

### **Gold Light Toys Factory**

## **TEST REPORT**

SCOPE OF WORK FCC TESTING- MODEL: 33568A20106

REPORT NUMBER GZHH00356805-001

ISSUE DATE APR 29, 2020

**PAGES** 24

DOCUMENT CONTROL NUMBER FCC ID 249\_C © 2017 INTERTEK





#### **Gold Light Toys Factory**

#### Application for Certification

#### FCC ID: QW9JG2020A24GT

#### **Drone DX 5inch Stunt**

#### Model: 33568A20106

2.4GHz Transmitter

#### Report No.: GZHH00356805-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-19]

Prepared and Checked by:

Approved by:

Sign on file

Terry Tang Senior Engineer *Kidd Yang Technical Supervisor Date: Apr 29, 2020* 

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

#### Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

Version: 01-November-2017



#### **MEASUREMENT/TECHNICAL REPORT**

| This report concerns (che                                                                                                                                                                                                                                                                         | eck one:)                                                                | Original Grant _    | <u>X</u>  | Class II C | Change         |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------|-----------|------------|----------------|--|--|--|--|--|
| Equipment Type: <u>DXX - F</u>                                                                                                                                                                                                                                                                    | Equipment Type: DXX - Part 15 Low Power Communication Device Transmitter |                     |           |            |                |  |  |  |  |  |
| Deferred grant requested                                                                                                                                                                                                                                                                          | per 47 CFR (                                                             | 0.457(d)(1)(ii)?    | Yes       |            | No <u>X</u>    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                   | If yes, defer until:date                                                 |                     |           |            |                |  |  |  |  |  |
| Company Name agrees t                                                                                                                                                                                                                                                                             | o notify the Co                                                          | ommission by:       |           |            |                |  |  |  |  |  |
| date<br>of the intended date of announcement of the product so that the grant can be issued on that<br>date.                                                                                                                                                                                      |                                                                          |                     |           |            |                |  |  |  |  |  |
| Transition Rules Request                                                                                                                                                                                                                                                                          | : per 15.37?                                                             |                     | Yes       |            | No <u>X</u>    |  |  |  |  |  |
| If no, assumed Part 15,<br>Edition] provision.                                                                                                                                                                                                                                                    | Subpart C f                                                              | for intentional rad | iator – t | he new 47  | ' CFR [10-1-19 |  |  |  |  |  |
| Report prepared by:                                                                                                                                                                                                                                                                               |                                                                          |                     |           |            |                |  |  |  |  |  |
| Report prepared by:<br>Terry Tang<br>Intertek Testing Services Shenzhen Ltd. Longhua Branch<br>101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing<br>Community GuanHu Subdistrict, LongHua District, Shenzhen<br>People's Republic of China<br>Tel / Fax: 86-755-8601 6288/86-755-8601 6751 |                                                                          |                     |           |            |                |  |  |  |  |  |



#### **Table of Contents**

| 1.0 Summary of Test Result                                                                                                                                                                                                        | . 4                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2.0 General Description                                                                                                                                                                                                           | . 5                  |
| <ul> <li>2.1 Product Description</li> <li>2.2 Related Submittal(s) Grants</li> <li>2.3 Test Methodology</li> <li>2.4 Test Facility</li> </ul>                                                                                     | . 5<br>. 5<br>. 5    |
| 3.0 System Test Configuration                                                                                                                                                                                                     | . 6                  |
| <ul> <li>3.1 Justification</li></ul>                                                                                                                                                                                              | .6<br>.6<br>.6<br>.6 |
| 4.0 Emission Results                                                                                                                                                                                                              | . 7                  |
| <ul> <li>4.1 Radiated Test Results</li> <li>4.1.1 Field Strength Calculation</li> <li>4.1.2 Radiated Emission Configuration Photograph</li> <li>4.1.3 Radiated Emissions</li> <li>4.1.4 Transmitter Spurious Emissions</li> </ul> | .7<br>.8<br>.8       |
| 5.0 Equipment Photographs                                                                                                                                                                                                         | 15                   |
| 6.0 Product Labelling                                                                                                                                                                                                             | 15                   |
| 7.0 Technical Specifications                                                                                                                                                                                                      | 15                   |
| 8.0 Instruction Manual                                                                                                                                                                                                            | 15                   |
| 9.0 Miscellaneous Information                                                                                                                                                                                                     | 16                   |
| <ul> <li>9.1 Bandedge Plot</li></ul>                                                                                                                                                                                              | 18<br>19<br>19       |
| 10.0 Test Equipment List                                                                                                                                                                                                          | 24                   |



#### 1.0 Summary of Test Result

Applicant: Gold Light Toys Factory Applicant Address: Gangxia Road, Pumei ChengHai City, China

Manufacturer: Gold Light Toys Factory Manufacturer Address: Gangxia Road, Pumei ChengHai City, China

MODEL: 33568A20106

FCC ID: QW9JG2020A24GT

| Test Specification            | Reference              | Results |
|-------------------------------|------------------------|---------|
| Transmitter Radiated Emission | 15.249 &15.209 &15.205 | Pass    |
| Bandedge                      |                        |         |
| 20dB Bandwidth                | 15.215(c)              | Pass    |

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.



#### 2.0 <u>General Description</u>

2.1 Product Description

The equipment under test (EUT) is a Drone DX 5inch Stunt operating at 2.4G Band. The EUT can be powered by DC 9.0V (6 x 1.5V AA batteries). For more detail information pls. refer to the user manual.

Antenna Type: Integral antenna Modulation Type: GFSK Antenna Gain: 0dBi

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of controller unit for the Drone DX 5inch Stunt, and the corresponding car unit which associated with this EUT is subjected to FCC SDOC.

2.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in Semi-anechoic chamber. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

2.4 Test Facility

The Semi-anechoic chamber used to collect the radiated data is **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community GuanHu Subdistrict, LongHua District, Shenzhen, People's Republic of China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: CN1188).



#### 3.0 System Test Configuration

#### 3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by DC 9.0V (6 x 1.5V AA batteries) during the test, only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the centre of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

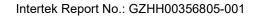
The EUT was operated standalone and placed in the central of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

There was no special software to exercise the device.

3.3 Special Accessories


No special accessories used.

3.4 Equipment Modification Any modifications installed previous to testing by Gold Light Toys Factory will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd Longhua Branch.

- 3.5 Measurement Uncertainty When determining the test conclusion, the Measurement Uncertainty of test has been considered.
- 3.6 Support Equipment List and Description

| Description | Manufacturer | Model No. |
|-------------|--------------|-----------|
| N/A         | N/A          | N/A       |





#### 4.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in  $dB\mu V/m$  RA = Receiver Amplitude (including preamplifier) in  $dB\mu V$  CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dB PD = Pulse Desensitization in dBAV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

RA =  $62.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB FS =  $62 + 7.4 + 1.6 - 29 + 0 = 42 \text{ dB}\mu\text{V/m}$ 

Level in  $\mu$ V/m = Common Antilogarithm [(42 dB $\mu$ V/m)/20] = 125.9  $\mu$ V/m



#### 4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

#### 4.1.3 Radiated Emissions

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

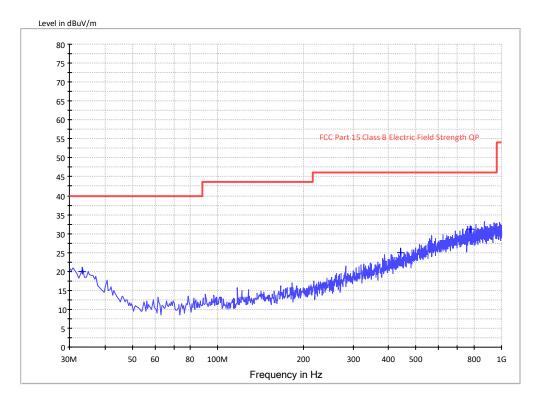
Worst Case Radiated Emission at 826.615000 MHz

Judgement: Passed by 13.5 dB

#### TEST PERSONNEL:

Sign on file

<u>Terry Tang, Senior Engineer</u> *Typed/Printed Name* 


<u>Apr 21, 2020</u> Date



#### Applicant: Gold Light Toys Factory Date of Test: Apr 21, 2020 Worst Case Operating Mode:

Model: 33568A20106 Transmitting(2404.000MHz)

#### ANT Polarity: Horizontal



| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Polarization | Corr.<br>(dB) | Margin<br>- QPK<br>(dB) | Limit -<br>QPK<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|--------------|---------------|-------------------------|----------------------------|
| 32.955000          | 19.3                  | 1000.0                | 120.000            | Н            | 17.3          | 20.7                    | 40.0                       |
| 442.125000         | 25.2                  | 1000.0                | 120.000            | Н            | 9.8           | 20.8                    | 46.0                       |
| 781.055000         | 31.1                  | 1000.0                | 120.000            | Н            | 24.4          | 14.9                    | 46.0                       |

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dBµV/m) Level (dBµV/m)



#### Applicant: Gold Light Toys Factory Date of Test: Apr 21, 2020 Worst Case Operating Mode:

Model: 33568A20106 Transmitting(2404.000MHz)

#### ANT Polarity: Vertical



| Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Polarization | Corr.<br>(dB) | Margin<br>- QPK<br>(dB) | Limit -<br>QPK<br>(dBuV/m) |
|--------------------|-----------------------|-----------------------|--------------------|--------------|---------------|-------------------------|----------------------------|
| 38.380000          | 17.1                  | 1000.0                | 120.000            | V            | 16.1          | 22.9                    | 40.0                       |
| 143.220000         | 17.9                  | 1000.0                | 120.000            | V            | 15.4          | 25.6                    | 43.5                       |
| 826.615000         | 32.5                  | 1000.0                | 120.000            | V            | 22.1          | 13.5                    | 46.0                       |

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Limit Line(dB $\mu$ V/m) Level (dB $\mu$ V/m)



#### 4.1.4 Transmitter Spurious Emissions (Radiated)

#### Worst Case Radiated Emission at 2400.000 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 8.4 dB

#### TEST PERSONNEL:

Sign on file

Terry Tang, Senior Engineer Typed/Printed Name

<u>Apr 21, 2020</u> Date



#### Applicant: Gold Light Toys Factory Date of Test: Apr 21, 2020 Worst Case Operating Mode:

Model: 33568A20106 Transmitting

#### Table 1

|              | Radiated Emissions<br>(2404 MHz) |                   |                             |                           |                          |                                 |                |  |  |  |
|--------------|----------------------------------|-------------------|-----------------------------|---------------------------|--------------------------|---------------------------------|----------------|--|--|--|
| Polarization | Frequency<br>(MHz)               | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |  |  |  |
| Horizontal   | 2404.000                         | 99.0              | 36.7                        | 28.1                      | 90.4                     | 114.0                           | -23.6          |  |  |  |
| Horizontal   | 4808.000                         | 59.3              | 36.7                        | 35.5                      | 58.1                     | 74.0                            | -15.9          |  |  |  |
| Horizontal   | 7212.000                         | 59.2              | 36.7                        | 35.5                      | 58.0                     | 74.0                            | -16.0          |  |  |  |

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Average<br>Factor<br>(-dB) | Net at 3m<br>(dBµV/m) | Average<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|----------------------------|-----------------------|---------------------------------------|----------------|
| Horizontal   | 2404.000           | 99.0              | 36.7                        | 28.1                      | 23.9                       | 66.5                  | 94.0                                  | -27.5          |
| Horizontal   | 4808.000           | 59.3              | 36.7                        | 35.5                      | 23.9                       | 34.2                  | 54.0                                  | -19.8          |
| Horizontal   | 7212.000           | 59.2              | 36.7                        | 35.5                      | 23.9                       | 34.1                  | 54.0                                  | -19.9          |

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.



#### Applicant: Gold Light Toys Factory Date of Test: Apr 21, 2020 Worst Case Operating Mode:

Model: 33568A20106 Transmitting

#### Table 2

#### Radiated Emissions

|              | (2440 MHz)         |                   |                             |                           |                          |                                 |                |  |  |  |  |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|---------------------------------|----------------|--|--|--|--|
| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |  |  |  |  |
| Horizontal   | 2440.000           | 98.8              | 36.7                        | 28.1                      | 90.2                     | 114.0                           | -23.8          |  |  |  |  |
| Horizontal   | 4880.000           | 58.4              | 36.7                        | 35.5                      | 57.2                     | 74.0                            | -16.8          |  |  |  |  |
| Horizontal   | 7320.000           | 58.6              | 36.7                        | 35.5                      | 57.4                     | 74.0                            | -16.6          |  |  |  |  |

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Average<br>Factor<br>(-dB) | Net at 3m<br>(dBµV/m) | Average<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|----------------------------|-----------------------|---------------------------------------|----------------|
| Horizontal   | 2440.000           | 98.8              | 36.7                        | 28.1                      | 23.9                       | 66.3                  | 94.0                                  | -27.7          |
| Horizontal   | 4880.000           | 58.4              | 36.7                        | 35.5                      | 23.9                       | 33.3                  | 54.0                                  | -20.7          |
| Horizontal   | 7320.000           | 58.6              | 36.7                        | 35.5                      | 23.9                       | 33.5                  | 54.0                                  | -20.5          |

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.



Polarization

Margin

#### Applicant: Gold Light Toys Factory Date of Test: Apr 21, 2020 Worst Case Operating Mode:

Model: 33568A20106 Transmitting

#### Table 3

# Radiated Emissions<br/>(2476 MHz)Frequency<br/>(MHz)Reading<br/>(dBµV)Pre-<br/>Amp<br/>GainNet<br/>(dBµV)Peak Limit<br/>at 3m<br/>(dBµV/m)

|            | (MHZ)    | (dBhA) | Amp<br>Gain<br>(dB) | Factor<br>(dB) | at 3m<br>(dBµV/m) | at 3m<br>(dBµV/m) | (dB)  |
|------------|----------|--------|---------------------|----------------|-------------------|-------------------|-------|
| Horizontal | 2476.000 | 100.0  | 36.7                | 28.1           | 91.4              | 114.0             | -22.6 |
| Horizontal | 4952.000 | 58.9   | 36.7                | 35.5           | 57.7              | 74.0              | -16.3 |
| Horizontal | 7428.000 | 58.4   | 36.7                | 35.5           | 57.2              | 74.0              | -16.8 |

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Average<br>Factor<br>(-dB) | Net at 3m<br>(dBµV/m) | Average<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|----------------------------|-----------------------|---------------------------------------|----------------|
| Horizontal   | 2476.000           | 100.0             | 36.7                        | 28.1                      | 23.9                       | 67.5                  | 94.0                                  | -26.5          |
| Horizontal   | 4952.000           | 58.9              | 36.7                        | 35.5                      | 23.9                       | 33.8                  | 54.0                                  | -20.2          |
| Horizontal   | 7428.000           | 58.4              | 36.7                        | 35.5                      | 23.9                       | 33.3                  | 54.0                                  | -20.7          |

Notes: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.



#### 5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

#### 6.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

#### 7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

#### 8.0 Instruction Manual

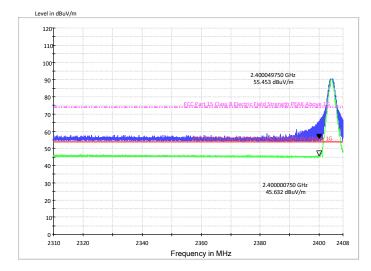
For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.



#### 9.0 <u>Miscellaneous Information</u>

This miscellaneous information includes details of the measured bandedge, 20dB Bandwidth, the test procedure and calculation of factor such as pulse desensitization.

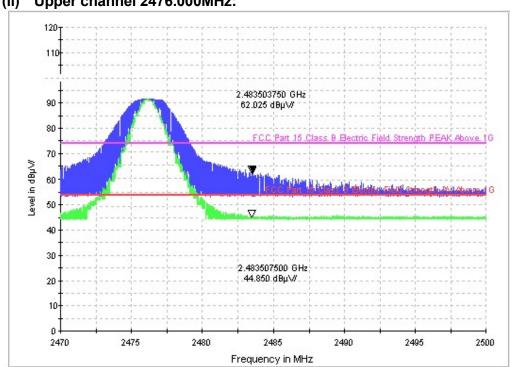

#### 9.1 Bandedge Plot

The test plots are attached as below. From the plot, the field strength of any emissions outside of the specified frequency band are attenuated to the general radiated emission limits in section 15.209. It fulfils the requirement of 15.249(d).

#### Peak Measurement

Restricted-band band-edge tests shall be performed as radiated measurements, i.e (Band-edge Plot).

#### (i) Lower channel 2404.000 MHz:




| Polarizatio | n Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|-------------|----------------------|-------------------|-----------------------------|---------------------------|--------------------------|------------------------------------|----------------|
| Horizonta   | I 2400.000           | 64.1              | 36.7                        | 28.1                      | 55.5                     | 74.0                               | -18.5          |

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Average<br>Limit<br>at 3m<br>(dBµV/m | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|--------------------------------------|----------------|
| Horizontal   | 2400.000           | 54.2              | 36.7                        | 28.1                      | 45.6                     | 54.0                                 | -8.4           |

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).





#### (ii) Upper channel 2476.000MHz:

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Peak<br>Limit<br>at 3m<br>(dBµV/m) | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|------------------------------------|----------------|
| Horizontal   | 2483.500           | 69.7              | 36.8                        | 29.1                      | 62.0                     | 74.0                               | -12.0          |

| Polarization | Frequency<br>(MHz) | Reading<br>(dBµV) | Pre-<br>Amp<br>Gain<br>(dB) | Antenna<br>Factor<br>(dB) | Net<br>at 3m<br>(dBµV/m) | Average<br>Limit<br>at 3m<br>(dBµV/m | Margin<br>(dB) |
|--------------|--------------------|-------------------|-----------------------------|---------------------------|--------------------------|--------------------------------------|----------------|
| Horizontal   | 2483.500           | 52.6              | 36.8                        | 29.1                      | 44.9                     | 54.0                                 | -9.1           |

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).



#### 9.2 20dB Bandwidth

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered. The test plots are reported as below.

| Spectrur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Ref Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBuV                        | <b>●</b> F                                | RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (•)                                                           |
| Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           | <b>/BW</b> 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mode Auto FFT                                                           |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| ⊖1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1[1]                                                                   |     | 83.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dBµV                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     | 2.404130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |
| 90 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ndB                                                                     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 dB                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DW                                                                      |     | 1.31700000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
| 80 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           | ∧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q factor                                                                |     | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 825.6                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 70 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           | - d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           | TĮ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>t</u> 2                                                              |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 60 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           | n I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 00 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | -                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (h                                                                      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 50 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Vm                                                                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 50 apps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | ~J 7                                      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 1                                                                     | Lp_ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 40 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $h/\sim$                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | λ                                                             |
| 30 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 30 ubµv—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 00 40.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 20 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 10 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 10 dBµV—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| CF 2.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                           | 691 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s                                                                       |     | Span 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MHZ                                                           |
| Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| Type Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X-value                     |                                           | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Function                                                                | Fun | ction Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |
| M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4041                      |                                           | 83.44 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ndB down                                                                |     | 1.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |
| T1<br>T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4041<br>2.4034<br>2.40476 | 15 GHz                                    | 83.44 dBµV<br>63.05 dBµV<br>63.19 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB down<br>ndB<br>Q factor                                             |     | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB<br>25.6                                                  |
| T1<br>T2<br>Spectrun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br><b>CBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndB<br>Q factor                                                         |     | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB<br>25.6                                                  |
| T1<br>T2<br>Spectrun<br>Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ndB                                                                     |     | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB<br>25.6                                                  |
| T1<br>T2<br>Spectrun<br>Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br><b>CBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndB<br>Q factor<br>Mode Auto FF1                                        | -   | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB<br>25.6                                                  |
| T1<br>T2<br>Spectrun<br>Ref Level<br>Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br><b>CBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndB<br>Q factor                                                         | -   | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB<br>25.6<br>▼                                             |
| T1<br>T2<br>Spectrun<br>Ref Level<br>Att<br>) IPk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br><b>CBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndB<br>Q factor<br>Mode Auto FF1                                        |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>↓ dBµ\<br>50 GH:<br>.00 dE               |
| T1<br>T2<br>Spectrun<br>Ref Level<br>Att<br>) IPk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1<br>T2<br>Spectrun<br>Ref Level<br>Att<br>)1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br><b>CBW</b> 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ndB<br>Q factor<br>Mode Auto FFT<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1<br>T2<br>Spectrun<br>Ref Level<br>Att<br>)1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1<br>T2<br>Spectrum<br>Ref Level<br>Att<br>11Pk Max<br>20 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1<br>T2<br>Spectrum<br>Ref Level<br>Att<br>11Pk Max<br>20 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1           T2           Spectrun           Ref Level           Att           10 dBµV           10 dBµV           10 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | •5 GHz<br>57 GHz                          | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1           T2           Spectrun           Ref Level           Att           11Pk Max           00 dBµV           30 dBµV           70 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1           T2           Spectrun           Ref Level           Att           11Pk Max           10 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1           T2           Spectrun           Ref Level           Att           11Pk Max           10 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1           T2           Spectrun           Ref Level           Att           10 dBµV           10 dBµV           10 dBµV           10 dBµV           10 dBµV           10 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1           T2           Spectrun           Ref Level           Att           11Pk Max           30 dBµV           70 dBµV           30 dBµV           30 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1           T2           Spectrun           Ref Level           Att           Att           NO dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH:<br>.00 dB<br>0 MH:      |
| T1           T2           Spectrun           Ref Level           Att           11Pk Max           30 dBµV           30 dBµV           50 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  | ·   | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1           T2           Spectrun           Ref Level           Att           D1Pk Max           30 dBµV           30 dBµV           70 dBµV           50 dBµV           50 dBµV           50 dBµV           30 dBµV           30 dBµV           30 dBµV           30 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1           T2           Spectrun           Ref Level           Att           D1Pk Max           30 dBµV           30 dBµV           70 dBµV           50 dBµV           50 dBµV           50 dBµV           30 dBµV           30 dBµV           30 dBµV           30 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>₩<br>0 GHz<br>.00 dE<br>0 MHz                 |
| T1           T2           Spectrun           Ref Level           Att           90 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  | ·   | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1           T2           Spectrun           Ref Level           Att           90 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1           T2           Spectrun           Ref Level           Att           Att           NO dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>1<br>102.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>M1[1]<br>ndB<br>Bw                  |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>▼<br>• dBµ\<br>50 GH<br>.00 dE<br>0 MH        |
| T1           T2           Spectrun           Ref Level           Att           D1Pk Max           30 dBµV           30 dBµV           70 dBµV           50 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>/BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ndB<br>Q factor<br>Mode Auto FF1<br>                                    |     | 20.0<br>182<br>80.14<br>2.476145<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 dB<br>25.6<br>↓ dBµ\<br>0 GH;<br>0 0 dE<br>0 0 HH;<br>972.; |
| T1           T2           Spectrun           Ref Level           Att           91Pk Max           30 dBµV           30 dBµV           50 dBµV           50 dBµV           50 dBµV           50 dBµV           50 dBµV           50 dBµV           10 dBµV           20 dBµV           10 dBµV           CF 2.476 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>7BW 300 kHz<br>100 kHz<br>100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndB<br>Q factor<br>Mode Auto FF1<br>                                    |     | 20.0<br>182<br>80.14<br>2.476145<br>20<br>2.54700000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB<br>25.6                                                  |
| T1           T2           Spectrun           Ref Level           Att           91Pk Max           90 dBµV           90 dBµV           90 dBµV           70 dBµV           70 dBµV           90 dBµV </td <td>1<br/>102.00 d<br/>11</td> <td>2.4034<br/>2.40476<br/>ВµV</td> <td>45 GHz<br/>17 GHz<br/>● R<br/>.9 μs ● V</td> <td>63.05 dBµV<br/>63.19 dBµV<br/>8BW 100 kHz<br/>7BW 300 kHz<br/>100 kHz<br/>100 kHz</td> <td>ndB<br/>Q factor<br/>Mode Auto FF1<br/></td> <td></td> <td>20.0<br/>182<br/>80.14<br/>2.476145<br/>20<br/>2.54700000</td> <td>0 dB<br/>25.6</td>                                                              | 1<br>102.00 d<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4034<br>2.40476<br>ВµV    | 45 GHz<br>17 GHz<br>● R<br>.9 μs ● V      | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>7BW 300 kHz<br>100 kHz<br>100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndB<br>Q factor<br>Mode Auto FF1<br>                                    |     | 20.0<br>182<br>80.14<br>2.476145<br>20<br>2.54700000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 dB<br>25.6                                                  |
| T1           T2           Spectrun           Ref Level           Att           91Pk Max           90 dBµV           30 dBµV           50 dBµV           50 dBµV           50 dBµV           50 dBµV           40 dBµV           50 dBµV           50 dBµV           50 dBµV           60 dBµV           70 dBµV           60 dBµV           70 dBµV </td <td>1<br/>102.00 d<br/>11</td> <td>2.4034<br/>2.40476</td> <td>5 GHZ</td> <td>63.05 dBµV<br/>63.19 dBµV<br/>8BW 100 kHz<br/>7BW 300 kHz<br/>M1<br/>M1<br/>M1<br/>691 pt<br/>691 pt<br/>7-value<br/>80.14 dBµV</td> <td>ndB<br/>Q factor<br/>Mode Auto FF1<br/></td> <td></td> <td>20.0<br/>182<br/>80.14<br/>2.476145<br/>20<br/>2.54700000<br/>2.54700000<br/>5900000<br/>5900000000000000000000000</td> <td>0 dB<br/>25.6</td> | 1<br>102.00 d<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4034<br>2.40476           | 5 GHZ                                     | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>7BW 300 kHz<br>M1<br>M1<br>M1<br>691 pt<br>691 pt<br>7-value<br>80.14 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ndB<br>Q factor<br>Mode Auto FF1<br>                                    |     | 20.0<br>182<br>80.14<br>2.476145<br>20<br>2.54700000<br>2.54700000<br>5900000<br>5900000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 dB<br>25.6                                                  |
| T1           T2           Spectrun           Ref Level           Att           D1Pk Max           30 dBµV           30 dBµV           70 dBµV           50 dBµV           50 dBµV           30 dBµV           30 dBµV           30 dBµV           30 dBµV           30 dBµV           30 dBµV           10 dBµV           20 dBµV           10 dBµV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>102.00 d<br>11<br>102.00 d<br>102.00 d<br>11<br>102.00 d<br>11<br>102.00 d<br>11<br>102.00 d<br>102.00 d<br>11<br>102.00 d<br>102.00 | 2.4034<br>2.40476           | 5 GHz<br>5 GHz<br>5 GHz<br>5 GHz<br>8 GHz | 63.05 dBµV<br>63.19 dBµV<br>8BW 100 kHz<br>7BW 300 kHz<br>9DW 300 | ndB<br>Q factor<br>Mode Auto FF1<br>——————————————————————————————————— |     | 20.0<br>182<br>80.14<br>2.47614<br>20<br>2.54700000<br>2.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.54700000<br>5.547000000<br>5.547000000<br>5.547000000<br>5.54700000000000000000000000000000000000 | 0 dB<br>25.6                                                  |



#### 9.3 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period ( $T_{eff}$ ) is approximately 478.3µs for a digital "1" bit, as shown in the plots of Section 9.4 With a resolution bandwidth (3 dB) of 100 kHz, the pulse desensitivity factor was 0 dB

9.4 Calculation of Average Factor

Averaging factor in  $dB = 20 \log (duty cycle)$ 

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 7.4783ms Effective period of the cycle =  $478.3\mu$ s = 0.4783ms DC = 0.4783ms / 7.4783ms = 0.0640 or 6.40%

Therefore, the averaging factor is found by  $20 \log_{10} (0.0640) = -23.9 dB$ 

The test plots are attached as below.



| Kel Level 10%                                                                                                                                                                                                                                                                                                  | 2.00 dBµV          |          |          | 🗑 RBW    | 3 MHz          |              |          |       |           |           |                  | ( )                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|----------|----------|----------------|--------------|----------|-------|-----------|-----------|------------------|---------------------------------------|
| Att                                                                                                                                                                                                                                                                                                            |                    | 💩 SWT    |          |          |                |              |          |       |           |           |                  |                                       |
| SGL<br>1Pk Max                                                                                                                                                                                                                                                                                                 |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| IPK Max                                                                                                                                                                                                                                                                                                        |                    |          |          |          |                |              |          |       |           | -         |                  |                                       |
|                                                                                                                                                                                                                                                                                                                | l l                |          |          |          |                |              |          |       |           |           |                  |                                       |
| 0 dBµV                                                                                                                                                                                                                                                                                                         |                    |          | -        | 0        |                |              |          | -0    |           |           | 0                |                                       |
|                                                                                                                                                                                                                                                                                                                |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| O dBµV                                                                                                                                                                                                                                                                                                         | _                  |          |          |          |                | _            | <u> </u> |       |           |           | _                |                                       |
|                                                                                                                                                                                                                                                                                                                |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| 0 dBµV                                                                                                                                                                                                                                                                                                         | -                  | -        |          | -        | -              | _            | -        |       | -         |           |                  | -                                     |
|                                                                                                                                                                                                                                                                                                                |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| 0 dBµV                                                                                                                                                                                                                                                                                                         |                    | -        |          |          | -              |              |          |       | -         |           |                  |                                       |
|                                                                                                                                                                                                                                                                                                                |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| 0 dBµV                                                                                                                                                                                                                                                                                                         |                    | 1        |          |          | u              |              |          |       |           |           |                  |                                       |
|                                                                                                                                                                                                                                                                                                                | man                | Ilmonder | Withhata | J humber | Mulbourse      | in hunderhad | Allindul | monen | al house  | mulu      | Undre            | bower has be                          |
| 0 dBµV                                                                                                                                                                                                                                                                                                         |                    |          |          |          |                |              |          |       |           |           |                  | 0                                     |
| and the second                                                                                                                                                                                                                                                                                                 |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| 0 dBµV                                                                                                                                                                                                                                                                                                         |                    |          | 65       | 8        |                | i i          | -        |       |           |           | 2.               |                                       |
|                                                                                                                                                                                                                                                                                                                |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| 0 dBµV                                                                                                                                                                                                                                                                                                         |                    |          |          | 0        |                | 8            |          |       | \$        |           | 6                |                                       |
| 0 dBµV                                                                                                                                                                                                                                                                                                         |                    |          |          | 8        |                |              |          |       |           |           |                  |                                       |
| о авру                                                                                                                                                                                                                                                                                                         |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
|                                                                                                                                                                                                                                                                                                                |                    |          |          |          |                |              |          |       |           |           |                  |                                       |
| E 2.404 GHz                                                                                                                                                                                                                                                                                                    |                    |          |          |          | 691            | nts          |          |       |           |           | 10               | ).0 ms/                               |
| CF 2.404 GHz                                                                                                                                                                                                                                                                                                   |                    |          |          |          | 691            | pts          |          |       |           |           | 10               | ).0 ms/                               |
| CF 2.404 GHz<br>Spectrum                                                                                                                                                                                                                                                                                       |                    |          |          |          | 691            | pts          |          |       |           |           | 10               |                                       |
|                                                                                                                                                                                                                                                                                                                |                    |          |          | RBW      |                | pts          |          |       |           |           | 10               |                                       |
| Spectrum<br>Ref Level 102<br>Att                                                                                                                                                                                                                                                                               | 2.00 dBµV          | swt      |          |          | 3 MHz          | pts          |          |       |           |           | 10               |                                       |
| Gpectrum<br>Ref Level 10:<br>Att<br>GGL                                                                                                                                                                                                                                                                        | 2.00 dBµV          | swt      |          |          | 3 MHz          | pts          |          |       |           |           | 10               |                                       |
| Spectrum<br>Ref Level 10:<br>Att<br>SGL                                                                                                                                                                                                                                                                        | 2.00 dBµV          | e swt    |          |          | 3 MHz          |              | 1[1]     |       |           |           | 10               |                                       |
| Gpectrum<br>Ref Level 10:<br>Att<br>GGL                                                                                                                                                                                                                                                                        | 2.00 dBµV          | e swt    |          |          | 3 MHz          | D            | 1[1]     |       |           |           | 7.               | 0.03 d                                |
| Gpectrum<br>Ref Level 10:<br>Att<br>GGL<br>1Pk Max                                                                                                                                                                                                                                                             | 2.00 dBµV          | e swt    |          | VBW      | 3 MHz<br>3 MHz | D            | 11[1]    |       |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum<br>Ref Level 10:<br>Att<br>GGL<br>1Pk Max                                                                                                                                                                                                                                                             | 2.00 dBµV          | SWT      |          | VBW      | 3 MHz          | D            | 11[1]    |       |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum<br>Ref Level 102<br>SGL<br>1PK Max<br>0 dBµV                                                                                                                                                                                                                                                          | 2.00 dBµV          | swt      |          | VBW      | 3 MHz<br>3 MHz | D            | 11[1]    |       |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum<br>Ref Level 102<br>SGL<br>1PK Max<br>0 dBµV                                                                                                                                                                                                                                                          | 2.00 dBµV          | swt      |          | VBW      | 3 MHz<br>3 MHz | D            | 11[1]    | D1    |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum<br>Ref Level 10:<br>Att<br>SGL<br>1Pk Max<br>0 dBµV<br>0 dBµV                                                                                                                                                                                                                                         | 2.00 dBµV          | e swt    |          | VBW      | 3 MHz<br>3 MHz | D            | 11[1]    |       |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum<br>Ref Level 10;<br>Att<br>GGL<br>1Pk Max<br>0 dBµV<br>0 dBµV<br>0 dBµV                                                                                                                                                                                                                               | 2.00 dBµV          | SWT      |          | VBW      | 3 MHz<br>3 MHz | D            | 11[1]    |       |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum<br>Ref Level 10;<br>Att<br>GGL<br>1Pk Max<br>0 dBµV<br>0 dBµV<br>0 dBµV                                                                                                                                                                                                                               | 2.00 dBµV          | SWT      |          | VBW      | 3 MHz<br>3 MHz | D            | 11[1]    | Dl    |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum           Ref Level 10:           Att           SGL           1Pk Max           0 dBµV           0 dBµV           0 dBµV           0 dBµV           0 dBµV                                                                                                                                            | 2.00 dBµV          | swt      |          | VBW      | 3 MHz<br>3 MHz | D            | 11[1]    |       |           |           | 7.<br>84         | 0.03 d<br>4783 m<br>31 dBµ            |
| Spectrum           Ref Level 10:           SGL           1Pk Max           0 dBµV                                                                                      | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D<br>M       |          |       |           |           | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>31 dBµ<br>2609 m  |
| Spectrum           Ref Level 10:           SGL           1Pk Max           0 dBµV                                                                                      | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D<br>M       |          |       | utyteau   |           | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>.31 dBµ<br>2609 m |
| Spectrum           Ref Level 10:           SGL           1Pk Max           0 dBµV                                                                                      | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D            |          |       | uhreau    |           | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>.31 dBµ<br>2609 m |
| Spectrum           Ref Level 10:           Att           SGL           IPk Max           0 dBµV                     | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D<br>M       |          |       |           | ridiandel | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>.31 dBµ<br>2609 m |
| Spectrum<br>Ref Level 102                                                                                                                                                                                                                                                                                      | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D<br>M       |          |       | แก่งอาง   |           | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>.31 dBµ<br>2609 m |
| Spectrum           Ref Level 10:           SGL           1Pk Max           0 dBµV           0 dBµV | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D<br>M       |          |       | านหาะนาง  |           | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>.31 dBµ<br>2609 m |
| Spectrum           Ref Level 10:           SGL           IPk Max           0 dBµV                                                    | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D<br>M       |          |       | แห่ง-นะเง |           | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>.31 dBµ<br>2609 m |
| Spectrum           Ref Level 10:           SGL           1Pk Max           0 dBµV           0 dBµV | 2.00 dBµV<br>15 dB |          | 30 ms    | • VBW    | 3 MH2<br>3 MH2 | D<br>M       |          |       | MARA      |           | 7.<br>84.<br>13. | 0.03 d<br>4783 m<br>.31 dBµ<br>2609 m |



| Spectrum                             |                                   |                        |         |                |          |                  |                                            |
|--------------------------------------|-----------------------------------|------------------------|---------|----------------|----------|------------------|--------------------------------------------|
| Ref Level 102.00 dB<br>Att 15<br>SGL | uµV<br>dB <mark>e SWT</mark> 30 m | ● RBW ЗМ<br>s ● VBW ЗМ |         |                |          |                  |                                            |
| 90 dBµV                              |                                   | мЪ                     |         | D1[1]<br>M1[1] |          | 84.              | -0.02 dB<br>478.3 µs<br>31 dBµV<br>2609 ms |
| 80 dBµV                              |                                   |                        |         | -              |          |                  | -                                          |
| 70 dBµV                              | <u></u>                           |                        |         | _              |          |                  | 5                                          |
| 60 dBµV                              |                                   |                        |         |                |          |                  |                                            |
| 50 dBµV                              | d him many many                   | www.                   | www.    | wanthingther   | hayyyury | allowednessingar | y hir                                      |
| 30 dвµV                              |                                   |                        | 0<br>   |                |          |                  |                                            |
| 20 dBµV                              |                                   |                        |         |                |          |                  |                                            |
| 10 dBµV                              | -                                 |                        |         |                |          |                  |                                            |
| CF 2.404 GHz                         |                                   |                        | 691 pts |                |          | 3                | .0 ms/                                     |



#### 9.5 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10 - 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter and approximately 0.8 meter up to 1GHz and 1.5 meter above 1GHz in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in Section 9.4.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.



#### 9.5 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Section 9.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used, RBW 3MHz used for fundamental emission.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.



#### 10.0 Test Equipment List

| Equipment<br>No. | Equipment                                         | Manufacturer        | Model No.        | Serial No.     | Cal. Date   | Due Date    |
|------------------|---------------------------------------------------|---------------------|------------------|----------------|-------------|-------------|
| SZ061-12         | BiConiLog<br>Antenna                              | ETS                 | 3142E            | 00166158       | 14-Sep-2018 | 14-Sep-2020 |
| SZ185-01         | EMI<br>Receiver                                   | R&S                 | ESCI             | 100547         | 24-Dec-2019 | 24-Dec-2020 |
| SZ061-09         | Horn<br>Antenna                                   | ETS                 | 3115             | 00092346       | 16-Oct-2019 | 16-Oct-2020 |
| SZ061-06         | Active<br>Loop<br>Antenna                         | Electro-<br>Metrics | EM-6876          | 217            | 24-May-2019 | 24-May-2020 |
| SZ061-15         | Double-<br>Ridged<br>Waveguide<br>Horn<br>Antenna | ETS                 | 3116C-PA         | 00224718       | 25-Oct-2018 | 25-Oct-2020 |
| SZ056-06         | Spectrum<br>Analyzer                              | R&S                 | FSV40            | 101101         | 28-May-2019 | 28-May-2020 |
| SZ181-04         | Preamplifie<br>r                                  | Agilent             | 8449B            | 3008A024<br>74 | 5-Jul-2019  | 5-Jul-2020  |
| SZ188-01         | Anechoic<br>Chamber                               | ETS                 | RFD-F/A-<br>100  | 4102           | 15-Dec-2018 | 15-Dec-2020 |
| SZ062-02         | RF Cable                                          | RADIALL             | RG 213U          |                | 19-Dec-2019 | 19-Jun-2020 |
| SZ062-05         | RF Cable                                          | RADIALL             | 0.04-<br>26.5GHz |                | 23-Feb-2020 | 23-Aug-2020 |
| SZ062-12         | RF Cable                                          | RADIALL             | 0.04-<br>26.5GHz |                | 23-Feb-2020 | 23-Aug-2020 |
| SZ067-04         | Notch Filter                                      | Micro-Tronics       | BRM5070<br>2-02  |                | 28-May-2019 | 28-May-2020 |