

CALIBRATION REPORT

F.1 E-Field Probe (EX3DV4 - SN:7506)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

TUV Shenzhen Certificate No.

EX-7506_Jun23

CALIBRATION CERTIFICATE

EX3DV4 - SN:7506 Object

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, Calibration procedure(s)

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

June 29, 2023 Calibration date

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Name Function Signature Calibrated by Jeton Kastrati Laboratory Technician Approved by Sven Kühn Technical Manager

Issued: July 05, 2023

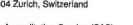
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7506 Jun23

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG


Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7506_Jun23 Page 2 of 9

Parameters of Probe: EX3DV4 - SN:7506

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)^A$	0.55	0.41	0.50	±10.1%
DCP (mV) B	99.2	99.5	97.8	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$dB\sqrt{\mu V}$	С	D dB	VR mV	Max dev.	Max Unc ^E <i>k</i> = 2
0	CW	X	0.00	0.00	1.00	0.00	140.5	±3.0%	±4.7%
		Y	0.00	0.00	1.00		145.2		***************************************
		Z	0.00	0.00	1.00		138.7		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Parameters of Probe: EX3DV4 - SN:7506

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-118.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-7506_Jun23 Page 4 of 9

Parameters of Probe: EX3DV4 - SN:7506

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
450	43.5	0.87	11.25	11.25	11.25	0.16	1.30	±13.3%
750	41.9	0.89	10.54	10.54	10.54	0.31	1.12	±12.0%
835	41.5	0.90	10.35	10.35	10.35	0.38	0.94	±12.0%
900	41.5	0.97	10.06	10.06	10.06	0.47	0.80	±12.0%
1450	40.5	1.20	9.04	9.04	9.04	0.30	0.80	±12.0%
1750	40.1	1.37	8.99	8.99	8.99	0.34	0.86	±12.0%
1900	40.0	1.40	8.56	8.56	8.56	0.35	0.86	±12.0%
2000	40.0	1.40	8.31	8.31	8.31	0.38	0.86	±12.0%
2300	39.5	1.67	8.18	8.18	8.18	0.32	0.90	±12.0%
2450	39.2	1.80	7.98	7.98	7.98	0.30	0.90	±12.0%
2600	39.0	1.96	7.64	7.64	7.64	0.42	0.90	±12.0%
3500	37.9	2.91	6.82	6.82	6.82	0.35	1.30	±14.0%
3700	37.7	3.12	6.81	6.81	6.81	0.30	1.35	±14.0%
5250	35.9	4.71	5.48	5.48	5.48	0.40	1.80	±14.0%
5600	35.5	5.07	4.99	4.99	4.99	0.40	1.80	±14.0%
5800	35.3	5.27	4.95	4.95	4.95	0.40	1.80	±14.0%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the Frequency Validity above 3:00 MHz of ±1:00 MHz only applies for DASY v4.4 and higher (see Page z), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Figure 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Figure 14 Figure 15 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Figure 17 MHz is 9–19 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Figure 18 MHz is 9–19 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Figure 19 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

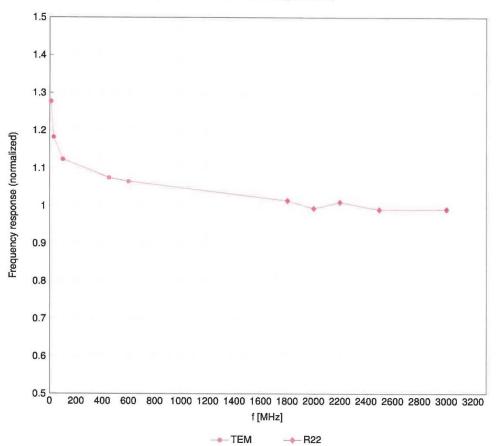
Figure 19 MHz is 9–19 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Figure 19 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Certificate No: EX-7506_Jun23 Page 5 of 9

for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

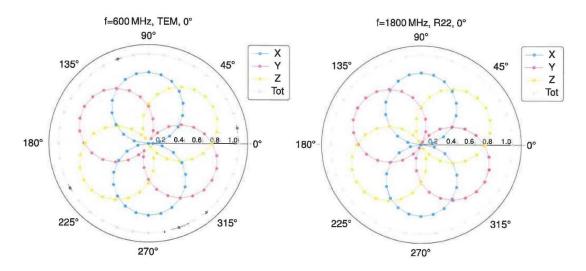


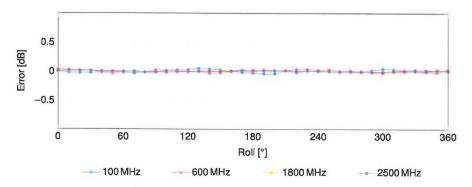
EX3DV4 - SN:7506

June 29, 2023

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)

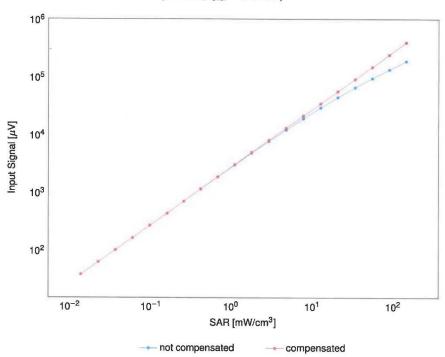

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

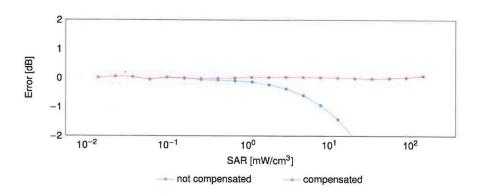

Certificate No: EX-7506_Jun23

Page 6 of 9

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

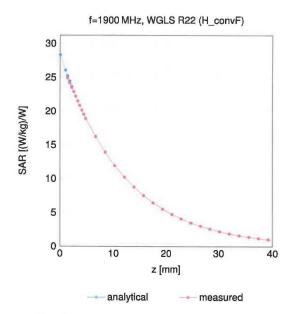
Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)


Certificate No: EX-7506_Jun23

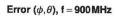

Page 7 of 9

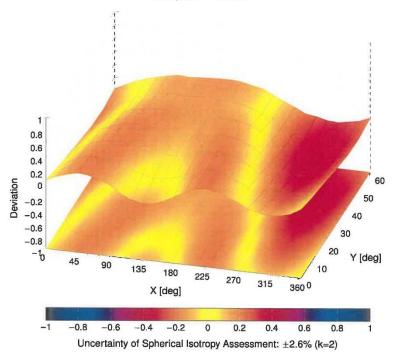
Dynamic Range f(SAR_{head})

(TEM cell, f_{eval} = 1900 MHz)


Uncertainty of Linearity Assessment: ±0.6% (k=2)

Certificate No: EX-7506_Jun23


Page 8 of 9



Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX-7506_Jun23

Page 9 of 9

F.2 Data Acquisition Electronics (DAE4 - SN:1711)

Add: No.52 Hua Yuan
Bei Road, Haidian District, Beijing, 100191, China Tel
: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client:

baluntek

Certificate No: 24J02Z000100

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1711

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx

Calibration date:

March 18, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID #

Cal Date(Calibrated by, Certificate No.)

Scheduled Calibration

Process Calibrator 753

1971018

12-Jun-23 (CTTL, No.J23X05436)

Jun-24

Calibrated by:

Name

Function

Signature

and we get the second and the second

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Jun

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: March 20, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z000100

Page 1 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: 24J02Z000100

Page 2 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	Z
High Range	404.486 ± 0.15% (k=2)	404.701 ± 0.15% (k=2)	404.373 ± 0.15% (k=2)
Low Range	3.99686 ± 0.7% (k=2)	4.00367 ± 0.7% (k=2)	3.98307 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	44° ± 1 °
---	-----------

Certificate No: 24J02Z000100

Page 3 of 3

F.3 2450 MHz Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Balun (Auden)

Certificate No: D2450V2-1062_Jul21

CALIBRATION CERTIFICATE

Object

D2450V2 - SN:1062

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

July 05, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
ID#	Check Date (in house)	Scheduled Check
SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
Name	Function	Signature
Jeffrey Katzman	Laboratory Technician	d. kts
		0.0
Katja Pokovic	Technical Manager	alle
	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Jeffrey Katzman	SN: 104778 09-Apr-21 (No. 217-03291/03292) SN: 103244 09-Apr-21 (No. 217-03291) SN: 103245 09-Apr-21 (No. 217-03292) SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) SN: 310982 / 06327 09-Apr-21 (No. 217-03344) SN: 7349 28-Dec-20 (No. EX3-7349_Dec20) SN: 601 02-Nov-20 (No. DAE4-601_Nov20) ID # Check Date (in house) SN: GB39512475 30-Oct-14 (in house check Oct-20) SN: US37292783 07-Oct-15 (in house check Oct-20) SN: MY41092317 07-Oct-15 (in house check Oct-20) SN: US41080477 31-Mar-14 (in house check Oct-20) Name Function Jeffrey Katzman Laboratory Technician

Issued: July 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-1062_Jul21

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-1062_Jul21

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.7 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$51.5 \Omega + 4.6 j\Omega$	
Return Loss	- 26.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.150 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-1062_Jul21

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 05.07.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1062

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 02.11.2020

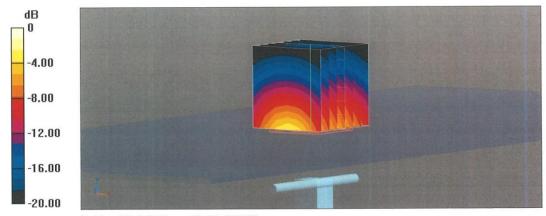
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

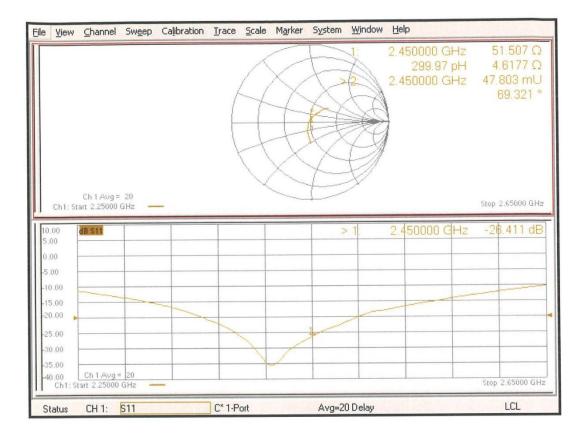
Reference Value = 119.4 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.41 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 50.1%


Maximum value of SAR (measured) = 23.1 W/kg

0 dB = 23.1 W/kg = 13.64 dBW/kg

Impedance Measurement Plot for Head TSL

D2450V2 Dipole impedance and return loss Validation

Meas. Results					
	Current Meas.	Previous Meas.	Max. Deviation		
Meas. Data	2023.07.04	2022.07.04	1		
Return Loss(dB)	-24.884	-25.242	-1.42%		
Impedance	51.917 Ω +5.492	51.458 Ω +4.235	1.257Ω		
Impedance	jΩ	jΩ	(Imaginary part)		
	Return Loss f	or Head TSL			
Tr1 S11 Log Mag 10.000					
>1 2.4500000	0 GHZ -24.884 dB				
40.00					
30.00					
20.00					
10.00					
0.000			•		
-10.00			1		
-20.00		1 V			
-30.00					
-40.00					
15155					
-50.00 T Start 2.25 GHz	IFBW 100) Hz	Stop 2.65 GHz Cor		
T SOURCE ELEG ONL	Impedance for	or Head TSI			
TT1 S11 Smith (R+jx)	Impedance fo	or Head TSL			
TT1 S11 Smith (R+jx) S		or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]	or Head TSL			
TT1 S11 Smith (R+jx) S	Scale 1.000u [F1]		Stop 2.65 GHz COT		

--END OF REPORT--