

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

Application No. : LR035902(8)

Applicant : Rayson Technology Co., Ltd

1F, No.9, R&D II Road, Science-Based Industrial Park,

Hsin-Chu, Taiwan

Client : Peak International (Hong Kong) Limited

Flat/Rm B 6/F Glory Centre, 8 Hillwood Road, Tsim Sha Tsui

Sample Description : One(1) item of submitted sample stated to be Portable Bluetooth Speaker

of Model No. 4000520

Sample registration No. : RR040601-001

Radio Frequency : 2402MHz ~ 2480MHz Transceiver

Rating : 3.7V rechargeable battery

USB 5V

Date Received : 27 Sep 2013

Test Period : 30 Sep 2013 to 15 Oct 2013

Test Requested : FCC Part 15 Certificate

Test Method : 47 CFR Part 15 (10-1-12 Edition)

ANSI C63.4 - 2009

FCC Public Notice DA 00-705

Test Engineer : Mr. LEUNG Shu-kan, Ken

Test Result : See attached sheet(s) from page 2 to 54.

Conclusion : The submitted sample was found to comply with requirement of FCC Part 15

Subpart B and C.

For and on behalf of

CMA Industrial Development Foundation Limited

Authorized Signature :

_____ Page 1 of 54

Mr. WONG Lap-pong Andrew Assistant Manager

Electrical Division

Table of Contents

1 (General Information	3
1.1	General Description	3
1.2		
1.3	List of measuring equipment	6
1.4	Measurement Uncertainty	7
2 D	Description of the radiated emission test	8
2.1	-	
2.2	Test Result	9
2.3	Maximum peak output power	10
2.4	Radiated Emission Measurement Data	12
3 D	Description of the Line-conducted Test	14
3.1		
3.2	Test Result	14
3.3	Graph and Table of Conducted Emission Measurement Data	14
4 P	Photograph	15
4.1	Photographs of the Test Setup for Radiated Emission and Conducted Emission	15
4.2	Photographs of the External and Internal Configurations of the EUT	15
5 S	Supplementary document	16
5.1	Bandwidth	16
5.2	Duty cycle	17
5.3	Transmission time	17
5.4	Power Spectral Density	17
5.5		
5.6	Average on time	18
6 A	Appendices	19

Page 2 of 54

1 General Information

1.1 General Description

The equipment under test (EUT) is a Portable Bluetooth speaker. The EUT is power by 3.7V rechargeable battery. The EUT has two operating mode. The first operating mode is Bluetooth mode. It receives digital audio from other wireless device and playback the audio signal. The second mode is Aux mode. An Aux input terminal supports audio input by 3.5 mm terminal.

For the Bluetooth mode, it supports standard Bluetooth V3.0+EDR or below revision protocol for data synchronization. After paring with other standard Bluetooth device, it can play the music.

The Bluetooth module used in the speaker has been test and approved by official Bluetooth Special Interest Group (SIG) member. All technical requirements including hopping rate, Frequency channels, Pseudo randomly order list and Bandwidth has been tested and complied with Spread Spectrum System requirements. The compliance information was listed at Bluetooth SIG with ID code is B020498 for model No BTM-640.

A non standardized Bluetooth protocol or other Gaussian frequency-shift keying (GFSK) digital modulation signal was unable to synchronize the Bluetooth speaker.

A Bluetooth trademark was printed on the speaker enclosure to indicate it communicate with Bluetooth protocol only.

The USB port is unable to synchronize with personal computer, this port is for 3.7V battery charging only.

Pseudorandom frequency hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF Channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1600 hops/s.

Example of a 79 hopping sequence in data mode: 40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54...

Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

System Receiver Input Bandwidth

Page 3 of 54

The input bandwidth of the receiver is 1 MHz. In every connection one Bluetooth device is the master and the other one is slave. The aster determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single multisport (packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

Equipment Description

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply With all of The regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

The brief circuit description is listed as follows:

BT1 and its associated circuit act as bluetooth module
U3, U4 and its associated circuit act as amplifier circuit
U11 and its associated circuit act as charging circuit
U1, U6 and its associated circuit act as MCU

Antenna type : PCB Antenna

Antenna gain : 2dBi Modulation technique : GFSK Number of channel : 79 channels

Page 4 of 54

1.2 Location of the test site

FCC Registered Test Site Number: 552221

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.4 – 2009. A Semi-Anechoic Chamber Testing Site is set up for investigation and located at:

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.4 - 2009. A shielded room is located at :

Ground Floor, Yan Hing Centre, 9 – 13 Wong Chuk Yeung Street, Fo Tan, Shatin, New Territories, Hong Kong.

Page 5 of 54

1.3 List of measuring equipment

Equipment	Manufacturer	Model No.	Serial No.	Calibration Due Date	Calibration Period
EMI Test Receiver	R&S	ESCI	100152	08 Jul 2014	1Year
Spectrum Analyzer	R&S	FSP30	100628	15 Aug 2014	1Year
Broadband Antenna	Schaffner	CBL6112B	2692	16 Jan 2014	1Year
Loop Antenna	EMCO	6502	00056620	15 Sep 2014	1Year
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-531	09 Oct 2014	1Year
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170442	16 May 2015	2Years
Broadband Pre-Amplifier	Schwarzbeck	BBV 9718	9718-119	09 Oct 2014	1Year
Broadband Pre-Amplifier	Schwarzbeck	BBV 9719	9719-010	16 May 2015	2Years
LISN	R&S	ESH3-Z5	100038	25 Oct 2013	1Year
Coaxial Cable	Schaffner	RG 213/U	N/A	28 May 2014	1Year
Coaxial Cable	Suhner	RG 214/U	N/A	28 May 2014	1Year
Coaxial Cable	Suhner	Sucoflex_102	N/A	09 Oct 2014	1Year

Page 6 of 54

1.4 Measurement Uncertainty

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%.

Radiated emissions

Frequency	Uncertainty (U _{lab})		
30MHz ~ 200MHz (Horizontal)	4.83dB		
30MHz ~ 200MHz (Vertical)	4.84dB		
200MHz ~1000MHz (Horizontal)	4.66dB		
200MHz ~1000MHz (Vertical)	4.65dB		

Conducted emissions

Frequency	Uncertainty (U _{lab})		
150kHz~30MHz	3.02dB		

Page 7 of 54

2 Description of the radiated emission test

2.1 Test Procedure

Radiated emissions measurements are investigated and taken pursuant to the procedures of ANSI C63.4 - 2009 and DA 00-705.

The equipment under test (EUT) was placed on a non-conductive turntable with dimensions of 1.5m x 1m and 0.8m high above the ground. 3m from the EUT, a broadband antenna mounting on the mast received the signal strength. The turntable was rotated to maximize the emission level. The antenna was then moving along the mast from 1m up to 4m until no more higher value was found. Both horizontal and vertical polarization of the antenna were placed and investigated.

For below 30MHz, a loop antenna with its vertical plane is placed 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1 m above the ground.

For 30MHz to 1GHz, broadband antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. And the reference point of antenna shall be 1 m above the ground.

For above 1GHz, horn antenna with its vertical and horizontal plane is placed 3m from the EUT and rotated about its vertical and horizontal axis for maximum response at each azimuth about the EUT. Preamplifier and High Pass filter was used for measurements. The reference point of antenna shall be 1 m above the ground.

The device was rotated through three orthogonal axes to determine which attitude and configuration produce the highest emission during measurement for Radiated Emission measurement.

Page 8 of 54

2.2 Test Result

Summary

Section in FCC part 15	Description	Result
15.205(a), 15.209, 15.247(d)	Transmitter radiated spurious field strength and other emissions	Page 11-12
15.209	Receiver emissions	Page 13
15.209	Voltage disturbance	Page 14, 31-33
15.247 (a)(1), Part 2.1 and DA- 00705	Hopping sequence	Page 34, 35
15.247 (a)(1)	20dB bandwidth and 99% bandwidth	Page 36, 37, 38
15.247 (a)(1)	Channel Spacing (Frequency separation)	Page 39, 40
15.247 (a)(1)(iii)	Number of hopping frequency	Page 41
15.247 (d)	Band Edge	Page 42
15.247 (a)(1)(iii)	Dwell Time (Bluetooth Average On Time)	Page 43-51
15.247 (b)(1)	Maximum Peak output power	Page 10, 52, 53

Subpart C:

Peak Detector and Average Detector data were measured unless otherwise stated.

"#" means emissions appear within the restricted bands shall follow the requirement of section 15.205.

The harmonic emissions meet the requirement of section 15.209 are based on measurements employing the CISPR quasi-peak detector below 1000MHz and average detector for frequencies above 1000MHz.

Subpart B:

The emissions meet the requirement of section 15.109 are based on measurements employing the CISPR quasi-peak detector below 1000MHz and average detector for frequencies above 1000MHz.

The frequencies from 30MHz to 1000MHz were investigated, and emissions more 20dB below limit were not reported. Thus, those highest emissions were presented in next page (section 2.3).

It was found that the EUT meet the FCC requirement.

Page 9 of 54

2.3 Maximum peak output power

Conductive measurements

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

ParameterRecorded valueAmbient temperature:26° CRelative humidity:60%

Operation Mode: Transmission

	Channel Frequency (MHz) 00 2402.188		Reading (dBm)	Reading (mW)	Limit (mW)	Margin (mW)	
			- 3.83	0.4	1000.0	- 999.6	

Channel	Frequency (MHz)	Reading (dBm)	Reading (mW)	Limit (mW)	Margin (mW)
39	2440.848	- 3.11	0.5	1000.0	- 999.5

Channel	Frequency (MHz)	Reading (dBm)	Reading (mW)	Limit (mW)	Margin (mW)
78	2479.855	- 3.64	0.4	1000.0	- 999.6

The plot saved in TestRpt9.pdf shows the transmission power was less than 1 watt.

Page 10 of 54

2.4 Radiated Emission Measurement Data

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

ParameterRecorded valueAmbient temperature:26° CRelative humidity:60%

Detector: Peak RBW: 1MHz VBW: 3MHz

Testing frequency range: 9kHz to 25GHz

Channel	Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
	2402.180	Н	105.8	- 6.3	99.5	114.0	- 14.5
00	#4804.353	V	45.5	2.0	47.5	74.0	- 26.5
00	#4804.361	Н	48.3	2.0	50.3	74.0	- 23.7
	7205.539	V	34.2	10.2	44.4	74.0	- 29.6
	2440.833	Н	107.8	- 6.3	101.5	114.0	- 12.5
39	#4882.350	Н	48.8	2.0	50.8	74.0	- 23.2
39	#4882.350	V	45.9	2.0	47.9	74.0	- 26.1
	#7322.539	V	36.4	10.2	46.6	74.0	- 27.4
	2479.840	V	109.2	- 6.3	102.9	114.0	- 11.1
70	#4960.352	Н	48.7	2.0	50.7	74.0	- 23.3
78	U.40.60.055	* 7	45.5	2.0	47.5	740	265

2.0

10.2

47.5

47.1

Remark: Other emissions more than 20dB below the limit are not reported.

45.5

36.9

Page 11 of 54

- 26.5

- 26.9

74.0

74.0

FCC ID: QWO-BT520

#4960.355

#7440.535

2.4 Radiated Emission Measurement Data

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart C

Environmental conditions:

ParameterRecorded valueAmbient temperature:26° CRelative humidity:60%

Detector: Average RBW: 1MHz VBW: 10Hz

Testing frequency range: 9kHz to 25GHz

Channel	Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Transducer Factor (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
	2402.014	Н	91.2	- 6.3	84.9	94.0	- 9.1
00	#4804.029	V	37.4	2.0	39.4	54.0	- 14.6
00	#4804.031	Н	40.6	2.0	42.6	54.0	- 11.4
	7206.004	V	20.9	10.2	31.1	54.0	- 22.9
	T.						
	2441.014	Н	93.1	- 6.3	86.8	94.0	- 7.2
39	#4882.026	Н	41.4	2.0	43.4	54.0	- 10.6
39	#4882.026	V	37.8	2.0	39.8	54.0	- 14.2
	#7323.028	V	23.4	10.2	33.6	54.0	- 20.4
	2480.001	V	92.4	- 6.3	86.1	94.0	- 7.9
78	#4960.002	Н	40.9	2.0	42.9	54.0	- 11.1
/ 8	1	1			1		

70	2480.001	V	92.4	- 6.3	86.1	94.0	- 7.9
	#4960.002	Н	40.9	2.0	42.9	54.0	- 11.1
78	#4960.025	V	37.8	2.0	39.8	54.0	- 14.2
	#7440.003	V	24.6	10.2	34.8	54.0	- 19.2

Remark: Other emissions more than 20dB below the limit are not reported.

Page 12 of 54

2.4 Radiated Emission Measurement Data (Con't)

Radiated emission

pursuant to

the requirement of FCC Part 15 subpart B

Environmental conditions:

ParameterRecorded valueAmbient temperature:26° CRelative humidity:60%

Detector: Quasi-peak

RBW: 120kHz VBW: 300kHz Operation Mode: Receiver mode

Testing frequency range: 9kHz to 25GHz

Frequency (MHz)	Polarity (H/V)	Reading at 3m (dBµV)	Antenna Factor and Cable Loss (dB/m)	Field Strength at 3m (dBµV/m)	Limit at 3m (dBµV/m)	Margin (dB)
145.190	V	12.4	14.5	26.9	43.5	- 16.6
145.225	Н	16.9	14.5	31.4	43.5	- 12.1
193.643	V	12.2	11.2	23.4	43.5	- 20.1
193.657	Н	19.0	11.2	30.2	43.5	- 13.3
242.057	V	15.6	11.9	27.5	46.0	- 18.5
242.063	Н	18.9	11.9	30.8	46.0	- 15.2
320.001	Н	10.0	15.9	25.9	46.0	- 20.1
348.001	Н	11.4	15.9	27.3	46.0	- 18.7
660.002	Н	10.3	22.5	32.8	46.0	- 13.2
688.003	Н	10.4	22.5	32.9	46.0	- 13.1

Remark: Other emissions more than 20dB below the limit are not reported.

Page 13 of 54

3 Description of the Line-conducted Test

3.1 Test Procedure

Conducted emissions measurements are investigated and also taken pursuant to the procedures of ANSI C63.4 - 2009. The EUT was setup as described in the procedures, and both lines were measured.

3.2 Test Result

The EUT is connected to adaptor.

It was found that the EUT met the FCC requirement.

3.3 Graph and Table of Conducted Emission Measurement Data

For electronic filling, the document is saved with filename TestRpt2.pdf.

Page 14 of 54

- 4 Photograph
- 4.1 Photographs of the Test Setup for Radiated Emission and Conducted Emission

For electronic filing, the photos are saved with filename TSup1.jpg to TSup9.jpg.

4.2 Photographs of the External and Internal Configurations of the EUT

For electronic filing, the photos are saved with filename ExPho1.jpg to ExPho2.jpg and InPho1.jpg to InPho8.jpg.

Page 15 of 54

5 Supplementary document

The following document were submitted by applicant, and for electronic filing, the document are saved with the following filenames:

Document	Filename	
ID Label/Location	LabelSmp.jpg	
Block Diagram	BlkDia.pdf	
Schematic Diagram	Schem.pdf	
Users Manual	UserMan.pdf	
Operational Description	OpDes.pdf	

5.1 Bandwidth

Bluetooth:

The plot saved in TestRpt4.pdf shows the 20dB bandwidth and 99% bandwidth:

Frequency Channel (MHz)	20dB bandwidth (kHz)	99% bandwidth (kHz)
2402	761.2	853.8
2441	761.2	862.5
2480	761.2	862.5

The plot saved in TestRpt5.pdf shows the channel spacing has minimum 25 kHz or two-third of 20dB bandwidth of hopping channel.

Frequency	Channel spacing	Two-third of 20dB	Minimum bandwidth
(MHz)	(kHz)	bandwidth (kHz)	(kHz)
2402	1005.8	507.5	25
2441	1005.8	507.5	25
2480	1005.8	507.5	25

The plot saved in TestRpt6.pdf shows the frequency hopping channel over 75 hopping frequency.

The plot saved in TestRpt7.pdf shows the fundamental emission is confined in the specified band. It shows the 20dB bandwidth and band edge meet the 15.247(d) and 15.205 requirement.

Page 16 of 54

5.2 Duty cycle

Not Applicable

5.3 Transmission time

Not Applicable

5.4 Power Spectral Density

Not Applicable

5.5 Hopping sequence

The plot saved in TestRpt3.pdf shows the hopping sequence is pseudorandom randomly distributed. Four example of continuous fundamental frequency hopping pattern was as below:

The 1^{st} example of fundamental frequency = 2.412140GHzThe 2^{nd} example of fundamental frequency = 2.409000GHzThe 3^{rd} example of fundamental frequency = 2.464950GHzThe 4^{th} example of fundamental frequency = 2.449000GHz

Result:

Fc 1 – Fc 2 = +3.14MHz Fc 2 – Fc 3 = -55.95MHz Fc 3 – Fc 4 = +15.95MHz

It was found the hopping pattern is pseudorandom random.

Page 17 of 54

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

5.6 Average on time

The plot saved in TestRpt8.pdf shows the average on time for frequency hopping channel is within 0.4 seconds.

The calculation for average on time as below:

Average hopping channel = Number of transmitted carrier / Sweep time

Average on time = Packet on time x Average hopping channel

Dwell time = Average on time x Total frequency hopping channel x 0.4

Test result:

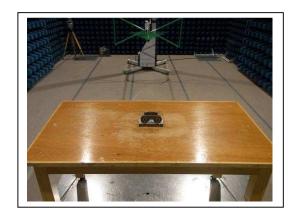
Frequency Channel (MHz)	Packet	Dwell Time (Seconds)	Limit (Seconds)	Margin (Seconds)
2402	DH1	0.119	0.4	- 0.281
2402	DH3	0.259	0.4	- 0.141
2402	DH5	0.290	0.4	- 0.110
2441	DH1	0.121	0.4	- 0.279
2441	DH3	0.255	0.4	- 0.145
2441	DH5	0.311	0.4	- 0.089
2480	DH1	0.124	0.4	- 0.276
2450	DH3	0.259	0.4	- 0.141
2480	DH5	0.311	0.4	- 0.089

Page 18 of 54

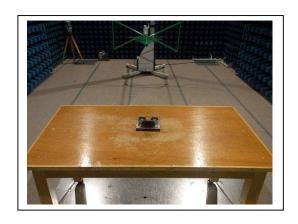
6 Appendices

A1	Photos of the set-up of Radiated Emissions	3	pages
A2	Photos of the set-up of Conducted Emissions	2	pages
A3	Photos of External Configurations	1	page
A4	Photos of Internal Configurations	5	pages
A5	ID Label/Location	1	page
A6	Conducted Emission Measurement Data	3	pages
A7	Hopping sequence	2	pages
A8	20 dB bandwidth and 99% bandwidth	3	pages
A9	Bluetooth Channel Spacing	2	pages
A10	Bluetooth Hopping Channel	1	page
A11	Bluetooth Band Edge	1	page
A12	Bluetooth Average on time	9	pages
A13	Transmission Power	2	pages

Page 19 of 54



廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A1. Photos of the set-up of Radiated Emissions

(Front view, 30MHz – 1GHz)

(Back view, 30MHz - 1GHz)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 20 of 54

FCC ID: QWO-BT520

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

(Front view, 9KHz – 30MHz)

(Back view, 9KHz – 30MHz)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 21 of 54

FCC ID: QWO-BT520

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

(front view, 1GHz – 25GHz)

(rear view, 1GHz - 25GHz)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 22 of 54

FCC ID: QWO-BT520

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A2 Photos of the set-up of Conducted Emission

(front view)

(rear view)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 23 of 54

FCC ID: QWO-BT520

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

Photos of the set-up of Conducted Emission

(side view)

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 24 of 54

FCC ID: QWO-BT520

A3. Photos of External Configurations

External Configuration 1

External Configuration 2

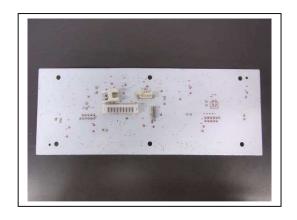
Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 25 of 54


FCC ID: QWO-BT520

A4. Photos of Internal Configurations

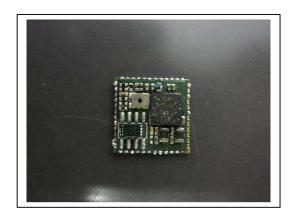
Internal Configuration 1

Internal Configuration 2

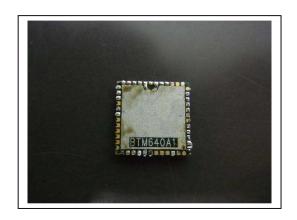
Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:


Mr. WONG Lap-pong, Andrew

Page 26 of 54


FCC ID: QWO-BT520

A4. Photos of Internal Configurations

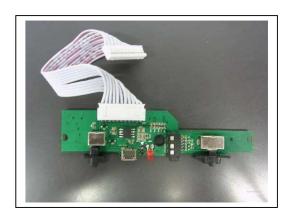
Internal Configuration 3

Internal Configuration 4

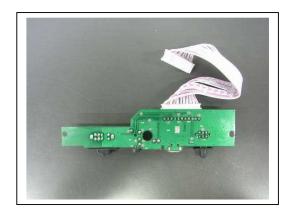
Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:


Mr. WONG Lap-pong, Andrew

Page 27 of 54


FCC ID: QWO-BT520

A4. Photos of Internal Configurations

Internal Configuration 5

Internal Configuration 6

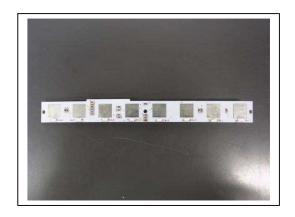
Tested by:

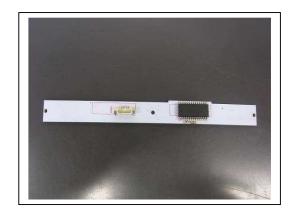
Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 28 of 54


FCC ID: QWO-BT520


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A4. Photos of Internal Configurations

Internal Configuration 7

Internal Configuration 8

Tested by:

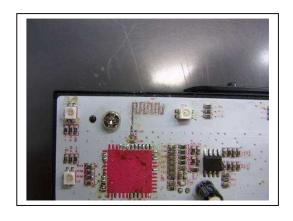
Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 29 of 54

FCC ID: QWO-BT520



廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A4. Photos of Internal Configurations

Internal Configuration 9

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 30 of 54

FCC ID: QWO-BT520

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A5. ID Label / Location

ID Label 1

Tested by:

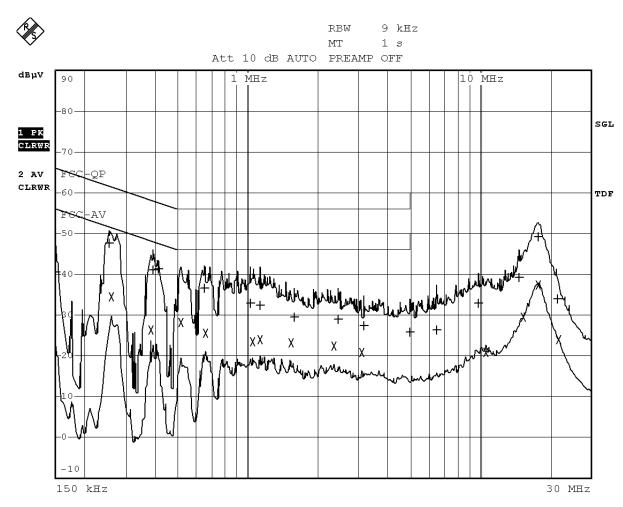
Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 31 of 54

FCC ID: QWO-BT520



廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A6 Conducted Emission Measurement Date

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 32 of 54

FCC ID: QWO-BT520

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A6 Conducted Emission Measurement Date

	EDIT PEAK LIST (Final Measurement Results)			
Tra	Tracel: FCC-QP			
Tra	ce2:	FCC-AV		
Tra	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	150 kHz	40.53 N gnd	-25.47
1	Quasi Peak	255 kHz	47.65 N gnd	-13.94
2	Average	260 kHz	34.38 N gnd	-17.04
2	Average	385 kHz	26.41 N gnd	-21.75
1	Quasi Peak	395 kHz	41.08 N gnd	-16.87
1	Quasi Peak	415 kHz	41.31 N gnd	-16.23
2	Average	520 kHz	28.31 N gnd	-17.68
1	Quasi Peak	655 kHz	36.55 N gnd	-19.45
2	Average	660 kHz	25.50 N gnd	-20.49
1	Quasi Peak	1.02 MHz	32.82 L1 gnd	-23.17
2	Average	1.04 MHz	23.57 N gnd	-22.42
1	Quasi Peak	1.12 MHz	32.31 L1 gnd	-23.68
2	Average	1.13 MHz	23.98 N gnd	-22.02
2	Average	1.54 MHz	23.21 N gnd	-22.78
1	Quasi Peak	1.59 MHz	29.37 L1 gnd	-26.62
2	Average	2.34 MHz	22.45 N gnd	-23.54
1	Quasi Peak	2.46 MHz	28.96 N gnd	-27.03
2	Average	3.11 MHz	20.79 N gnd	-25.20
1	Quasi Peak	3.16 MHz	27.50 N gnd	-28.49
1	Quasi Peak	4.97 MHz	25.77 N gnd	-30.22

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 33 of 54

廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A6 Conducted Emission Measurement Date

	EDIT PEAK LIST (Final Measurement Results)			
Trace1: FCC-QP				
Tra	.ce2 :	FCC-AV		
Tra	.ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	6.49 MHz	26.28 L1 gnd	-33.71
1	Quasi Peak	9.86 MHz	32.84 N gnd	-27.15
2	Average	10.6 MHz	20.85 L1 gnd	-29.14
1	Quasi Peak	14.71 MHz	39.15 N gnd	-20.84
2	Average	15.47 MHz	29.62 N gnd	-20.37
1	Quasi Peak	17.85 MHz	49.26 N gnd	-10.73
2	Average	17.85 MHz	37.48 N gnd	-12.51
1	Quasi Peak	21.67 MHz	34.06 N gnd	-25.94
2	Average	21.82 MHz	23.90 N gnd	-26.09

Tested by:

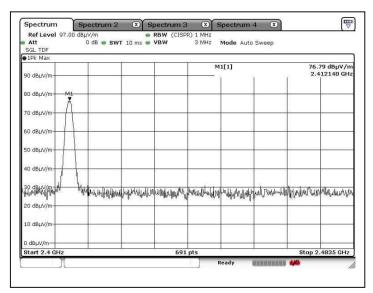
Mr. LEUNG Shu-kan, Ken

Reviewed by:

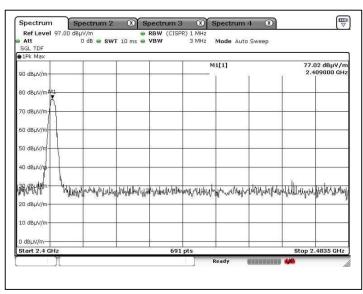
Mr. WONG Lap-pong, Andrew

Page 34 of 54

FCC ID: QWO-BT520



廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A7. Hopping sequence

1st example of fundamental frequency

2nd example of fundamental frequency

Tested by:

Jan

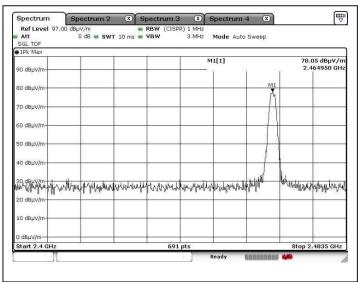
Mr. LEUNG Shu-kan, Ken

Reviewed by:

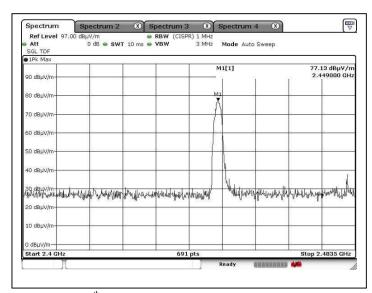
Mr. WONG Lap-pong, Andrew

Page 35 of 54

FCC ID: QWO-BT520



廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A7. Hopping sequence

3rd example of fundamental frequency

4th example of fundamental frequency

Tested by:

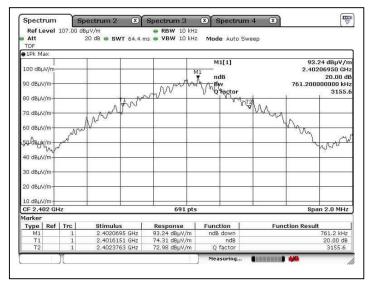
Mr. LEUNG Shu-kan, Ken

Reviewed by:

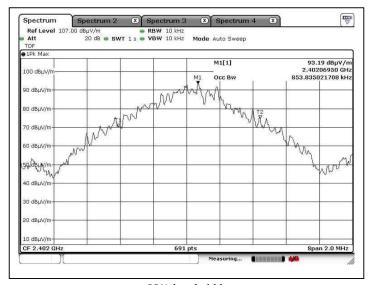
Mr. WONG Lap-pong, Andrew

Page 36 of 54

FCC ID: QWO-BT520


廠商會檢定中心

TEST REPORT


Report No. : AR0058421(9) Date : 16 Oct 2013

A8. 20 dB bandwidth and 99% bandwidth

Channel: CH00

20 dB bandwidth

99% bandwidth

Tested by:

Jan

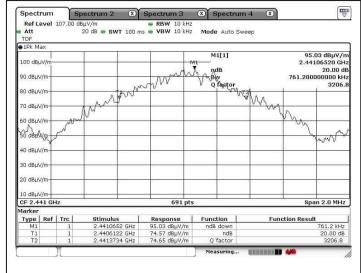
Mr. LEUNG Shu-kan, Ken

Reviewed by:

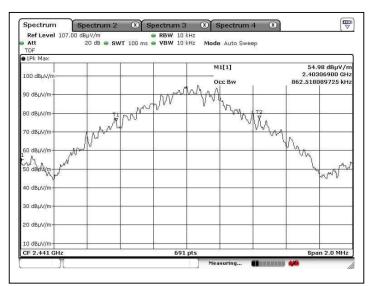
Mr. WONG Lap-pong, Andrew

Page 37 of 54

FCC ID: QWO-BT520


廠商會檢定中心

TEST REPORT


Report No. : AR0058421(9) Date : 16 Oct 2013

A8. 20 dB bandwidth and 99% bandwidth

Channel: CH39

20 dB bandwidth

99% bandwidth

Tested by:

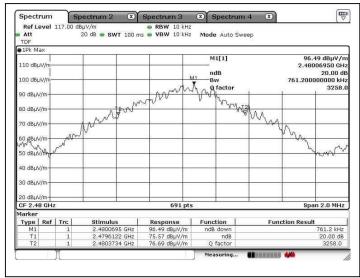
Mr. LEUNG Shu-kan, Ken

Reviewed by:

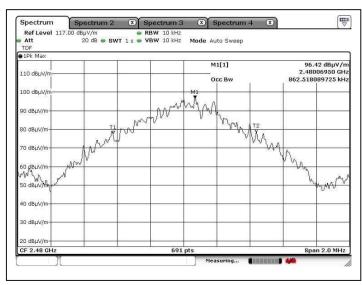
Mr. WONG Lap-pong, Andrew

Page 38 of 54

FCC ID: QWO-BT520


廠商會檢定中心

TEST REPORT


Report No. : AR0058421(9) Date : 16 Oct 2013

A8. 20 dB bandwidth and 99% bandwidth

Channel: CH78

20 dB bandwidth

99% bandwidth

Tested by:

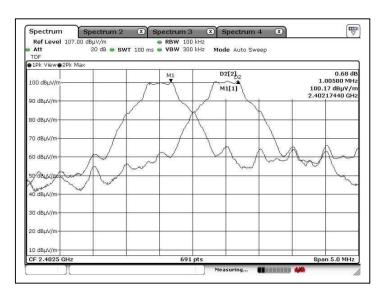
Mr. LEUNG Shu-kan, Ken

Reviewed by:

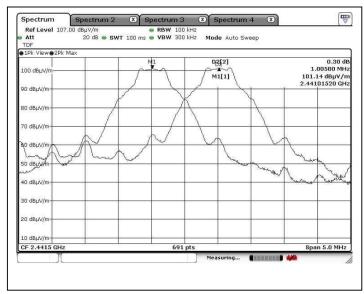
Mr. WONG Lap-pong, Andrew

Page 39 of 54

FCC ID: QWO-BT520



廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A9. Bluetooth Channel Spacing

CH00-CH01

CH39-CH40

Tested by:

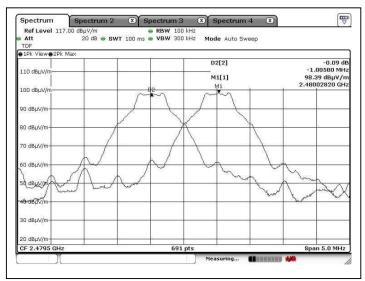
Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 40 of 54

FCC ID: QWO-BT520



廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A9. Bluetooth Channel Spacing

CH77-CH78

Tested by:

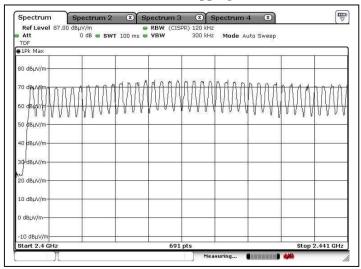
Mr. LEUNG Shu-kan, Ken

Reviewed by:

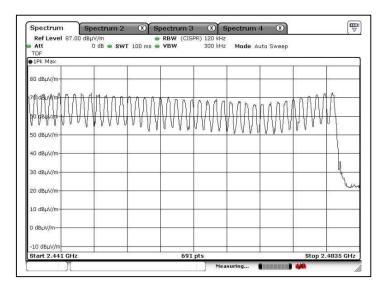
Mr. WONG Lap-pong, Andrew

Page 41 of 54

FCC ID: QWO-BT520



廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A10. Bluetooth Hopping Channel

CH00-CH39

CH39-CH78

Tested by:

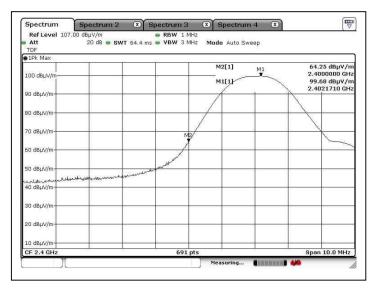
Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 42 of 54

FCC ID: QWO-BT520



廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A11. Bluetooth Band Edge

Edge 1

Edge 2

Tested by:

Jan

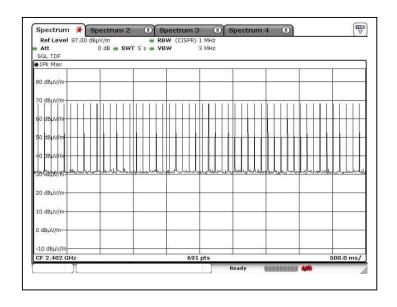
Mr. LEUNG Shu-kan, Ken

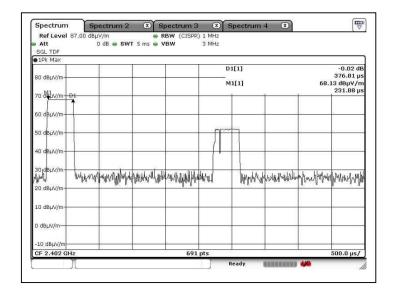
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 43 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH1 Channel: CH00

Tested by:

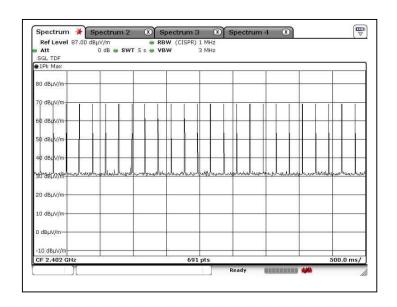
Mr. LEUNG Shu-kan, Ken

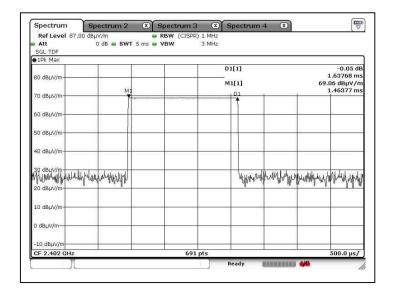
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 44 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH3 Channel: CH00

Tested by:

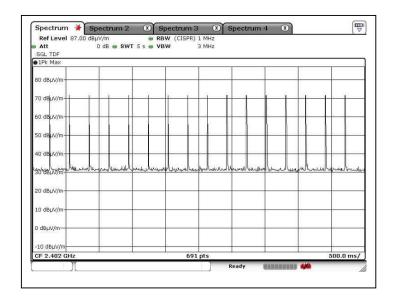
Mr. LEUNG Shu-kan, Ken

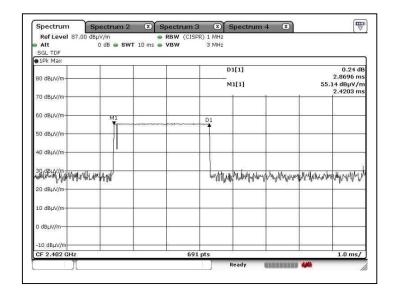
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 45 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH5 Channel: CH00

Tested by:

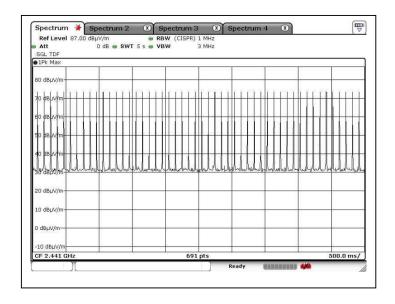
Mr. LEUNG Shu-kan, Ken

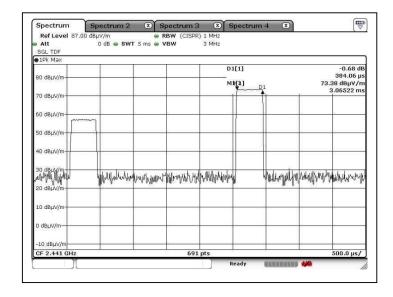
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 46 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH1 Channel: CH39

Tested by:

Mr. I FUNG Shu

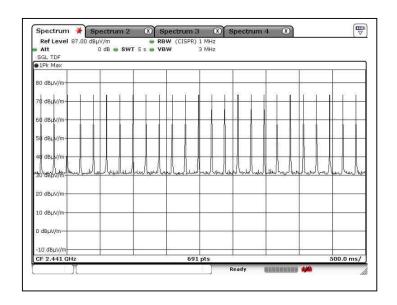
Mr. LEUNG Shu-kan, Ken

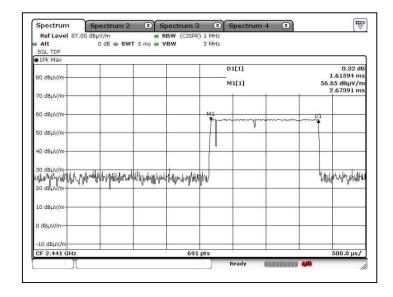
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 47 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH3 Channel: CH39

Tested by:

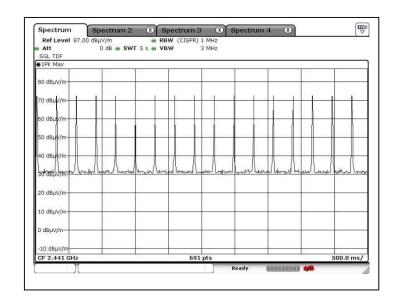
Mr. LEUNG Shu-kan, Ken

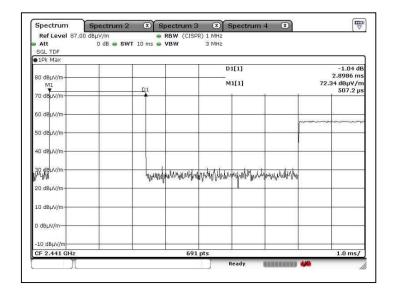
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 48 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH5 Channel: CH39

Tested by:

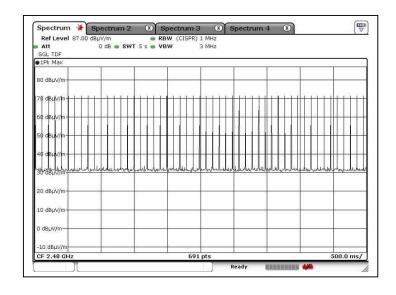
Mr. LEUNG Shu-kan, Ken

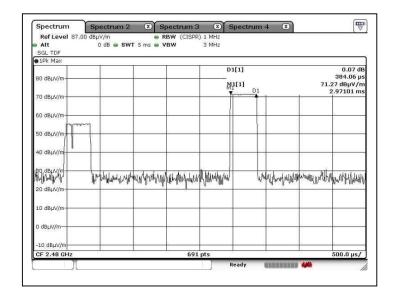
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 49 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH1 Channel: CH78

Tested by:

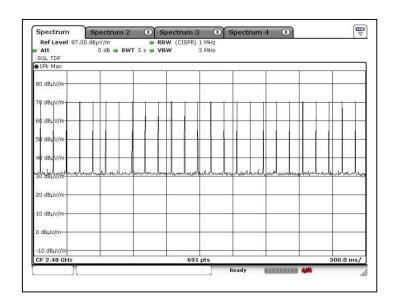
Mr. LEUNG Shu-kan, Ken

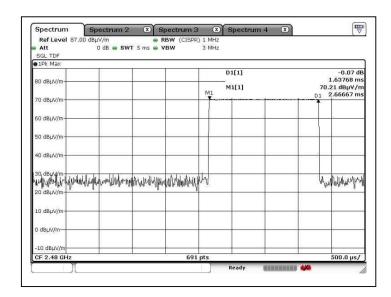
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 50 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH3 Channel: CH78

Tested by:

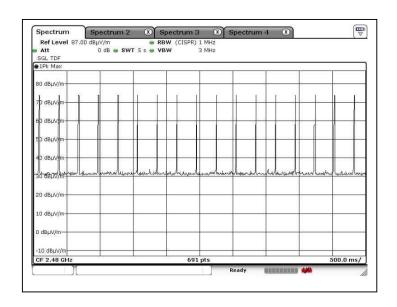
Mr. LEUNG Shu-kan, Ken

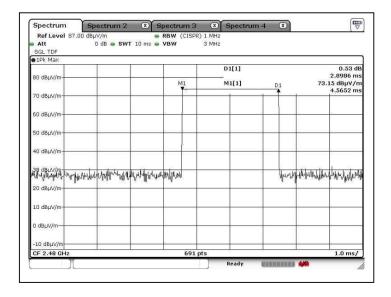
Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 51 of 54

FCC ID: QWO-BT520


廠商會檢定中心


TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A12. Bluetooth Average On Time

Packet: DH5 Channel: CH78

Tested by:

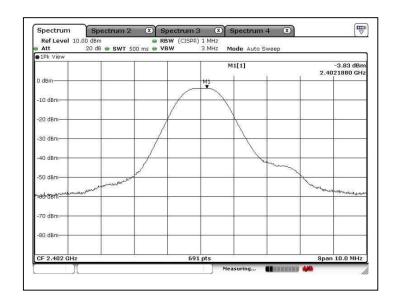
Mr. LEUNG Shu-kan, Ken

Reviewed by: \

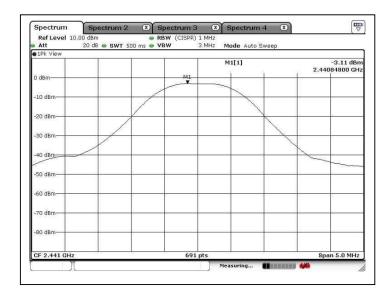
Mr. WONG Lap-pong, Andrew

Page 52 of 54

FCC ID: QWO-BT520


廠商會檢定中心

TEST REPORT


Report No. : AR0058421(9) Date : 16 Oct 2013

A13. Transmission Power

Channel: CH00

Channel: CH39

Tested by:

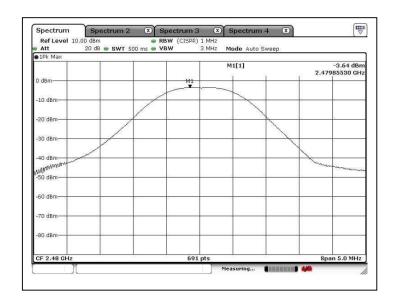
Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 53 of 54

FCC ID: QWO-BT520


廠商會檢定中心

TEST REPORT

Report No. : AR0058421(9) Date : 16 Oct 2013

A13. Transmission Power

Channel: CH78

***** End of Report *****

Tested by:

Mr. LEUNG Shu-kan, Ken

Reviewed by:

Mr. WONG Lap-pong, Andrew

Page 54 of 54

FCC ID: QWO-BT520