FCC Test Report Report No.: AGC08192190803FE03 FCC ID : QWH-MTHP-01 **APPLICATION PURPOSE** : Original Equipment **PRODUCT DESIGNATION** : Wireless Active Noise-Cancelling Headphones with Bluetooth* Connectivity **BRAND NAME** : N/A MODEL NAME NC-6602, HC 2000BNC, BBH2103, 39630093, KA98320-0200, HD2000NC, HP4000 **APPLICANT**: MUSIC Tribe Manufacturing PH Ltd **DATE OF ISSUE** : Aug. 29, 2019 **STANDARD(S)** : FCC Part 15.247 REPORT VERSION : V1.0 ## Attestation of Global Compliance (Shenzhen) Co., Ltd ## **CAUTION:** This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context. Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 2 of 68 ## REPORT REVISE RECORD | Report Version | Revise Time | Issued Date | Valid Version | Notes | |----------------|-------------|---------------|---------------|-----------------| | V1.0 | 1 | Aug. 29, 2019 | Valid | Initial Release | ## **TABLE OF CONTENTS** | 1. VERIFICATION OF CONFORMITY | | 5 | |--|-----------|----| | 2. GENERAL INFORMATION | | | | 2.1. PRODUCT DESCRIPTION | | 6 | | 2.2. TABLE OF CARRIER FREQUENCYS | | | | 2.3. RECEIVER INPUT BANDWIDTH | | 7 | | 2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MOI | DE | 7 | | 2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND E | BEHAVIOUR | 7 | | 2.6. RELATED SUBMITTAL(S) / GRANT (S) | | 8 | | 2.7. TEST METHODOLOGY | | | | 2.8. SPECIAL ACCESSORIES | | 8 | | 2.9. EQUIPMENT MODIFICATIONS | | 8 | | 3. MEASUREMENT UNCERTAINTY | | 9 | | 4. DESCRIPTION OF TEST MODES | | 10 | | 5. SYSTEM TEST CONFIGURATION | | 11 | | 5.1. CONFIGURATION OF EUT SYSTEM | | | | 5.2 EQUIPMENT USED IN TESTED SYSTEM | | | | 5.3. SUMMARY OF TEST RESULTS | | | | 6. TEST FACILITY | | 12 | | 7. PEAK OUTPUT POWER | | 13 | | 7.1. MEASUREMENT PROCEDURE | | 13 | | 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION CONFI | ION) | 13 | | 7.3. LIMITS AND MEASUREMENT RESULT | | 14 | | 8. 20DB BANDWIDTH | | | | 8.1. MEASUREMENT PROCEDURE | | 20 | | 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION CONFI | ION) | 20 | | 8.3. LIMITS AND MEASUREMENT RESULTS | | | | 9. CONDUCTED SPURIOUS EMISSION | | 27 | | 9.1. MEASUREMENT PROCEDURE | | 27 | | 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION CONFI | ION) | 27 | | 9.3. MEASUREMENT EQUIPMENT USED | | 27 | | 9.4. LIMITS AND MEASUREMENT RESULT | | |---|----| | 10. RADIATED EMISSION | | | 10.1. MEASUREMENT PROCEDURE | 37 | | 10.2. TEST SETUP | | | 10.3. LIMITS AND MEASUREMENT RESULT | 40 | | 10.4. TEST RESULT | 40 | | 11. NUMBER OF HOPPING FREQUENCY | 50 | | 11.1. MEASUREMENT PROCEDURE | 50 | | 11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 50 | | 11.3. MEASUREMENT EQUIPMENT USED | | | 11.4. LIMITS AND MEASUREMENT RESULT | | | 12. TIME OF OCCUPANCY (DWELL TIME) | 51 | | 12.1. MEASUREMENT PROCEDURE | 51 | | 12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 51 | | 12.3. MEASUREMENT EQUIPMENT USED | | | 12.4. LIMITS AND MEASUREMENT RESULT | | | 13. FREQUENCY SEPARATION | | | 13.1. MEASUREMENT PROCEDURE | 55 | | 13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 55 | | 13.3. MEASUREMENT EQUIPMENT USED | 55 | | 13.4. LIMITS AND MEASUREMENT RESULT | 55 | | 14. FCC LINE CONDUCTED EMISSION TEST | 56 | | 14.1. LIMITS OF LINE CONDUCTED EMISSION TEST | 56 | | 14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST | 56 | | 14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST | 57 | | 14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST | | | 14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST | 58 | | APPENDIX A: PHOTOGRAPHS OF TEST SETUP | 60 | | APPENDIX B: PHOTOGRAPHS OF EUT | 62 | ## 1. VERIFICATION OF CONFORMITY | 11 121111 107111011 01 01 | | | | |--|---|--|--| | Applicant MUSIC Tribe Manufacturing PH Ltd | | | | | Address | 17A Brunswick Street, Hamilton HM 10 Bermuda | | | | Manufacturer | iLike Electronics Co., Ltd. | | | | Address | Floor 1 and 2 of No. 2300267, 2300268, Ju Ling old village, Ju Tang
Community, Guanlan Street, Longhua New District, Shenzhen, China | | | | Factory | iLike Electronics Co., Ltd. | | | | Address | Floor 1 and 2 of No. 2300267, 2300268, Ju Ling old village, Ju Tang
Community, Guanlan Street, Longhua New District, Shenzhen, China | | | | Product Designation | Wireless Active Noise-Cancelling Headphones with Bluetooth* Connectivity | | | | Brand Name | N/A | | | | Test Model | NC-6602 | | | | Series Model | HC 2000BNC, BBH2103, 39630093, KA98320-0200, HD2000NC, HP4000 | | | | Difference description | All the same except for the model name | | | | Date of test | Aug. 12, 2019 to Aug. 26, 2019 | | | | Deviation | None | | | | Condition of Test Sample | Normal | | | | Test Result | Pass | | | | Report Template | AGCRT-US-BR/RF | | | | | | | | ## We hereby certify that: The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247. | Prepared By | NINI | | |-------------|-------------------------------------|---------------| | | Nini Guo
(Project Engineer) | Aug. 26, 2019 | | Reviewed By | Max Zhang | | | | Max Zhang
(Reviewer) | Aug. 29, 2019 | | Approved By | Forrest le | | | | Forrest Lei
(Authorized Officer) | Aug. 29, 2019 | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 6 of 68 ## 2. GENERAL INFORMATION ## 2.1. PRODUCT DESCRIPTION The EUT is designed as "Wireless Active Noise-Cancelling Headphones with Bluetooth* Connectivity". It is designed by way of utilizing the GFSK, Pi/4 DQPSK and 8DPSK technology to achieve the system operation. A major technical description of EUT is described as following | Operation Frequency 2.402 GHz to 2.480GHz | | | | |---|---|--|--| | RF Output Power | 3.745dBm(Max) | | | | Bluetooth Version | V 5.0 | | | | Modulation | BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps | | | | Number of channels | 79 | | | | Hardware Version | V2 | | | | Software Version | V1 | | | | Antenna Designation | PCB Antenna (Comply with requirements of the FCC part 15.203) | | | | Antenna Gain | -1.38dBi | | | | Power Supply | DC 3.7V by battery or DC 5V by adapter | | | ## 2.2. TABLE OF CARRIER FREQUENCYS | Frequency Band | Channel Number | Frequency | | |----------------|----------------|-----------|--| | 2.O | 0 | 2402MHZ | | | | 1 | 2403MHZ | | | | | | | | | 38 | 2440 MHZ | | | 2402~2480MHZ | 39 | 2441 MHZ | | | | 40 | 2442 MHZ | | | | | | | | | 77 | 2479 MHZ | | | | 78 | 2480 MHZ | | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Page 7 of 68 #### 2.3. RECEIVER INPUT BANDWIDTH The input bandwidth of the receiver is 1.3MHZ,In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence. #### 2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04 #### 2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR The generation of the hopping sequence in connection mode depends essentially on two input values: - 1. LAP/UAP of the master of the connection. - 2. Internal master clock The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations) are performed to generate te Sequence. This will be done at the beginning of every new transmission. Regarding short transmissions the Bluetooth system has the following ehavior: The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one. Page 8 of 68 ## 2.6. RELATED SUBMITTAL(S) / GRANT (S) This submittal(s) (test report) is intended for **FCC ID**: **QWH-MTHP-01** filling to comply with the FCC PART 15.247 requirements. #### 2.7. TEST METHODOLOGY Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters. ## 2.8. SPECIAL ACCESSORIES Refer to section 5.2. ## 2.9. EQUIPMENT MODIFICATIONS Not available for this EUT intended for grant. Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, ## 3. MEASUREMENT UNCERTAINTY The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. - Uncertainty of Conducted Emission, Uc = ±3.2 dB - Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB - Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB - Uncertainty of total RF power, conducted, Uc = ±0.8dB - Uncertainty of spurious emissions, conducted, Uc = ±2.7dB - Uncertainty of Occupied Channel Bandwidth: Uc = ±2 % - Uncertainty of Dwell Time: Uc = ±2 % - Uncertainty of Frequency: Uc = ±2 % ## 4. DESCRIPTION OF TEST MODES | NO. | TEST MODE DESCRIPTION | | | |-----|--------------------------|--|--| | 1 | Low channel GFSK | | | | 2 | Middle channel GFSK | | | | 3 | High channel GFSK | | | | 4 | Low channel π/4-DQPSK | | | | 5 | Middle channel π/4-DQPSK | | | | 6 | High channel π/4-DQPSK | | | | 8 7 | Low channel 8DPSK | | | | 8 | Middle channel 8DPSK | | | | 9 | High channel 8DPSK | | | | 10 | Hopping mode GFSK | | | | 11 | Hopping mode π/4-DQPSK | | | | 12 | Hopping mode 8DPSK | | | #### Note: - 1. Only the result of the worst case was recorded in the report, if no other cases. - 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode. - 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture. - 4. The test software is the Blue Test3 which can set the EUT into the individual test modes. Page 11 of 68 ## 5. SYSTEM TEST CONFIGURATION ## **5.1. CONFIGURATION OF EUT SYSTEM** Radiated Emission Configure: Conducted Emission Configure: ## **5.2 EQUIPMENT USED IN TESTED SYSTEM** | Item | Equipment | Model No. | ID or Specification | Remark | |------|--|----------------|---------------------|--------| | 30 | Wireless Active Noise-Cancelling Headphones with Bluetooth* Connectivity | NC-6602 | QWH-MTHP-01 | EUT | | 2 | Adapter | DYS602-050200W | DC 5V/2A | AE | ## **5.3. SUMMARY OF TEST RESULTS** | FCC RULES | DESCRIPTION OF TEST | RESULT | | |--------------------|-----------------------------|-----------|--| | 15.247 (b)(1) | Peak Output Power | Compliant | | | 15.247 (a)(1) | 20 dB Bandwidth | Compliant | | | 15.247 (d) | Conducted Spurious Emission | Compliant | | | 15.209 | Radiated Emission | Compliant | | | 15.247 (a)(1)(iii) | Number of Hopping Frequency | Compliant | | | 15.247 (a)(1)(iii) | Time of Occupancy | Compliant | | | 15.247 (a)(1) | Frequency Separation | Compliant | | | 15.207 | Conducted Emission | Compliant | | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Page 12 of 68 ## 6. TEST FACILITY | Test Site | Test Site Attestation of Global Compliance (Shenzhen) Co., Ltd 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China | | | |-----------------------------------|---|--|--| | Location | | | | | Designation Number CN1259 | | | | | FCC Test Firm Registration Number | 975832 | | | | A2LA Cert. No. | 5054.02 | | | | Description | Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA | | | ## TEST EQUIPMENT OF CONDUCTED EMISSION TEST | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |---------------|--------------|---------|--------|---------------|---------------| | TEST RECEIVER | R&S | ESPI | 101206 | Jun. 12, 2019 | Jun. 11, 2020 | | LISN | R&S | ESH2-Z5 | 100086 | Aug. 28, 2018 | Aug. 27, 2019 | ## **TEST EQUIPMENT OF RADIATED EMISSION TEST** | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |--------------------------------------|----------------|--------------|------------|---------------|---------------| | TEST RECEIVER | R&S | ESCI | 10096 | Jun. 12, 2019 | Jun. 11, 2020 | | EXA Signal
Analyzer | Aglient | N9010A | MY53470504 | Dec. 20, 2018 | Dec. 19, 2019 | | 2.4GHz Fliter | EM Electronics | 2400-2500MHz | N/A | Feb. 27, 2019 | Feb. 26, 2020 | | Attenuator | ZHINAN | E-002 | N/A | Aug. 28, 2018 | Aug. 27, 2019 | | Horn antenna | SCHWARZBECK | BBHA 9170 | #768 | Sep. 21, 2017 | Sep. 20, 2020 | | Active loop
antenna
(9K-30MHz) | ZHINAN | ZN30900C | 18051 | Jun. 14, 2018 | Jun. 13, 2020 | | Double-Ridged
Waveguide Horn | ETS LINDGREN | 3117 | 00034609 | May. 26, 2018 | May. 25, 2020 | | Broadband
Preamplifier | ETS LINDGREN | 3117PA | 00225134 | Oct. 25, 2018 | Oct. 24, 2019 | | ANTENNA | SCHWARZBECK | VULB9168 | D69250 | Sep. 28, 2017 | Sep. 27, 2019 | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, ## 7. PEAK OUTPUT POWER #### 7.1. MEASUREMENT PROCEDURE For peak power test: - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. - 3. RBW > 20 dB bandwidth of the emission being measured. - 4. VBW ≥RBW. - 5. Sweep: Auto. - 6. Detector function: Peak. - 7. Trace: Max hold. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables. ## 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) #### **PEAK POWER TEST SETUP** ## 7.3. LIMITS AND MEASUREMENT RESULT | PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION | | | | |---|---------------------|-------------------------|--------------| | Frequency
(GHz) | Peak Power
(dBm) | Applicable Limits (dBm) | Pass or Fail | | 2.402 | 1.825 | 30 | Pass | | 2.441 | 2.732 | 30 | Pass | | 2.480 | 2.538 | 30 | Pass | ## CH₀ Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, #### **CH39** #### **CH78** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 | FOR II /4-DQPSK MODULATION | | | | |----------------------------|---------------------|-------------------------|--------------| | Frequency
(GHz) | Peak Power
(dBm) | Applicable Limits (dBm) | Pass or Fail | | 2.402 | -0.507 | 30 | Pass | | 2.441 | 2.046 | 30 | Pass | | 2.480 | 3.361 | 30 | Pass | #### CH₀ #### **CH39** #### **CH78** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China PEAK OUTPUT POWER MEASUREMENT RESULT FOR 8-DPSK MODULATION **Frequency Peak Power Applicable Limits** Pass or Fail (dBm) (GHz) (dBm) -0.0712.402 30 **Pass** 2.463 30 2.441 **Pass** 3.745 30 2.480 **Pass** ## CH0 #### **CH39** #### **CH78** Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 Page 20 of 68 ## 8. 20DB BANDWIDTH ## **8.1. MEASUREMENT PROCEDURE** - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually. - 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak - 4. Set SPA Trace 1 Max hold, then View. ## 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) #### **8.3. LIMITS AND MEASUREMENT RESULTS** | MEASUREMENT RESULT FOR GFSK MOUDULATION | | | | |---|--------------------|---------|----------| | Amuliant la Limita | Measurement Result | | lt | | Applicable Limits | Test Data | ı (MHz) | Criteria | | N/A | Low Channel | 0.9476 | PASS | | | Middle Channel | 0.9457 | PASS | | | High Channel | 0.9498 | PASS | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 #### TEST PLOT OF BANDWIDTH FOR LOW CHANNEL #### TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China #### TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL | MEASUREMENT RESULT FOR ∏ /4-DQPSK MODULATION | | | | |--|----------------|------------------|----------| | Annii aalaa Limita | | Measurement Resu | t | | Applicable Limits | Test Data | (MHz) | Criteria | | NO GO | Low Channel | 1.229 | PASS | | N/A | Middle Channel | 1.227 | PASS | | -,C | High Channel | 1.236 | PASS | ## TEST PLOT OF BANDWIDTH FOR LOW CHANNEL #### TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL #### TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China | MEASUREMENT RESULT FOR 8-DPSK MODULATION | | | | | |--|----------------|--------------------|----------|--| | Applicable Limits | | Measurement Result | | | | | Test Data | (MHz) | Criteria | | | N/A | Low Channel | 1.257 | PASS | | | | Middle Channel | 1.258 | PASS | | | | High Channel | 1.261 | PASS | | ## TEST PLOT OF BANDWIDTH FOR LOW CHANNEL #### TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL #### TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Page 27 of 68 ## 9. CONDUCTED SPURIOUS EMISSION ## 9.1. MEASUREMENT PROCEDURE - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually. - 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak. - 4. Set SPA Trace 1 Max hold, then View. ## 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) The same as described in section 8.2 #### 9.3. MEASUREMENT EQUIPMENT USED The same as described in section 6 #### 9.4. LIMITS AND MEASUREMENT RESULT | LIMITS AND MEASUREMENT RESULT | | | | | |--|---|------|--|--| | A | Measurement Result | | | | | Applicable Limits | Test Data Ci | | | | | In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum | At least -20dBc than the limit Specified on the BOTTOM | PASS | | | | intentional radiator is operating, the radio frequency | Channel | | | | | power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the | At least -20dBc than the limit Specified on the TOP Channel | PASS | | | | restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified n§15.209(a)) | | | | | Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China #### **TEST RESULT FOR ENTIRE FREQUENCY RANGE** TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF GFSK MODULATION IN LOW CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China ## TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China ## TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit. The GFSK modulation is the worst case and only those data recorded in the report. Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118 ### **TEST RESULT FOR BAND EDGE** ## GFSK MODULATION IN LOW CHANNEL Hopping off ### Hopping on Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China ## GFSK MODULATION IN HIGH CHANNEL Hopping off ## Hopping on Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China ## π /4-DQPSK MODULATION IN LOW CHANNEL Hopping off ## Hopping on Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China ## π /4-DQPSK MODULATION IN HIGH CHANNEL Hopping off ## Hopping on Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China ## 8-DPSK MODULATION IN LOW CHANNEL Hopping off ## Hopping on Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China