

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>1</u> of <u>70</u>

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4 : 2003

TEST REPORT (Class II Permissive Change Report)

For

Bluetooth Handsfree Headset

Model: H680

Data Applies To: H685; H690

Trade Name : Motorola

Issued for

Cheng Uei Precision Industry Co., Ltd.

No18, Chung Shan Rd, Tu-Cheng City,

Taipei Hsien, 236, Taiwan, R.O.C

Issued by

Compliance Certification Services Inc. Hsinchu Lab. Rm. 258, Bldg. 17, NO.195, Sec.4 Chung HsingRd., ChuTung Chen, Hsinchu, Taiwan 310, R.O.C TEL: (03) 591-0068 FAX: (03) 582-5720

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page ______of ____0

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	3
2. EUT DESCRIPTION	4
2.1 DESCRIPTION OF EUT & POWER	4
2.2 DESCRIPTION OF CLASS II CHABNGE	4
3. DESCRIPTION OF TEST MODES	5
4. TEST METHODOLOGY	6
5. FACILITIES AND ACCREDITATIONS	7
5.1 FACILITIES	7
5.2 EQUIPMENT	7
5.3 LABORATORY ACCREDITATIONS LISTINGS	7
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	
6. CALIBRATION AND UNCERTAINTY	9
6.1 MEASURING INSTRUMENT CALIBRATION	9
6.2 MEASUREMENT UNCERTAINTY	9
7. SETUP OF EQUIPMENT UNDER TEST	
8. APPLICABLE LIMITS AND TEST RESULTS	11
8.1 20dB BANDWIDTH FOR HOPPING	11-18
8.2 MAXIMUM PEAK OUTPUT POWER	
8.3 HOPPING CHANNEL SEPARATION	
8.4 NUMBER OF HOPPING FREQUENCY USED	
8.5 DWELL TIME ON EACH CHANNEL	
8.6 CONDUCTED SPURIOUS EMISSION	
8.7 RADIATED EMISSIONS	
8.7.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	44-47
8.7.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	
8.7.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz	
8.7.4 RESTRICTED BAND EDGES	52-59
8.8 POWERLINE CONDUCTED EMISSIONS	60-63
9. ANTENNA REQUIREMENT	64
9.1 STANDARD APPLICABLE	64
9.2 ANTENNA CONNECTED CONSTRUCTION	64
APPENDIX SETUP PHOTOS	65-70

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>3</u> of <u>70</u>

1. TEST REPORT CERTIFICATION

Applicant	: Cheng Uei Precision Industry Co., Ltd.
Address	: No18, Chung Shan Rd, Tu-Cheng City,
	Taipei Hsien, 236, Taiwan, R.O.C
Equipment Under Test	: Bluetooth Handsfree Headset
Model	:H680
Data Applies To	: H685 ; H690
Trade Name	: Motorola
Tested Date	: April 09 ~ 16, 2007 ; May 24 ~ June 22 2007

APPLICABLE STANDARD		
STANDARD	TEST RESULT	
FCC Part 15 Subpart C:2004 AND ANSI C63.4:2003	No non-compliance noted	

Approved by:	Reviewed by:	
5.B.h	12 10 10 to the templan Lin	
S. B. Lu Assistant Manager of Hsinchu Laborato Compliance Certification Services Inc.	京田 Gundam Lin 京田 Test/Engineer of Hsinchu Laboratory Constance Certification Services Inc.	

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	Bluetooth Handsfree Headset		
Model Number	H680		
Data Applies To	H685 ; H690		
Frequency Range	2402MHz to 2480MHz f = $2402 + nMHz$, n = 0,78		
Transmit Power	3.82dBm		
Channel Spacing	1MHz		
Channel Number	79		
Air Data Rate	GFSK (1Mbps), π/4-DQPSK(2Mbps), 8-DPSK(3Mbps)		
Type of Modulation	Frequency Hopping Spread Spectrum		
Frequency Selection	by software / firmware		
Transmitter Classification	portable device		
Antenna Type	PCB Antenna, Antenna Gain : -1.27dBi		
	Normal Mode: 3.7VDC(Battery Powered)		
Power Source	Charging Mode: 5.0VDC (Powered From Host Device or		
	Power Adapter)		
RF Exposure Evaluation	Since the EUT is classed portable device, and the maximum peak power is 3.82dBm (<13.6dBm), the MPE evaluation is not required and no SAR consideration applied.		

Power Adapter :

No.	Manufacturer	Model No.	Power Input	Power Output
1	Motorola	FMP5358A	100-240VAC / 50~60Hz, 120mA	5VDC, 850mA

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: QVZ-H680 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.
- 4. This report is modified from 70409301.
- 5. The showed series model as the same except for difference with housing color.

2.2 DESCRIPTION OF CLASS II CHABNGE

The major change filed under this application are :

- 1. Update PCB Antenna Layout.
- 2. Add series model.

3. DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition.

Radiated Emission Test (Below 1 GHz):

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.
 Normal Linking

Radiated Emission Test (Above 1 GHz):

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Tested Channel	Modulation Technology	Modulation Type	Packet Type
Low, Mid, High	FHSS	GFSK	DH5

Bandedge Measurement :

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Tested Channel	sted Channel Modulation Technology Modulation Type		Packet Type	
Low, High	FHSS	GFSK	DH5	
Low, High	FHSS	8-DPSK	DH5	

Antenna Port Conducted Measurement :

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Tested Channel Modulation Technology		Modulation Type	Packet Type	
Low, Mid, High	FHSS	GFSK	DH5	
Low, Mid, High	FHSS	8-DPSK	DH5	
Low, Mid, High	FHSS	/4-DQPSK	DH5	

Note : The field strength of spurious emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page 7______0f ____70____

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at Rm.258, Bldg.17, NO.195, Sec. 4, Chung Hsing Rd., Chu-Tung Chen. Hsin-Chu, Taiwan 310 R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200118-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 90585 and 90584).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP	EN 55014-1, AS/NZS 1044, CNS 13783-1, IEC/CISPR 14-1, IEC/CISPR 22, EN 55022, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, AS/NZS CISPR 22, AS/NZS 3548, IEC 61000-4-2/3/4/5/6/8/11	200118-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 90585, 90584
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-1229/1189 C-1250/1294
Taiwan	TAF	FCC Method-47 CFR Part 15 Subpart C,D,E CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, CNS 13803, CISPR 13, CNS 13439, FCC Method-47 CFR Part 15 Subpart B, CISPR 14-1, EN 55014-1, CNS 13783-1, EN 55015, CNS 14115, CISPR 22, EN 55022, VCCI CNS 13438, EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 0240
Taiwan	BSMI	CNS 13803, CNS 13438, CNS 13439, CNS 13783-1, CNS 14115	SL2-IS-E-0002 SL2-IN-E-0002 SL2-A1-E-0002 SL2-R1-E-0002 SL2-R2-E-0002 SL2-L1-E-0002
Canada	Industry Canada	RSS212, Issue 1	Canada IC 4417-1

* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

Uncertainty figures are valid to a confidence level of 95%

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	HP	Nx6130	CNU543274R	DoC

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

- 1. Setup all computers like the setup diagram.
- 2. Run CSR Blue Test software.
- Select the following settings, Transport type: USB USB Device :csr0

4. TX mode(GFSK) TXDATA1 LO Freq: 2402,2441,2480 Power (EXT,Int): 255, 56 CFG PKT, Packet Type: 15 Packet Size: 339 TX mode(π /4-DQPSK) TXDATA1 LO Freq: 2402,2441,2480 Power (EXT,Int): 255, 99 CFG PKT, Packet Type: 30 Packet Size: 679

> TX mode(8-DPSK) TXDATA1 LO Freq: 2402,2441,2480 Power (EXT,Int): 255, 98 CFG PKT, Packet Type: 31 Packet Size: 1021

5. RX mode

RXSTART1 LO Freq: 2402,2441,2480 Hi-side:false RX Attenuation 0 6. All of the functions are under run.

7. Start test.

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>11</u> of <u>70</u>

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 20dB BANDWIDTH FOR HOPPING

LIMIT

Limit : N/A

TEST EQUIPMENTS

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	March 22, 2007

TEST SETUP

TEST PROCEDURE

The 20dB band width was measured with a spectrum analyzer connected to RF antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20dB band width of the emission was determined.

TEST RESULTS

No non-compliance noted

Data Rate: GFSK

Channel	Channel Frequency (MHz)	20dB Bandwidth (kHz)	Pass / Fail
Low	2402	951	N/A
Middle	2441	951	N/A
High	2480	951	N/A

Data Rate: $\pi/4$ -DQPSK

Channel	Channel Frequency (MHz)	20dB Bandwidth (kHz)	Pass / Fail
Low	2402	1297	N/A
Middle	2441	1297	N/A
High	2480	1297	N/A

Data Rate: 8-DPSK

Channel	Channel Frequency (MHz)	20dB Bandwidth (kHz)	Pass / Fail
Low	2402	1297	N/A
Middle	2441	1297	N/A
High	2480	1297	N/A

20dB BANDWIDTH

8.2 MAXIMUM PEAK OUTPUT POWER

LIMIT

§15.247(b)(1) The Maximum Peak Output Power Measurement is 125mW for frequency hopping systems operating in 2400~2483.5 MHz employing at least 15 hopping channels.

TEST EQUIPMENTS

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	March 22, 2007

TEST SETUP

TEST PROCEDURE

The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.

TEST RESULTS

No non-compliance noted

Data Rate: GFSK

Channel	Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	3.82	20.97	PASS
Middle	2441	3.58	20.97	PASS
High	2480	3.37	20.97	PASS

Data Rate: $\pi/4$ -DQPSK

Channel	Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	3.72	20.97	PASS
Middle	2441	3.36	20.97	PASS
High	2480	2.99	20.97	PASS

Data Rate: 8-DPSK

Channel	Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	3.81	20.97	PASS
Middle	2441	3.36	20.97	PASS
High	2480	2.98	20.97	PASS

MAXIMUM PEAK OUTPUT POWER

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>27</u> of <u>70</u>

8.3 HOPPING CHANNEL SEPARATION

LIMIT

§15.247(a)(1) Frequency hopping system operating in 2400-2483.5MHz. Band may have hopping channel carrier frequencies that are separated by 25kHz or two-third of 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

TEST EQUIPMENTS

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	March 22, 2007

TEST SETUP

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by spectrum analyzer MARK function. And then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.

 FCC ID
 : QVZ-H680

 Refer No.
 : 70409301

 Report No.
 : 70524303-RP1

 Page
 28 of 70

TEST RESULTS

No non-compliance noted

Refer to section 7.1, 20dB bandwidth measurement, the measured channel separation should be greater than two-third of 20dB bandwidth or Minimum bandwidth.

Data Rate: GFSK

Channel	Adjacent Hopping Channel Separation (kHz)	Two –third of 20dB bandwidth (kHz)	Minimum Bandwidth (kHz)	Result
2441MHz (Mid)	1004.0	633.99	25	PASS

Data Rate: $\pi/4$ -DQPSK

Channel	Adjacent Hopping Channel Separation (kHz)	Two –third of 20dB bandwidth (kHz)	Minimum Bandwidth (kHz)	Result
2441MHz (Mid)	1004.0	864.66	25	PASS

Data Rate: 8-DPSK

Channel	Adjacent Hopping Channel Separation (kHz)	Two –third of 20dB bandwidth (kHz)	Minimum Bandwidth (kHz)	Result
2441MHz (Mid)	1004.0	864.66	25	PASS

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page ________ of _____

HOPPING CHANNEL SEPARATION

8.4 NUMBER OF HOPPING FREQUENCY USED

LIMIT

§15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5MHz bands shall use at least 15 hopping frequencies

TEST EQUIPMENTS

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	March 22, 2007

TEST SETUP

TEST PROCEDURE

- 1 Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2 Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3 Set the spectrum analyzer on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4 Set the spectrum analyzer on View mode and then plot the result on spectrum analyzer screen.
- 5 Repeat above procedures until all frequencies measured were complete.

TEST RESULTS

No non-compliance noted

Refer to the attached plot. There are 79 hopping frequencies in a hopping sequence.

NUMBER OF HOPPING FREQUENCY USED

8.5 DWELL TIME ON EACH CHANNEL

LIMIT

\$15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5MHz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

TEST EQUIPMENTS

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	March 22, 2007

TEST SETUP

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. The Bluetooth Handsfree Headset has 3 type of payload, DH1, DH3, DH5. The hopping rate is 1600 per second.

The longer the payload is, the slower the hopping rate is.

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>34</u> of <u>70</u>

TEST RESULTS

No non-compliance noted

Time of occupancy on the TX channel in $31.6sec = time domain slot length \times hop rate \div number of hop per channel \times 31.6$

Refer to the attached graph.

The hopping rates of Bluetooth devices change with different types of payload. The longer the payload is, the slower the hopping rate. The hopping rate scenario is defined in Bluetooth core specification.

Transmitting Frequency	Packet type	Dwell time (ms)	Time of occupancy on the TX channel in 31.6sec (ms)	Limit for Time of occupancy on the TX channel in 31.6sec (ms)	Results
2441MHz	DH1	0.4008	128.25	400	PASS
2441MHz	DH3	1.6533	264.52	400	PASS
2441MHz	DH5	2.9058	309.95	400	PASS

DH1 Dwell time = $0.4008 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 128.25 \text{ (ms)}$ DH3 Dwell time = $1.6533 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 264.52 \text{ (ms)}$ DH5 Dwell time = $2.9058 \text{ ms} \times (1600 \div 6) \div 79 \times 31.6 = 309.95 \text{ (ms)}$

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page _______35___of ____70

DWELL TIME ON EACH PAYLOAD

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>37</u> of <u>70</u>

8.6 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST RESULTS

No non-compliance noted

BAND EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS

OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>44</u> of <u>70</u>

8.7 RADIATED EMISSIONS

8.7.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

 2 Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
50 - 88		5
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENTS

The following test equipments are utilized in making the measurements contained in this report.

Manufacturer or Type	Model No.	Serial No.	Date of Calibration	Calibration Period	Remark
CHASE BILOG ANTENNA	CBL6112B	2817	August 28, 2006	1 Year	FINAL
R/S SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006	1 Year	FINAL
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	March 22, 2007	1 Year	FINAL
R/S EMI TEST RECEIVER	ESCS30	835418/008	September 02, 2006	1 Year	FINAL
OPEN SITE		No.2	May 07, 2007	1 Year	FINAL
BELDEN N TYPE COAXIAL CABLE	9913-30M	002	August 21, 2006	1 Year	FINAL
Horn Antenna	AH-118	10089	August 30, 2006	1 Year	FINAL
Horn Antenna	AH-840	03077	February 25, 2007	1 Year	FINAL
Agilent Pre-amplifier	8449B	3008A01471	December 25, 2006	1 Year	FINAL
HP Amplifier	8447D	1937A02748	December 25, 2006	1 Year	FINAL
HP High pass filter	84300/80038	002	CAL. ON USE	1 Year	FINAL
HP High pass filter	84300/80039	003	CAL. ON USE	1 Year	FINAL
Loop Antenna ETS-LINDGREN	6502	2356	June 15, 2006	1 Year	FINAL

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>46</u> of <u>70</u>

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz.

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>47</u> of <u>70</u>

TEST PROCEDURE

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 1 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note :

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

No non-compliance noted

8.7.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	Bluetooth Handsfree Headset	Test Date	2007/05/25
Model Name	H680	Test By	Gundam Lin
Test Mode	Normal Linking	TEMP & Humidity	29°C, 50%

Frequency (MHz)	Antenna Cable Factor Loss		Meter Reading at 3m(dBµV)		Limits	Emission Level at 3m(dBµV/m)	
(101112)	(dB/m)	(dB)	Horizontal	Vertical	(uDµ v/m)	Horizontal	Vertical
158.02	10.72	1.80	16.70	20.50	43.50	29.22	33.02
182.27	9.73	1.88	19.50	21.20	43.50	31.11	32.81
232.02	11.73	2.07	17.80	18.10	46.00	31.60	31.90
240.00	12.16	2.11	23.60	24.80	46.00	37.87	39.07
300.00	13.90	2.38	22.50	26.70	46.00	38.78	42.98
480.00	17.58	3.09	15.80	14.90	46.00	36.47	35.57
625.00	19.10	3.63	15.50	16.60	46.00	38.23	39.33
903.00	21.62	4.45	13.50	13.10	46.00	39.57	39.17

Remark:

1. Emission level $(dB\mu V/m) =$ Antenna Factor $(dB/m) + Cable loss (dB) + Meter Reading (dB\mu V)$.

2. According to technical experience, all spurious emission at channel Low, Middle and High are almost the same below 1GHz, so the spurious emission test result of the channel Low was chosen as representative in finial test.

8.7.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	Bluetooth Handsfree Headset	Test Date	2007/06/20
Model Name	H680	Test By	Jason
Test Mode	CH Low TX (GFSK)	TEMP & Humidity	22°C, 54%

Measurement Distance at 1m Horizontal polarity									
Freq. (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Mark (P/Q/A)
1458.00	44.90		-1.30	43.60		74.00	54.00	-10.40	Р
1838.00	43.80		2.00	45.80		74.00	54.00	-8.20	Р
		Measu	rement Di	stance at 1	m Vertic	al polarity	r		
Freq. (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Mark (P/Q/A)
1602.00	49.21		-0.17	49.04		74.00	54.00	-4.96	Р

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.

4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

Product Name	Bluetooth Handsfree Headset	Test Date	2007/06/20
Model Name	H680	Test By	Jason
Test Mode	CH Middle TX (GFSK)	TEMP & Humidity	22°C, 54%

	Measurement Distance at 1m Horizontal polarity										
Freq. (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Mark (P/Q/A)		
1628.00	44.45		0.06	44.51		74.00	54.00	-9.49	Р		
		Measu	rement Di	stance at 1	m Vertic	al polarity	·				
Freq. (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Mark (P/Q/A)		
1654.00	46.69		0.30	46.99		74.00	54.00	-7.01	Р		

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.

4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

Product Name	Bluetooth Handsfree Headset	Test Date	2007/06/20
Model Name	H680	Test By	Jason
Test Mode	CH High TX (GFSK)	TEMP & Humidity	22°C, 54%

		Measure	ement Dist	ance at 1n	n Horizon	ntal polarit	y		
Freq. (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Mark (P/Q/A)
4957.50	35.59		8.86	44.46		74.00	54.00	-9.54	Р
		Measu	rement Di	stance at 1	m Vertic	al polarity			
Freq. (MHz)	Reading-PK (dBuV)	Reading-AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Mark (P/Q/A)
1602.00	49.21		-0.17	49.04		74.00	54.00	-4.96	Р

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.

3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.

4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

6. Margin(dB) = Remark result(dBuV/m) - Average limit(dBuV/m).

8.7.4 RESTRICTED BAND EDGES

Dete	ctor n	node :	Peak					Po	larity :	Horizo	ntal
				Cl	H Low	GFS	K)				
k and a second s			Marker	2 [T1]		RBW	1	MHz	RF Att	0 dB	
ا 📎	Ref Lvl			54.2	2 dBµV	VBW	1	MHz			
	122.7	dBµV	2	2.341262	53 GHz	SWT	5	ms	Unit	dBµV	
122 120	_25.7	dB Offs	et				v	2 [T1]	54	.22 dBµ∀	
									2.3412	6253 GHz	
110							▽	1 [T1]	88	.57 dBμV	
110									2.4019	8397 GHz	
100											
										1	
90	1ντεώ									X	1MA
										$ \Lambda $	
80											
	D1 74	dB //V									
70	-01 14										
C 0											
БU				2							
	homenne	Innorma	mandr	Turm	man	mound	enen	amm	monund	1 hun	
50											
40											
зп											
00									F1		
22.7		I									I
	Start 2	.31 GHz			10 M	1Hz/			Stop :	2.41 GHz	
Date:	2	24.MAY 2	2007 18	:15:01							

Dete	ector r	node :	Aver	age				Pol	arity :	Horizo	ntal
				C	H Low	(GFS)	K)				
6			Marker	2 [T1]	LI LOW	RBW	1	ſНz	RF Att	0 dB	
Ŵ	Ref Lvl			40.4	42 dBμV	VBW	10	Hz			
	122.7	dBµV	:	2.384549	310 GHz	SWT	25	S	Unit	dBµ∖	'
122 120	25.7	dB Offs	a t				₹2	[T1]	41		1
							E		2.3845	54910 GHz	
110							∇_1	[T1]	56	5. 5 3 dBµV	
110									2.402	18437 GHz	
100											
90	1VIEW										1MA
80											
70											
60											
										λ	
50	-DI 34	ubμv——								/	
50										V V	
								2			
4U											
30									F1		
22.7											
	Start 2	.31 GHz			10 M	Hz/			Stop	2.41 GHz	
Date	: :	24.MAY 2	2007 18	8:16:29							

FCC I	D :	Ç	QVZ-H	1 680	
Refer	No. :	7	04093	801	
Repor	t No. :	7	05243	303-RP1	
Page	53		_of	70	

Polarity : Vertical

				CH	H Low	(GFS]	K)				
K			Marker	2 [T1]		RBW	1 M	IHz	RF Att	0 dB	
N N	Ref Lvl	15 V		40.6	3 dBµV	VBW	10	Hz		10 1	,
122	122.7	ав <i>µ</i> v	2	.376132	26 GHZ	501	25	s	Unit	αBμ\	-
120	-25.7	dB Offs∢	⊧t				₹2	[T1]	- 4	!0.63 dBµ ∀	
							7		2.37E	613226 GHz	_
110							×1		2 402	99.76 dBµV	
									2.402		
100											-
90	IVIEW										1MA
80										_	
70											
60										1	
		ID 17								$ \rangle$	
50	-01 54	αвμν ——									
30											
40							2			arphi $arphi$	
40											
30									F1		1
22.7											J
	Start 2	.31 GHz			10 ٢	1Hz⁄			Stop	o 2.41 GHz	
Date:	2	4.MAY 2	007 18	:11:20							

FCC I	D :	QVZ-	H680
Refer]	No. :	70409	301
Report	t No. :	70524	303-RP1
Page	54	of	70

Polarity : Horizontal

				U	CF	I High	(GFS	K)		U U		
/K/			Marker	2 [T1]	8	RBW	1 M	1Hz	RF Att	0 dB	
X \$/ 1	Ref Lvl				40.3	8 dBµV	VBW	10	Hz			
122	122.7	dBµV	2	.48	3500	OO GHz	SWT	6.4	S	Unit	dBµV	
120	25.7	dB Offs(∍t	_				₹2	[71]	40.	38 dBµ∀	
								_		2.48350	000 GHz	_
110								∇_1	[T1]	54.	84 dBµV	
										2.48011	U22 GHZ	
100												
90												1 M Δ
	11124											1116
80												
70												
10												
ou			1									
	—D1 54	dBµV										
50												
	/			_4								
40												
30				F 1								
22.7				Í								
	Start 2	.475 GH:	z			2.5	MHz/			Stop	2.5 GHz	
Date:	2	24.MAY 2	007 18	:25:	:01							

FCC I	D :	QVZ-	H680
Refer	No.:	70409	301
Repor	t No. :	70524	303-RP1
Page	55	of	70

Polarity : Vertical

					CH	I High	(GFS	K)				
/K/			Marker	2 [T1]	U	RBW	1 r	1Hz	RF Att	0 dB	
X.	Ref Lvl				41.9	5 dBµV	VBW	10	Hz			
122	122.7 (dBµV	2	.48	33500	UU GHz	SMI	Б.4	s	Unit	dBµV	_
120	25.7	dB Offs∢	₽t					₹2	[T1]	41	. 95 dBµ ∀	
										2.48350)000 GHz	
110								∇_1	[T1]	59	03 dBµV	
										2.4803	1062 GHZ	
100												
90												
	IVIEW											104
00												
00												
70												
			1									
60		/	÷									
	—D1 54	dΒμγ∕	\rightarrow									
50		/	\rightarrow									
		Y										
40												
30												
				F	1							
22.7	Start 2	.475 GH	z			2.5	I MHz7			Ston	2.5 GHz	
Date	 -	и мах о	- 007 19	•21	•20	2.0				2.00		

FCC ID : QVZ-H680 Refer No. : 70409301 Report No.: 70524303-RP1 Page <u>56</u> of <u>70</u>

	ъ
Detector mode : Average	Polar

ector mode : A	verage		Pol	arity :	Horizon
	CH Low (8	3-DPS	K)		
Ma	rker 2 [T1]	RBW	1 MHz	RF Att	0 dB
Ref Lvl	40.45 dBµV	VBW	10 Hz		
122.7 dBµV	2.38615230 GHz	SWT	25 s	Unit	dBµV
25.7 dB Offset			₹2 [[1]	40	
				2 3861	5230 GHz
			V1 [[T1]	56	29 dBuV
			1 111	2 4023	8477 GHz
1VIEW					
					1
—D1 54 dBμV—					IĂ
					\downarrow
			2)	
				F 1	
Start 2 31 GHz	10 ML		1		2 41 GHz
	10 11	12/		Jrop	2.71 0112

FCC I	D :	Ç	QVZ-F	1680	
Refer	No. :	7	04093	301	
Repor	t No. :	7	0524	303-RP1	
Page	57		_of	70	_

Polarity : Vertical

CH Low (8-DPSK)											
<u> </u>			Marker	2 [T1]	LUW	RBW	1 M	Hz I	RF Att	0 dB	
K	Ref Lvl			40.4	8 dBµV	VBW	10	Hz			
	122.7	dBµV	2	.386352	71 GHz	SWT	25	s I	Unit	dBµV	
122	-25.7	dB Offs(∍t				▼2	[T1]	40.	48 dBµ∀	
									2.38635	271 GHz	
110							∇_1	[T1]	58.	97 dBµV	
									2.40258	517 GHz	
100											
90											
	IVIEW										TUA
80											
70											
ru											
60										1	
60										Ň	
5.0	—D1 54	dBµV—								\downarrow	
50										1	
								2			
40											
30									F1	1	
22.7											
	Start 2	.31 GHz			10 M	1Hz⁄			Stop 2	2.41 GHz	
Date	2	24.MAY 2	007 18	:45:32							

Polarity : Horizontal

	CH High (8-DPSK)											
<u>k</u>			Marker	2 [1	Γ1]	0	RBW	1 M	Hz	RF Att	0 dB	
X 9 1	Ref Lvl		-	402	40.2	4 dBµV	VBW	10	Hz	11- 14	-10 - 14	
122	122.7 0	⊐вµv	2	. 483	3000	JU GHZ	501	в.4	s		α <i></i> σμν	
120	25.7	∃B Offs∶	≥t					₹2	[71]	40	.24 dBµ∀	
								⊽1	[Т1]	2,4835	91 dBuV	
110								1		2.4800	6012 GHz	
100												
00												
30	IVIEW											1MA
80												
00												
70												
60												
	-D1 54	dBuV—-	l Z									
50	01 01											
40												
30												
22.7												
	Start 2	475 GH	z			2.5	MHz/			Stop	2.5 GHz	
Date:	2	4.MAY 2	007 18	:36:	39							

FCC I	D	:	QVZ-	H680	
Refer	No.	:	70409	301	
Report	t No.	:	70524	303-RP1	
Page	59)	of	70	

Polarity : Vertical

	CH High (8-DPSK)											
<u>k</u>			Marker	2 [T1]	0	RBW	1 ٢	1Hz	RF Att	0 dB	
X Y 1	Ref Lvl		-		41.5	1 dBµV	VBW	10	Hz	Upit	dBV	,
122	122.1		2	. 40	13300		INC	0.4	5 1		1	
120		dB Offsα	≥t					₹2	[T1]	41.	51 dBµ/∀	
								⊽1	[T1]	2,48350	93 dBuV	
110										2.48041	082 GHz	
100												
90	1VIEW											1MA
80												
70												
70												
C 0			1									
οu			×									
50	—D1 54	dBµV										
50												
40		ſ			·							
40												
30												
				F	1							
22.7	Start 2	<u>175 сн</u>	7			25	MH77		<u> </u>	Stop	2 5 647	I
Date		ла мах р	- 007 19	• 7 7	•26	2.0	111127			5100	2.0 002	

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>60</u> of <u>70</u>

8.8 POWERLINE CONDUCTED EMISSIONS

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)			
	Quasi-peak	Average		
0.15 - 0.5	66 to 56	56 to 46		
0.5 - 5	56	46		
5 - 30	60	50		

TEST EQUIPMENTS

The following test equipments are used during the conducted powerline tests :

Manufacturer or Type	Model No.	Serial No.	Date of Calibration	Calibration Period	Remark
EMCO L.I.S.N.	3850/2	9311-1025	January 26, 2007	1 Year	FINAL
CHASE L.I.S.N	NNLK 8129	8129118	January 26, 2007	1 Year	FINAL
ECOM L.I.S.N	3810/2	9801-1850	February 26, 2007	1 Year	FINAL
R & S TEST RECEIVER	ESHS30	838550/003	January 31, 2007	1 Year	FINAL
KEENE SHIELDED ROOM	5983	No.1	N/A	N/A	FINAL
R & S PULSE LIMIT	EHS3Z2	357.8810.52	July 10, 2006	1 Year	FINAL
N TYPE COAXIAL CABLE			August 21, 2006	1 Year	FINAL
50Ω TERMINATOR			July 10, 2006	1 Year	FINAL

TEST SETUP

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.

TEST RESULTS

No non-compliance noted

CONDUCTED RF VOLTAGE MEASUREMENT

Product Name	Bluetooth Handsfree Headset	Test Date	2007/04/12
Model	H680	Test By	Gundam Lin
Test Mode	Charging Mode	TEMP & Humidity	25.5°C, 62%

Remark:

1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value

Product Name	Bluetooth Handsfree Headset	Test Date	2007/04/12
Model	H680	Test By	Gundam Lin
Test Mode	Charging Mode	TEMP & Humidity	25.5°C, 62%

Remark:

1. Correction Factor = Insertion loss + cable loss

2. Margin value = Emission level – Limit value

FCC ID : QVZ-H680 Refer No. : 70409301 Report No. : 70524303-RP1 Page <u>64</u> of <u>70</u>

9. ANTENNA REQUIREMENT

9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is PCB antenna. The maximum Gain of the antenna only -1.27dBi.