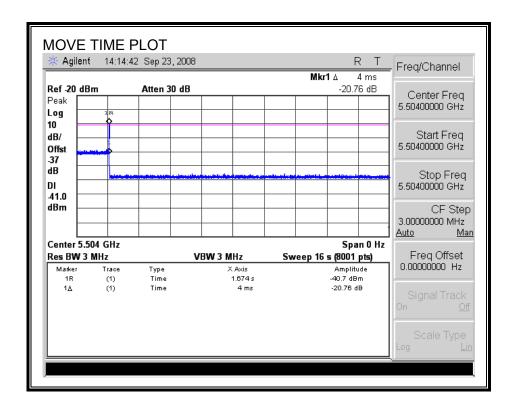
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

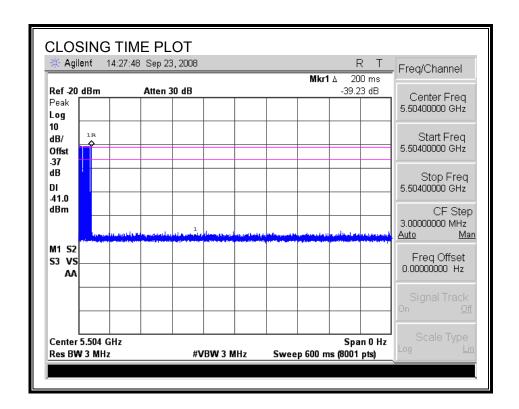
The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

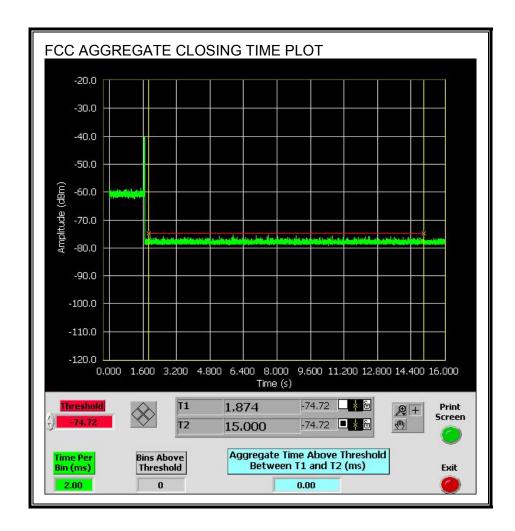

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.004	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	4.0	260

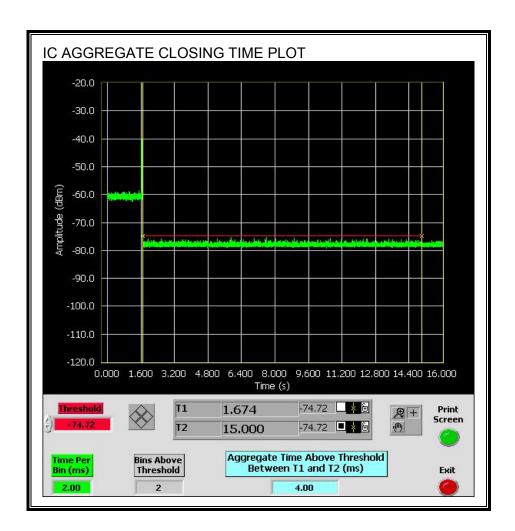

DATE: OCTOBER 10, 2008

IC: 109AO-54100

MOVE TIME



CHANNEL CLOSING TIME



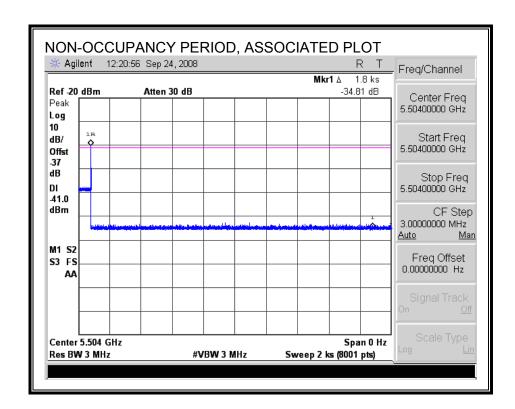
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

Only intermittent transmissions are observed during the IC aggregate monitoring period.

SLAVE NON-OCCUPANCY 10.6.5.

TEST PROCEDURE


The spectrum analyzer is monitoring the emissions from the Slave.

The AP and Slave are linked in a 10 MHz bandwidth mode, with streaming video. The spectrum analyzer trace is started, then the radar is triggered, and the channel is monitored for > 30 minutes.

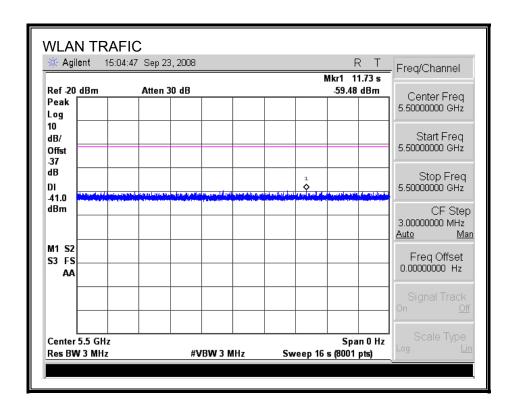
Then the AP is powered down. The spectrum analyzer trace is started, then the Slave is rebooted, and the channel is monitored for > 30 minutes.

ASSOCIATED TEST RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

10.7. RESULTS FOR 15 MHz BANDWIDTH SLAVE CONFIGURATION

10.7.1. RADAR DETECTION BY THE SLAVE DEVICE


The Slave is identical to the Master, therefore the above results for the Master device are also applicable to demonstrate the In-Service Monitoring and the Channel Shutdown performance characteristics of the Slave device, for the situation when the Slave detects a radar.

10.7.2. RADAR DETECTION BY THE MASTER DEVICE

The Slave is tested separately for compliance with the Channel Shutdown requirements, for the situation when the Slave device vacates the channel in response to detection of a radar by the Master.

10.7.3. TRAFFIC

PLOT OF TRAFFIC FROM SLAVE

10.7.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

DATE: OCTOBER 10, 2008

IC: 109AO-54100

The aggregate channel closing transmission time is calculated as follows:

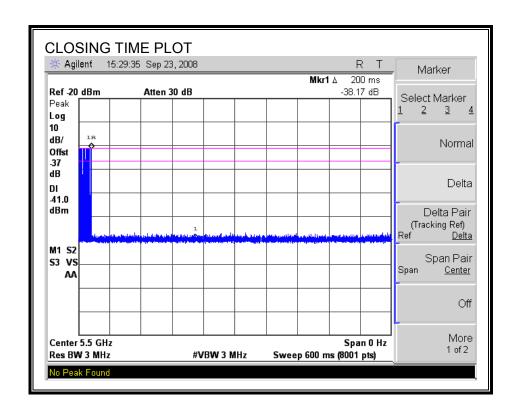
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

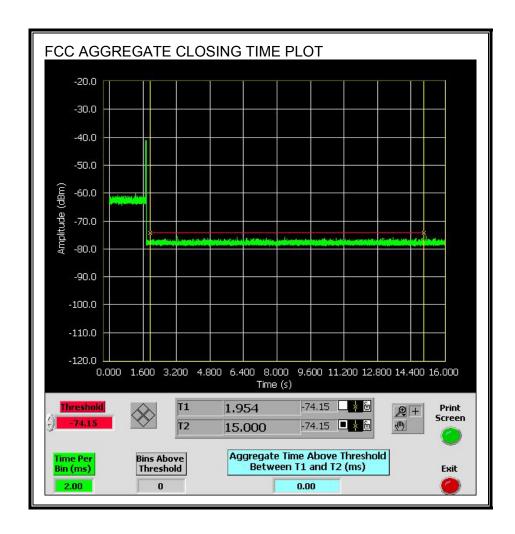
RESULTS

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.0	10

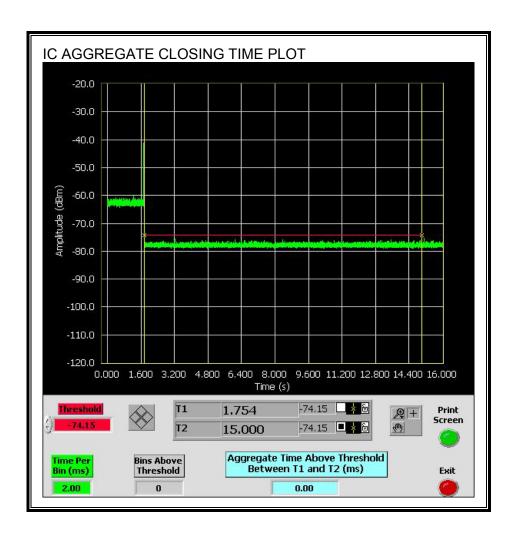

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	0.0	60
IC	0.0	260

MOVE TIME PLOT * Agilent 15:14:44 Sep 23, 2008 R Freq/Channel Mkr1 ∆ 0 s Ref -20 dBm Atten 30 dB 0 dB Center Freq Peak 5.500000000 GHz Log 10 Start Freq dB/ 5.50000000 GHz Offst -37 dΒ Stop Freq DI 5.50000000 GHz 41.0 dBm CF Step 3.00000000 MHz Center 5.5 GHz Span 0 Hz Freq Offset 0.00000000 Hz Res BW 3 MHz #VBW 3 MHz Sweep 16 s (8001 pts) Туре Amplitude 1.754 s -41.51 dBm 1Δ (1) Time 0 s O dB

DATE: OCTOBER 10, 2008


IC: 109AO-54100

CHANNEL CLOSING TIME



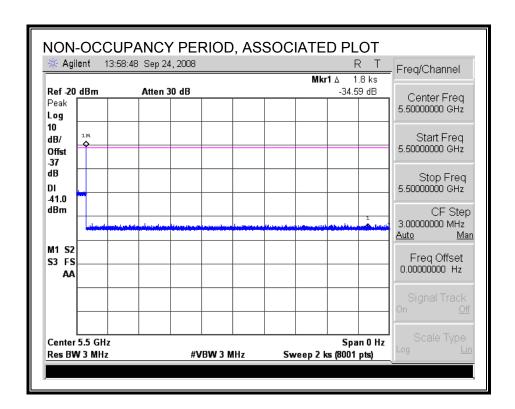
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the FCC aggregate monitoring period.

No transmissions are observed during the IC aggregate monitoring period.

10.7.5. SLAVE NON-OCCUPANCY

TEST PROCEDURE


The spectrum analyzer is monitoring the emissions from the Slave.

The AP and Slave are linked in a 15 MHz bandwidth mode, with streaming video. The spectrum analyzer trace is started, then the radar is triggered, and the channel is monitored for > 30 minutes.

Then the AP is powered down. The spectrum analyzer trace is started, then the Slave is rebooted, and the channel is monitored for > 30 minutes.

ASSOCIATED TEST RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	strength strength Power density		Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6
30–300 300–1500	61.4	0.163	1.0 f/300	6 6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5 Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)/d}$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

REPORT NO: 08U11901-1 DATE: OCTOBER 10, 2008 FCC ID: QWP54100 IC: 109AO-54100

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

Mode	Band	MPE	Output	Antenna	FCC Power	IC Power
		Distance	Power	Gain	Density	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)
5 MHz	5 GHz	20.0	-0.95	23.00	0.03	0.32
10 MHz BW	5 GHz	20.0	3.10	23.00	0.08	0.81
15 MHz BW	5 GHz	20.0	3.99	23.00	0.10	0.99
5 MHz	5 GHz	20.0	-9.00	33.90	0.06	0.61
10 MHz BW	5 GHz	20.0	-7.51	33.90	0.09	0.87
15 MHz BW	5 GHz	20.0	-6.15	33.90	0.12	1.18