

SPORTON International Inc.

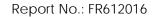
No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Motorola Inc.
Applicant Address	600 North US Highway 45, Room AN2, Libertyville, Illinois, 60048,
	U.S.A
FCC ID	QVZ-H350
Manufacturer's company	Microlink Communications Inc.
Manufacturer Address	2F, No. 8, R&D Rd. 1, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.

Product Name	Bluetooth Headset
Brand Name	Motorola
Model Name	H350
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz
Receive Date	Jan. 20, 2006
Test Date	Feb. 07, 2006
Submission Type	Original Equipment

Statement


The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Lab Code: 200079-0

Table of Contents

1. CER	RTIFICATE OF COMPLIANCE	1
2. SUN	MMARY OF THE TEST RESULT	2
3. GEN	NERAL INFORMATION	3
3.1.		
3.2.	Accessories	3
3.3.	Table for Filed Antenna	3
3.4.	Table for Carrier Frequencies	3
3.5.	Table for Test Modes	4
3.6.	5	
3.7.	Table for Supporting Units	4
3.8.	Table for Parameters of Test Software Setting	4
3.9.	Test Configurations	5
4. TES1	T RESULT	6
4.1.	Maximum Peak Output Power Measurement	6
4.2.	Hopping Channel Separation Measurement	8
4.3.	Number of Hopping Frequency Measurement	13
4.4.	Dwell Time Measurement	15
4.5.	Radiated Emissions Measurement	22
4.6.		
4.7.	Antenna Requirements	39
5. LIST	T OF MEASURING EQUIPMENTS	40
6. SPC	ORTON COMPANY PROFILE	41
6.1.	Test Location	41
7. NVL	LAP CERTIFICATE OF ACCREDITATION	42
APPFN	NDIX A PHOTOGRAPHS OF FUT	A1 ~ A8

History of This Test Report

Original Issue Date: Feb. 07, 2006

Report No.: FR612016

■ No additional attachment.

□ Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

Report Format Version: RF-15.247-2006-01-10-c Page No. : ii of ii

FCC ID: QVZ-H350 Issued Date : Feb. 07, 2006

1. CERTIFICATE OF COMPLIANCE

Product Name :

Bluetooth Headset

Brand Name :

Motorola

Model Name :

H350

Applicant :

Motorola Inc.

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 20, 2006 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Wayne Hsu / Supervisor

Issued Date : Feb. 07, 2006

: 1 of 42

Page No.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Description of Test	Result	Under Limit		
4.1	15.207	AC Power Line Conducted Emissions	Complies	-		
4.2	15.247(b)(1)	Maximum Peak Conducted Output Power	Complies	28.53 dB		
4.3	15.247(a)(1)	Hopping Channel Separation	Complies	-		
4.4	15.247(b)(1)	Number of Hopping Frequency	Complies	-		
4.5	15.247(a)(1)	Dwell Time	Complies	-		
4.6	15.247(d)	Radiated Emissions	Complies	3.15 dB		
4.7	15.247(d)	Band Edge Emissions	Complies	15.37 dB		
4.8	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	± 2.26dB	Confidence levels of 95%
Maximum Peak Conducted Output Power	±0.5dB	Confidence levels of 95%
Hopping Channel Separation / Dwell Time	±6.25×10-7	Confidence levels of 95%
Radiated Emissions / Band Edge Emissions	± 3.72dB	Confidence levels of 95%

 Report Format Version: RF-15.247-2006-01-10-c
 Page No.
 : 2 of 42

 FCC ID: QVZ-H350
 Issued Date
 : Feb. 07, 2006

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Radio Type	Intentional Transceiver
Power Type	Battery & Charger from USB
Interface Type	USB
Modulation	FHSS (GFSK / QPSK /8PPSK)
Data Rate (Mbps)	GFSK: 1 ; QPSK: 2 ; 8PSK: 3
Frequency Range	2400 ~ 2483.5MHz
Channel Number	79
Channel Band Width	840.00 kHz
(99%)	
Conducted Output	1.47 dBm
Power	
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

3.2. Accessories

N/A

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain
					(dBi)
1	-	-	Printed	NA	2.08

3.4. Table for Carrier Frequencies

Freqeuncy Band	Channel No.	Frequency
	0	2402 MHz
	1	2403 MHz
	:	:
	38	2440 MHz
2400~2483.5MHz	39	2441 MHz
	40	2442 MHz
	:	:
	77	2479 MHz
	78	2480 MHz

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 3 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

3.5. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
Max. Conducted Output Power	8PSK	3 Mbps	0/39/78	NA
Hopping Channel Separation	8PSK	3 Mbps	0~1/39~40/77~78	NA
Number of Hopping Frequency	8PSK	3 Mbps	0~78	NA
Dwell Time	DH1/DH3/DH5	3 Mbps	0/39/78	NA
Radiated Emissions Below 1GHz	8PSK	3 Mbps	39	1
Radiated Emissions Above 1GHz	8PSK	3 Mbps	0/39/78	1
Band Edge Emissions				

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
TH01-HY	OVEN Room	Hwa Ya	101377	IC 4088	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

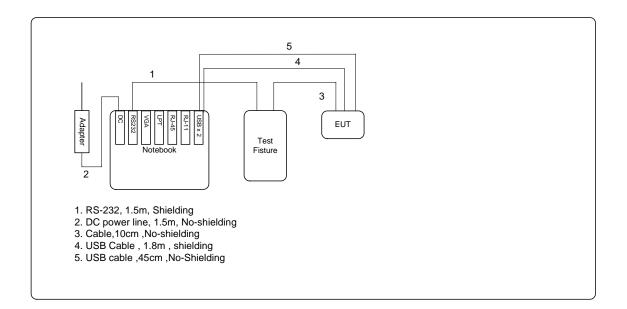
3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	PP01L	DoC

3.8. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of Bluetooth


Test Software Version	Bluetest		
Frequency	2402 MHz	2441 MHz	2480 MHz
Power Parameters	63	63	63

: 4 of 42 Page No. FCC ID: QVZ-H350 Issued Date: Feb. 07, 2006

3.9. Test Configurations

3.9.1. Radiation Emissions Test Configuration

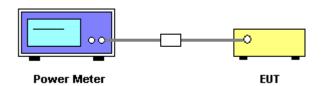
4. TEST RESULT

4.1. Maximum Peak Output Power Measurement

4.1.1. Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, the limit for peak output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

4.1.2. Measuring Instruments and Setting


Please refer to section 5 in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Filter No.	Auto
Measurement time	0.135 s ~ 26 s
Used Peak Sensor	NRV-Z32 (model 04)

4.1.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the peak power value.
- 3. Repeat above procedures on all channels needed to be tested.

4.1.4. Test Setup Layout

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

: 6 of 42 Page No. FCC ID: QVZ-H350 Issued Date: Feb. 07, 2006

4.1.7. Test Result of Maximum Peak Output Power

Temperature	20°C	Humidity	70%
Test Engineer	Leo Hung	Configurations	FHSS (GFSK / QPSK /8PPSK)

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
0	2402 MHz	1.47	30.00	Complies
39	2441 MHz	0.94	30.00	Complies
78	2480 MHz	-0.63	30.00	Complies

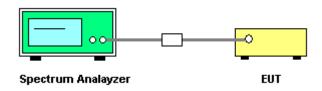
 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 7 of 42

4.2. Hopping Channel Separation Measurement

4.2.1. Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 in this report. The following table is the setting of Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 300 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- 3. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were utilised for channel separation measurement.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

: 8 of 42 Page No. FCC ID: QVZ-H350 Issued Date: Feb. 07, 2006

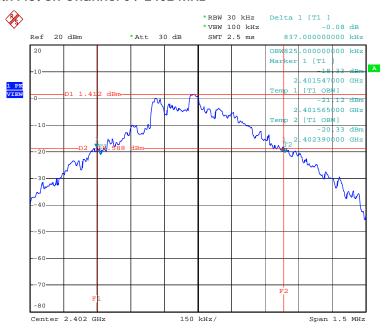
4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Hopping Channel Separation

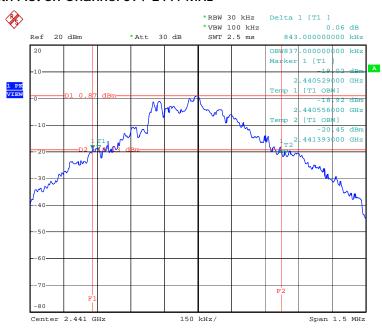
Temperature	20°C	Humidity	70%
Test Engineer	Leo Hung	Configurations	FHSS (GFSK / QPSK /8PPSK)

Frequency	Ch. Separation (MHz)	20dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)	Result
2402 MHz	1.00	837.00	825.00	Complies
2441 MHz	1.00	843.00	837.00	Complies
2480 MHz	1.00	819.00	840.00	Complies


Ch. Separation Limits: >20dB bandwidth or >2/3 of 20dB bandwidth

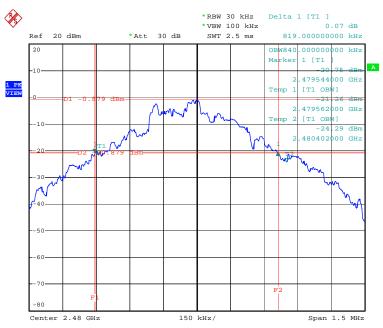
 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 9 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

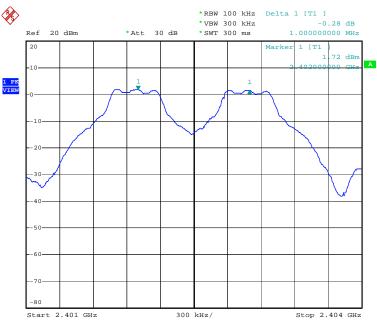


20 dB Bandwidth Plot on Channel 0 / 2402 MHz

Date: 7.FEB.2006 13:15:16


20 dB Bandwidth Plot on Channel 39 / 2441 MHz

Date: 7.FEB.2006 13:17:48

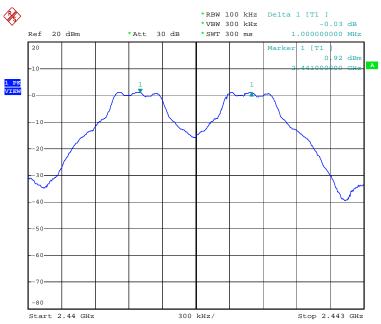


20 dB Bandwidth Plot on Channel 78 / 2480 MHz

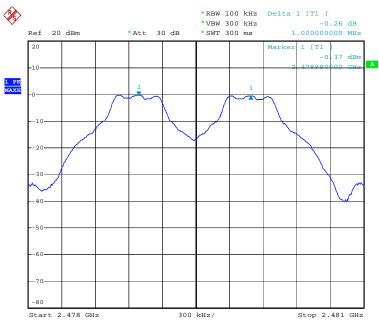


Date: 7.FEB.2006 13:19:06

Channel Separation Plot on Channel 0~1 / 2402 MHz ~ 2403 MHz



Date: 7.FEB.2006 13:15:08



Channel Separation Plot on Channel 39~40 / 2441 MHz ~ 2442 MHz

Date: 7.FEB.2006 13:17:40

Channel Separation Plot on Channel 77~78 / 2479 MHz ~ 2480 MHz

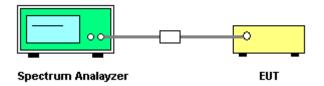
Date: 7.FEB.2006 13:21:35

4.3. Number of Hopping Frequency Measurement

4.3.1. Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RB	100 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were utilised.
- 3. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 75 non-overlapping channels.

4.3.4. Test Setup Layout

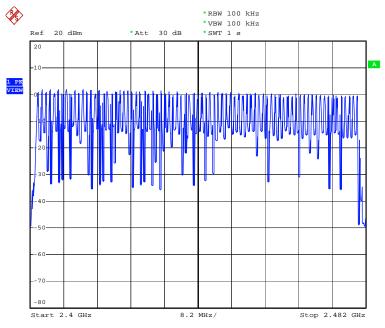
 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 13 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Number of Hopping Frequency

Temperature	20°C	Humidity	70%
Test Engineer	Leo Hung	Configurations	FHSS (GFSK / QPSK /8PPSK)

Modulation	Channel	Frequency	Hopping Ch.	Min. Limit	Test Result
Type	No.	(MHz)	(Channels)	(Channels)	
GFSK	0 ~ 78	2402 ~ 2480	79	75	Complies

Number of Hopping Channel Plot on Channel 0~78 / 2402 MHz ~ 2480 MHz

Date: 7.FEB.2006 13:17:02

: 14 of 42 Page No. FCC ID: QVZ-H350 Issued Date: Feb. 07, 2006

4.4. Dwell Time Measurement

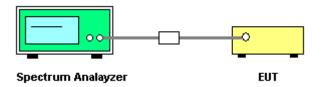
4.4.1. Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	0 MHz
RB	1000 kHz
VB	1000 kHz
Detector	Peak
Trace	Single Trigger


4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- 4. Sweep Time is more than once pulse time.
- 5. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 6. Measure the maximum time duration of one single pulse.
- 7. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 8. Measure the maximum time duration of one single pulse.
- 9. DH5 Packet permit maximum 1600/79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds
- 10. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times $5.06 \times 31.6 = 160$ within 31.6 seconds.
- 11. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

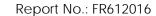
 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 15 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

4.4.4. Test Setup Layout

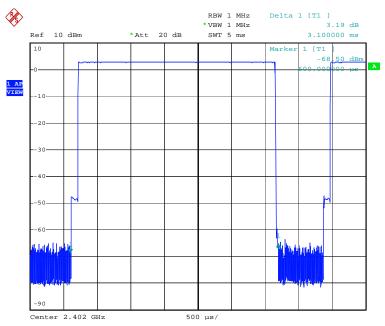
4.4.5. Test Deviation

There is no deviation with the original standard.

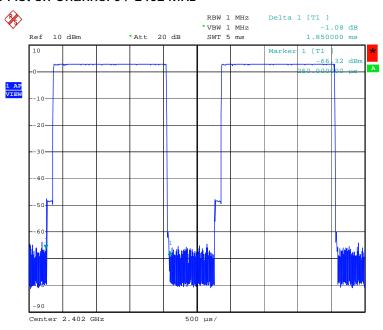

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

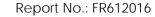
4.4.7. Test Result of Dwell Time


Temperature	20 ℃	Humidity	70%
Test Engineer	Leo Hung	Configurations	FHSS (GFSK / QPSK /8PPSK)

Data Packet	Fragueness	Pulse Duration	Dwell Time	Limits	Toot Docult
Data Packet	Frequency	(ms)	(s)	(s)	Test Result
DH5	2402 MHz	3.1000	0.3307	0.4000	Complies
DH3	2402 MHz	1.8500	0.2960	0.4000	Complies
DH1	2402 MHz	0.5800	0.1856	0.4000	Complies
DH5	2441 MHz	3.1000	0.3307	0.4000	Complies
DH3	2441 MHz	1.8500	0.2960	0.4000	Complies
DH1	2441 MHz	0.5800	0.1856	0.4000	Complies
DH5	2480 MHz	3.1000	0.3307	0.4000	Complies
DH3	2480 MHz	1.8500	0.2960	0.4000	Complies
DH1	2480 MHz	0.5800	0.1856	0.4000	Complies

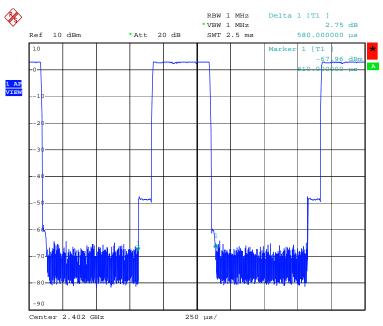


DH5 Dwell Time Plot on Channel 0 / 2402 MHz



Date: 12.OCT.2005 14:56:18

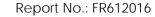
DH3 Dwell Time Plot on Channel 0 / 2402 MHz



Date: 12.OCT.2005 14:53:46

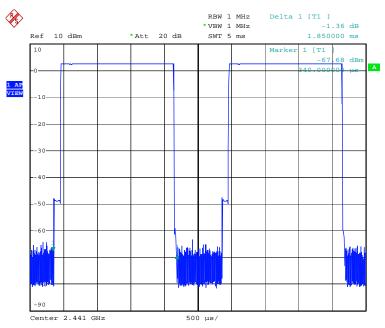


DH1 Dwell Time Plot on Channel 0 / 2402 MHz

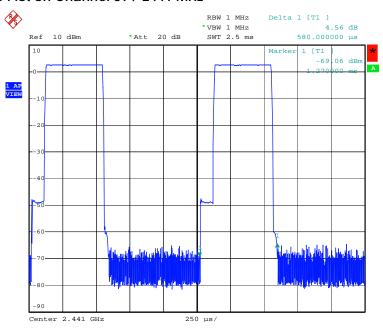


Date: 12.OCT.2005 14:50:21

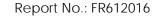
DH5 Dwell Time Plot on Channel 39 / 2441 MHz



Date: 12.OCT.2005 14:55:46

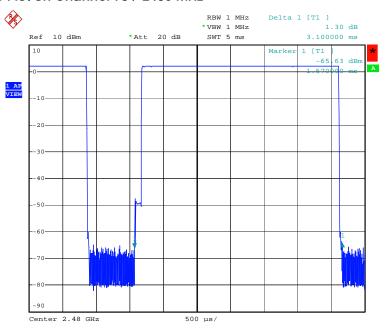


DH3 Dwell Time Plot on Channel 39 / 2441 MHz

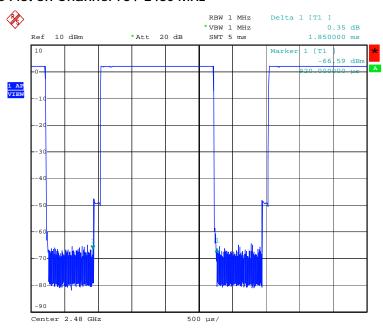


Date: 12.OCT.2005 14:54:12

DH1 Dwell Time Plot on Channel 39 / 2441 MHz

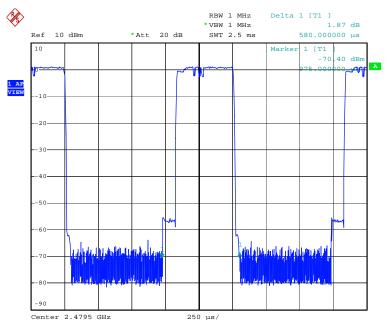


Date: 12.OCT.2005 14:50:01



DH5 Dwell Time Plot on Channel 78 / 2480 MHz

Date: 12.OCT.2005 14:55:19


DH3 Dwell Time Plot on Channel 78 / 2480 MHz

Date: 12.OCT.2005 14:54:41

DH1 Dwell Time Plot on Channel 78 / 2480 MHz

Date: 12.OCT.2005 14:49:35

Page No. : 21 of 42 FCC ID: QVZ-H350 Issued Date : Feb. 07, 2006

4.5. Radiated Emissions Measurement

4.5.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

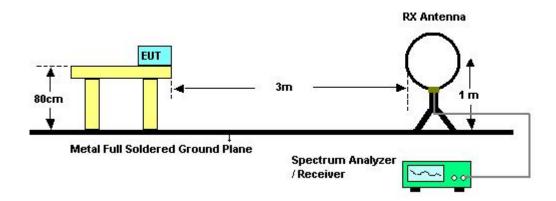
Please refer to section 5 in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100KHz / 100KHz for peak

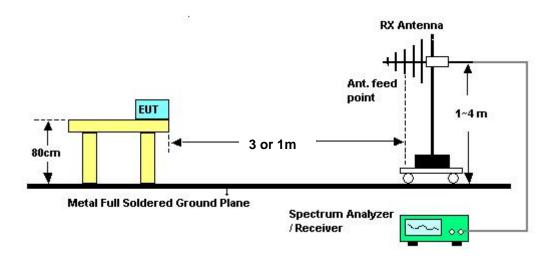
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 22 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006


4.5.3. Test Procedures

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.


- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.5.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 24 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22 °C	Humidity	64%
Test Engineer	Rush Kao	Configurations	channel 39

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

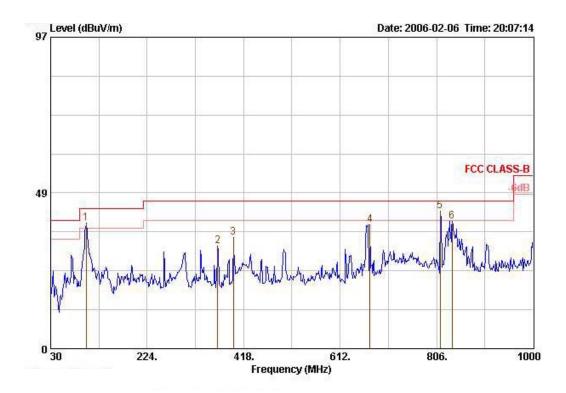
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

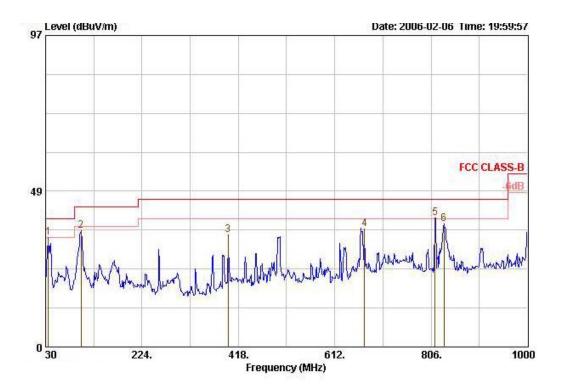
 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 25 of 42


 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22 °C	Humidity	64%
Test Engineer	Rush Kao	Configurations	channel 39

Horizontal


	Freq	Level			Antenna Factor		10000	Read Level		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	1	cm	deg
1!	101.780	39.03	-4.47	43.50	10.76	0.81	30.09	57.55	Peak		
2	365.620	31.87	-14.13	46.00	14.83	1.51	30.55	46.08	Peak		
3	397.630	34.56	-11.44	46.00	15.80	1.59	30.37	47.54	Peak		
4	672.140	38.70	-7.30	46.00	18.92	2.07	30.36	48.08	Peak		
5 @	812.790	42.85	-3.15	46.00	20.10	2.29	30.08	50.55	Peak		
6	837.040	39.65	-6.35	46.00	20.29	2.33	30.00	47.02	Peak		

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 26 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

Vertical

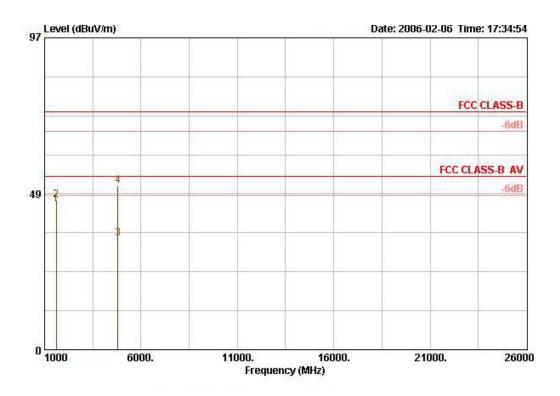
	Freq	Level			Antenna Factor			Read Level		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	-	cm	deg
1!	35.820	34.19	-5.81	40.00	14.70	0.51	29.78	48.76	Peak		
2	101.780	36.17	-7.33	43.50	10.76	0.81	30.09	54.69	Peak		
3	397.630	35.01	-10.99	46.00	15.80	1.59	30.37	47.99	Peak		
4	672.140	36.61	-9.39	46.00	18.92	2.07	30.36	45.98	Peak		
5 !	813.760	40.17	-5.83	46.00	20.11	2.29	30.08	47.85	Peak		
6	832.190	38.45	-7.55	46.00	20.30	2.32	30.01	45.84	Peak		

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

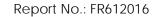
Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

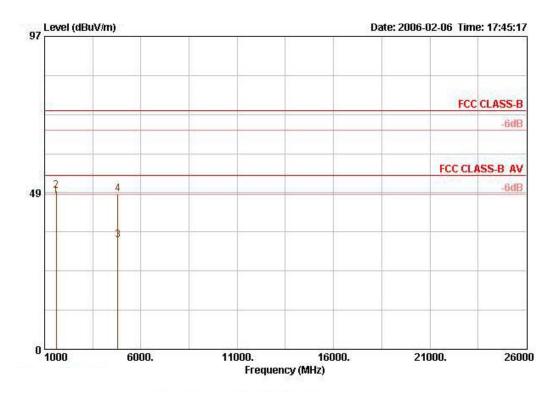

Pol.: V is Vertical Polarization; H is Horizontal Polarization.

4.5.9. Results for Radiated Emissions (1GHz~10th Harmonic)

Temperature	22 °C	Humidity	64%
Test Engineer	Rush Kao	Configurations	channel 0


Horizontal

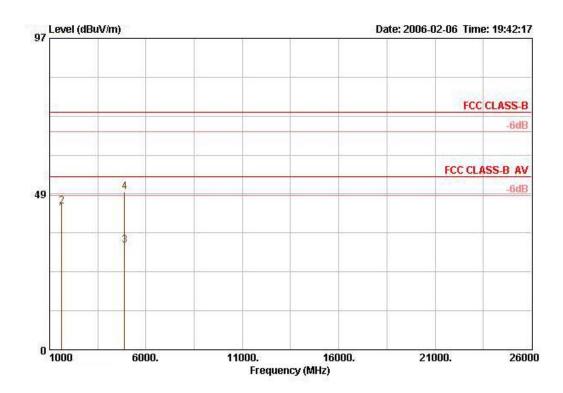
	Freq	Level					Preamp Factor			Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	-	can	deg
1	1602.000	45.11	-8.89	54.00	25.58	2.06	35.06	52.53	AVERAGE	100	117
2	1602.000	46.57	-27.43	74.00	25.58	2.06	35.06	54.00	PEAK	100	117
3	4804.050	34.66	-19.34	54.00	33.18	4.68	35.10	31.90	AVERAGE	126	335
4	4804.050	50.90	-23.10	74.00	33.18	4.68	35.10	48.14	PEAK	126	335


 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 28 of 42

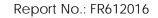
 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

Vertical

Freq	Level			Antenna Factor			Read Level		Ant Pos	Table Pos
MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	1		deg
1602.000	47.68	-6.32	54.00	25.58	2.06	35.06	55.10	AVERAGE	100	340
1602.000	49.27	-24.73	74.00	25.58	2.06	35.06	56.69	PEAK	100	340
4803.980	33.87	-20.13	54.00	33.18	4.68	35.10	31.11	AVERAGE	126	5
4804.060	48.03	-25.97	74.00	33.18	4.68	35.10	45.27	PEAK	126	5

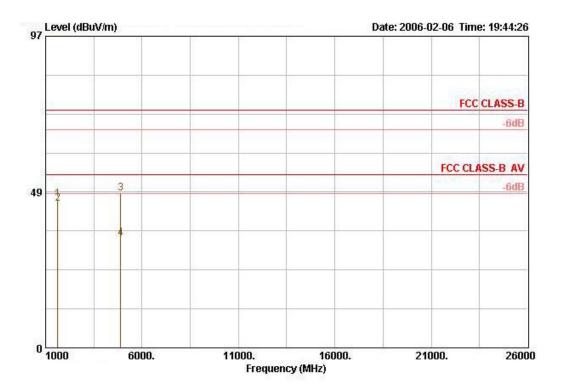

Page No. : 29 of 42 FCC ID: QVZ-H350 Issued Date : Feb. 07, 2006

Temperature	22 °C	Humidity	64%
Test Engineer	Rush Kao	Configurations	channel 39


Horizontal

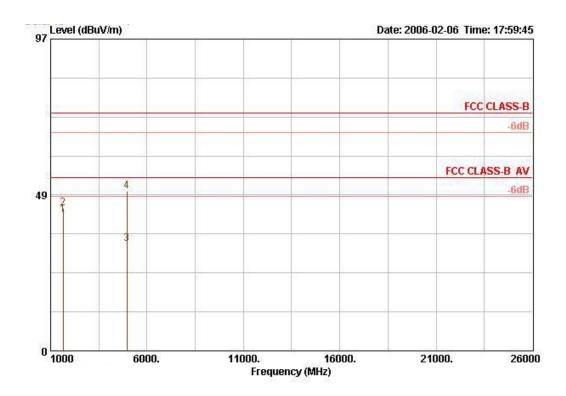
1 2 3

Freq	Level						Read Level	Remark	Ant Pos	Table Pos
MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBu∀	*		deg
1628.000	42.49	-11.51	54.00	25.71	2.08	35.05	49.75	AVERAGE	131	340
1628.000	44.57	-29.43	74.00	25.71	2.08	35.05	51.83	PEAK	100	340
4882.160	32.50	-21.50	54.00	33.33	4.71	35.10	29.56	AVERAGE	100	258
4882.160	49.20	-24.80	74.00	33.33	4.71	35.10	46.26	Peak	100	258
	MHz 1628.000 1628.000 4882.160	MHz dBuV/m 1628.000 42.49 1628.000 44.57 4882.160 32.50	Freq Level Limit MHz dBuV/m dB 1628.000 42.49 -11.51 -1628.000 44.57 -29.43 4882.160 32.50 -21.50	Freq Level Limit Line MHz dBuV/m dB dBuV/m 1628.000 42.49 -11.51 54.00 1628.000 44.57 -29.43 74.00 4882.160 32.50 -21.50 54.00	Freq Level Limit Line Factor MHz dBuV/m dB dBuV/m dB/m 1628.000 42.49 -11.51 54.00 25.71 1628.000 44.57 -29.43 74.00 25.71 4882.160 32.50 -21.50 54.00 33.33	Freq Level Limit Line Factor Loss MHz dBuV/m dB dBuV/m dB/m dB 1628.000 42.49 -11.51 54.00 25.71 2.08 1628.000 44.57 -29.43 74.00 25.71 2.08 4882.160 32.50 -21.50 54.00 33.33 4.71	MHz dBuV/m dB dBuV/m dB/m dB dB 1628.000 42.49 -11.51 54.00 25.71 2.08 35.05 1628.000 44.57 -29.43 74.00 25.71 2.08 35.05 4882.160 32.50 -21.50 54.00 33.33 4.71 35.10	Freq Level Limit Line Factor Loss Factor Level MHz dBuV/m dB dB/m dB dB dBuV 1628.000 42.49 -11.51 54.00 25.71 2.08 35.05 49.75 1628.000 44.57 -29.43 74.00 25.71 2.08 35.05 51.83 4882.160 32.50 -21.50 54.00 33.33 4.71 35.10 29.56	Freq Level Limit Line Factor Loss Factor Level Remark MHz dBuV/m dB dBuV/m dB/m dB dB dB dBuV 1628.000 42.49 -11.51 54.00 25.71 2.08 35.05 49.75 AVERAGE 1628.000 44.57 -29.43 74.00 25.71 2.08 35.05 51.83 PEAK 4882.160 32.50 -21.50 54.00 33.33 4.71 35.10 29.56 AVERAGE	Freq Level Limit Line Factor Loss Factor Level Remark Pos MHz dBuV/m dB dBuV/m dB/m dB dB dB dBuV cm 1628.000 42.49 -11.51 54.00 25.71 2.08 35.05 49.75 AVERAGE 131 1628.000 44.57 -29.43 74.00 25.71 2.08 35.05 51.83 PEAK 100 4882.160 32.50 -21.50 54.00 33.33 4.71 35.10 29.56 AVERAGE 100


: 30 of 42

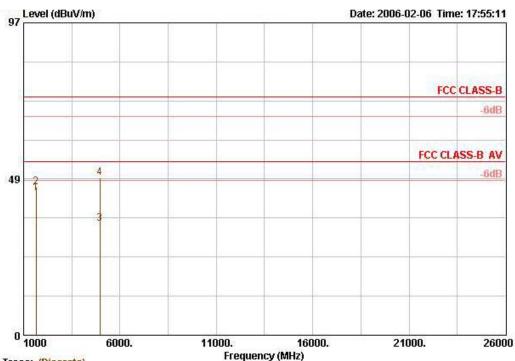
Vertical

1 2 3


Freq	Level			Factor		1000	Level		Pos	Pos
MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	-		deg
1628.000	46.20	-27.80	74.00	25.71	2.08	35.05	53.46	Peak	100	280
1628.000	44.80	-9.20	54.00	25.71	2.08	35.05	52.06	Average	100	280
4882.300	48.00	-26.00	74.00	33.33	4.71	35.10	45.06	Peak	100	20
4882.300	34.20	-19.80	54.00	33.33	4.71	35.10	31.26	Average	100	20

Page No. : 31 of 42 FCC ID: QVZ-H350 Issued Date : Feb. 07, 2006

Temperature	22 °C	Humidity	64%
Test Engineer	Rush Kao	Configurations	channel 78


Horizontal

	Freq	Level	Over Limit		Intenna Factor		Preamp Factor	Read Level		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	*		deg
1	1654.000	42.30	-11.70	54.00	25.77	2.11	35.04	49.45	AVERAGE	100	115
2	1654.000	44.34	-29.66	74.00	25.77	2.11	35.04	51.49	PEAK	100	115
3	4960.020	33.20	-20.80	54.00	33.52	4.74	35.10	30.03	AVERAGE	100	230
4	4960.020	49.60	-24.40	74.00	33.52	4.74	35.10	46.43	Peak	100	230

Page No. : 32 of 42 FCC ID: QVZ-H350 Issued Date : Feb. 07, 2006

Vertical

Trace: (Discrete)

Site : 03ch01 CB

Condition : FCC CLASS-B 3m 18GHORN ANT:20050131 VERTICAL 0cm 0deg

eut : H350 power set : 63

memo : TX 2480MHz

	Freq	Level			Antenna Factor		장 연결 회원 연결 중 없다.	Read Level		Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	-		deg
1	1654.000	44.14	-9.86	54.00	25.77	2.11	35.04	51.29	AVERAGE	100	332
2	1654.000	46.08	-27.92	74.00	25.77	2.11	35.04	53.24	PEAK	100	332
3	4960.030	34.71	-19.29	54.00	33.52	4.74	35.10	31.54	AVERAGE	100	174
4	4960.030	48.91	-25.09	74.00	33.52	4.74	35.10	45.74	PEAK	100	174

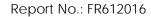
Note:

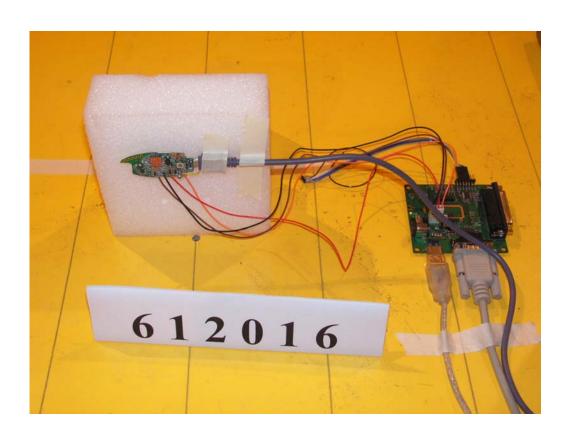
The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Pol.: V is Vertical Polarization; H is Horizontal Polarization.


4.5.10. Photographs of Radiated Emissions Test Configuration


FRONT VIEW

REAR VIEW

Page No. : 35 of 42 FCC ID: QVZ-H350 Issued Date : Feb. 07, 2006

4.6. Band Edge Emissions Measurement

4.6.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100 KHz /100 KHz for Peak

4.6.3. Test Procedures

- 1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 36 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

4.6.7. Test Result of Band Edge Emissions

For Emission in Restricted Band

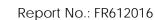
Temperature	22 °C	Humidity	64%
Test Engineer	Rush Kao	Configurations	channel 0

	Freq	Level			Antenna Factor					Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV) 	cm	deg
1	2390.000	48.22	-25.78	74.00	28.13	2.58	0.00	17.51	PEAK	100	97
2	2390.000	11.73	-42.27	54.00	28.13	2.58	0.00	-18.98	Average	100	97

Temperature	22 °C	Humidity	64%
Test Engineer	Rush Kao	Configurations	channel 78

	Freq	Level			Antenna Factor			Read Level		Ant Pos	Table Pos
	Mtz	dBuV/m	dB	dBuV/m	dB/m	dB	dB	dBuV	<u> </u>		deg
3	2483.500	58.63	-15.37	74.00	28.36	2.62	0.00	27.65	PEAK	100	100
4	2483.500	23.26	-30.74	54.00	28.36	2.62	0.00	-7.72	Average	100	100

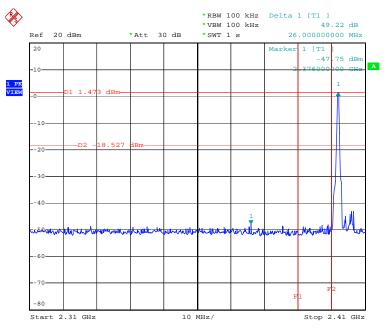
Note:

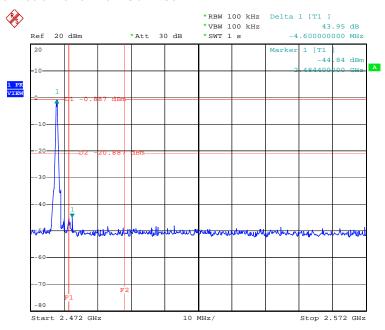

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Receiving maximum band edge emissions are Vertical Polarization.

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 37 of 42


 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006


For Emission not in Restricted Band

Low Band Edge Plot on Channel 0 / 2402 MHz

Date: 7.FEB.2006 13:15:58

High Band Edge Plot on Channel 78 / 2480 MHz

Date: 7.FEB.2006 13:19:49

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 38 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report, all antenna connectors comply with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 16, 2005	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	3565	9 kHz - 2 GHz	Mar. 08, 2005	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 31, 2005	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHZ - 40 GHz	Sep. 30, 2005	Radiation (03CH03-HY)
Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30 MHz - 200 MHz	Jul. 22, 2005	Radiation (03CH03-HY)
Log Antenna	SCHWARZBECK	VUSLP 9111	221	200 MHz - 1 GHz	Jul. 22, 2005	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1 GHz - 18 GHz	Apr. 22, 2005	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Feb. 22, 2005	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec.01, 2005	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Nov. 26, 2005	Conducted (TH01-HY)
Power meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Apr. 28, 2005	Conducted (TH01-HY)
AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005	Conducted (TH01-HY)
DC power source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Dec. 28, 2005	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2005	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 30, 2005	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	Jye Bao RG142 CB		20MHz ~ 1GHz	Dec. 30, 2005	Conducted (TH01-HY)
Oscilloscope	Tektronix	TDS1012	CO38515	100MHz / 1GS/s	Apr. 15, 2005	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Dec. 30, 2005	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer Model No		Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 24, 2004*	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	Jun. 09, 2004*	Radiation (03CH03-HY)
Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz	Jun. 02, 2005	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 40 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

6. SPORTON COMPANY PROFILE

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

6.1. Test Location

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
Ornsix	TEL		02-2696-2468
		:	
	FAX	:	02-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	03-327-3456
	FAX	:	03-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	02-2601-1640
	FAX	:	02-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	02-2631-4739
	FAX	:	02-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	02-8227-2020
	FAX	:	02-8227-2626
NEIHU	ADD	:	4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	02-2794-8886
	FAX	:	02-2794-9777
JHUBEI	ADD	:	No.8, Lane 728, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.
	TEL	:	03-656-9065
	FAX	:	03-656-9085

 Report Format Version: RF-15.247-2006-01-10-c
 Page No. : 41 of 42

 FCC ID: QVZ-H350
 Issued Date : Feb. 07, 2006

7. NVLAP CERTIFICATE OF ACCREDITATION

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200079-0

Sporton International, Inc. Hwa Ya EMC Laboratory

Tao Yuan Hsien 333 TAIWAN

is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999.
Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-01-01 through 2006-12-31

Effective dates

: 42 of 42

Report Format Version: RF-15.247-2006-01-10-c

Page No. FCC ID: QVZ-H350 Issued Date: Feb. 07, 2006