

2007-10-22

Arco Tower

Meguro-ku

JAPAN

Nokia Corporation

Shimomeguro 1-8-1

Tel. +81 3 5759 7001

TOKYO 153-0064

Robert Binder

HAC RF Emissions Test Report

Date of report:

Client:

Number of pages:

Product contact

person:

Test report no.: Salo_HAC_0742_06
Template version: 3.0

ripiate version:

Testing laboratory: TCC Nokia Salo Laboratory

P.O.Box 86 Joensuunkatu 7H / Kiila 1B FIN-24101 SALO, FINLAND Tel. +358 (0) 7180 08000

Fax. +358 (0) 7180 45220

engineer:

Measurements made by:

Tested devices:

Responsible test

FCC ID:

Supplement reports:

Testing has been carried out in accordance with:

ANSI C63.19-2006

Ari Orte

Ari Orte

RM-156

QVVRM-156

American National Standard for Methods of Measurement of Compatibility between

Wireless Communications Devices and Hearing Aids

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years

at TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

Digitally signed by Ari Orte

Date: 2007.10.22 15:10:52 +03'00'

Applicant: Nokia Corporation

Copyright © 2007 TCC Nokia

CO	DNTENTS	
1.	SUMMARY OF HAC RF EMISSION TEST REPORT	4
	1.1 Test Details	Δ
	1.2 MAXIMUM RESULTS	
	1.2.1 Electric field measurements	
	1.2.2 Magnetic field measurements	
	1.2.3 Overall RF emissions category of the tested device	
	1.2.4 Maximum Drift	
	1.2.5 Measurement Uncertainty	
2.	DESCRIPTION OF THE DEVICE UNDER TEST (DUT)	6
	2.1 PICTURE OF DEVICE	6
3.	TEST CONDITIONS	7
	3.1 Temperature and Humidity	7
	3.2 TEST SIGNAL, FREQUENCIES, AND OUTPUT POWER	
4.	DESCRIPTION OF THE TEST EQUIPMENT	8
	4.1 MEASUREMENT SYSTEM AND COMPONENTS	8
	4.1.1 Isotropic E-field probe ER3DV6	
	4.1.2 Isotropic H-field probe H3DV6	9
	4.1.3 Device Holder	
	4.2 VALIDATION OF THE SYSTEM	10
5.	DESCRIPTION OF THE TEST PROCEDURE	11
	5.1 TEST ARCH AND DEVICE HOLDER	
	5.2 Test Positions	
	5.2.1 Scan area centered at the acoustic output	
	5.3 SCAN PROCEDURES	
	5.4 SCAN AREA CENTERED AT THE MAXIMUM MAGNETIC T-COIL COUPLING	
	5.5 PROBE MODULATION FACTOR	
	5.6 SLOT AVERAGED CALCULATION METHOD	
	5.7 Sub-grid Exclusion	
6.		
U.		
7.	RESULTS	16
ΑP	PPENDIX A: SYSTEM VALIDATION SCAN	17
ΑP	PPENDIX B: MEASUREMENT SCANS	19
	PPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	
Αľ	I LINDIA C. RELEVANT FAGES I NOTI FRODE CALIDINATION REPORT(3)	23
	AC RF Emissions Report	Type: RM-156
Sa	alo_HAC_0742_06	

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)24

1. SUMMARY OF HAC RF EMISSION TEST REPORT

1.1 Test Details

Period of test	2007-10-11 to 2007-10-12
SN, HW, SW and DUT numbers	SN: 353248/01/095608/2, HW: 6105, SW: 30.0.013, DUT: 12283
of tested device	
Batteries used in testing	BL-5F, DUT: 12284, 12285
State of sample	Prototype unit
Notes	AWF = -5 for GSM

1.2 Maximum Results

The maximum measured HAC RF emissions values and categories for electric and magnetic fields are given in section 1.2.1 and 1.2.2 respectively.

1.2.1 Electric field measurements

Band & Mode	Ch / Freq. [MHz]	Limit of E-field max. value in category M3 [V/m]	Maximum E-field value after exclusion [V/m]	Category
GSM1900	810 / 1909.8	47.3 – 84.1	64.2	M3 (-5dB)

1.2.2 Magnetic field measurements

Band & Mode	Ch / Freq. [MHz]	Limit of H-field max. value in category M3 [A/m]	Maximum H-field value after exclusion [A/m]	Category
GSM1900	810 / 1909.8	0.14 - 0.25	0.157	M3(-5dB)

1.2.3 Overall RF emissions category of the tested device

Band & Mode	Combined category (E- and H-fields)	Pass / Fail
GSM1900	M3 (-5dB)	Pass

1.2.4 Maximum Drift

1	Maximum drift during magguraments	0 11 dp
	Maximum drift during measurements	O.TT OB

1.2.5 Measurement Uncertainty

Extended Uncertainty (k=2) 95%, E-field	14.7 %
Extended Uncertainty (k=2) 95%, H-field	10.9 %

2. DESCRIPTION OF THE DEVICE UNDER TEST (DUT)

Modes of Operation	Band	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	1900	GMSK	1/8	1850 - 1910

Outside of USA the transmitter of the device is capable of operating also in 900MHz, 1800MHz and 2100MHz bands, which are not part of this filing.

2.1 Picture of Device

Flip closed

Flip open

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature [°C]:	19.3 to 21.9
Ambient humidity [RH %]:	36 to 42

3.2 Test Signal, Frequencies, and Output Power

The transmitter of the device was put into operation by using a call tester. Communications between the device and the call tester were established by air link.

For all tests the device output power was set to maximum power level; a fully charged battery was used for every test sequence.

The measurements were performed on low, middle and high channels.

Type: RM-156

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement system and components

The measurements were performed using an automated near-field scanning system, DASY 4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE V4	555	12 months	2008-03
E-field Probe ER3DV6	2333	12 months	2008-02
H-field Probe H3DV6	6053	12 months	2008-02
Dipole Validation Kit, CD1880V3	1003	24 months	2009-02

Additional test equipment used in testing and validation:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SML03	101265	12 months	2008-07
Amplifier	ZHL-42 (SMA)	N072095-5	12 months	2008-07
Power Meter	NRVS	849305/028	12 months	2008-07
Power Sensor	NRV-Z32	839176/020	12 months	2008-07
Radio Communication Tester	CMU 200	101111	12 months	2008-07

4.1.1 Isotropic E-field probe ER3DV6

Construction One dipole parallel, two dipoles normal to probe axis

Built-in shielding against static charges

PEEK enclosure material

Frequency In air 100 MHz to >6 GHz; Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity \pm 0.2 dB in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 8 mm

Distance from probe tip to nearest point of dipole: 1.25 mm

Application General near-field measurements up to 6 GHz

Field component measurements
Fast automatic scanning in phantoms

4.1.2 Isotropic H-field probe H3DV6

Construction Three concentric loop sensors with 3.8 mm loop diameters

Resistively loaded detector diodes for linear response

Built-in shielding against static charges

PEEK enclosure material

Frequency 200 MHz to 3 GHz; Output linearized (absolute accuracy ±6.0%, k=2)

Directivity

± 0.25 dB (spherical isotropy error)

Dynamic Range 10 mA/m to 2 A/m at 1 GHz **Dimensions** Overall length: 330 mm

Tip length: 40 mm Body diameter: 12 mm Tip diameter: 6 mm

Distance from probe tip to nearest point of dipole: 1.1 mm

Application General magnetic near-field measurements up to 3 GHz

Field component measurements, surface current measurements

Measurements in air or liquids, low interaction

HAC RF Emissions Report Salo HAC 0742 06

Applicant: Nokia Corporation

Type: RM-156

4.1.3 Device Holder

The Device Holder and Test Arch are manufactured by Speag (http://www.dasy4.com/hac). Test arch is used for all tests i.e. for both validation testing and device testing. The holder and test arch conforms to the requirements of ANSI C63.19.

The SPEAG device holder (see Section 5.1) was used to position the test device in all tests.

4.2 Validation of the System

The manufacturer calibrates the probes annually. Validation measurements are made regularly using the dipole validation kit. The power level used by manufacturer in dipole calibration is supplied to the dipole antenna. The antenna is scanned at 1.0cm distance between top surface of the dipole and calibration point of the probe.

System Validation, H-field and E-field

f [MHz]	Description	H-field [A/m]	E-field [V/m]
	Reference result	0.452	128.8
1880	$\pm10\%$ window	0.406 - 0.497	115.9 - 141.7
	2007-10-11	0.473	131.7

Plots of the system validation scans are given in Appendix A.

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Test Arch and Device Holder

The test device was placed in the Device Holder (illustrated below) that is supplied by SPEAG. Using this positioner the tested device is positioned under Test Arch.

Device holder and Test Arch supplied by SPEAG

5.2 Test Positions

5.2.1 Scan area centered at the acoustic output

The device was positioned such that Device Reference plane was touching the bottom of the Test Arch. The scan is centered at the acoustic output by aligning the acoustic output with the intersection of the Test Arch's middle bar and dielectric wire.

Photo of the device positioned under Test Arch

5.3 Scan Procedures

Near field scans of 5cm x 5cm were used for determination of the field distribution. Measurement plane distance from WD reference plane is 1cm. Scans were performed for both E-and H-field using appropriate probe. DASY software divides detected values into 3 x 3 sub grids as described in the C63.19 standard.

5.4 Scan area centered at the maximum magnetic T-coil coupling

Scanning centered at the maximum magnetic T-coil coupling was not applicable for the tested device.

5.5 Probe Modulation Factor

All raw measurements in DASY4 system are presented as RMS values. The measurement software then applies Probe Modulation Factor (PMF) to convert readings to "slot averaged" peak values as required by C63.19 standard.

Therefore PMF was assessed as described in C63.19 standard along with Speag's Application Note (AN_Hearing_Aid_Compatibility.pdf, section 28.8, "Definition / Determination of the Probe Modulation Factor").

Observed Modulation Factor: Observed Crest Factor:

 $PMF_{(E)} = E-field_{(CW)} / E-field_{(Modulated)}$ $CF_{(E)} = (PMF_{(E)})^2$

 $PMF_{(H)} = H-field_{(CW)} / H-field_{(Modulated)}$ $CF_{(H)} = (PMF_{(H)})^2$

HAC RF Emissions Report Salo_HAC_0742_06

Applicant: Nokia Corporation

Type: RM-156

Modulation factors, GSM

f [MHz]	<i>p</i> [dBm]		d [V/m] SN: 2333	H-field [A/m] Probe SN: 6053		PMF E-field	PMF H-field
		CW	GSM	CW	GSM	E-Helu	n-Heiu
1880.0	20	136.3	48.4	0.506	0.249	2.82	2.03

5.6 Slot Averaged Calculation Method

The slot-averaged values for the every measured signal type were calculated using observed duty cycles.

5.7 Sub-grid Exclusion

The measurement grid defined in C63.19 consists of 9 evenly sized blocks, which are used to define permissible exclusion areas. For both E- and H-field measurements three contiguous blocks may be excluded from the measurements except center block may never be excluded. There must be 4 blocks left that are common for both E- and H-field measurements, so maximum of 5 different blocks can be excluded (e.g. 3 blocks excluded from E-field and 2 blocks from H-field).

5.8 Category Limits

From remaining maximum values after exclusion process, Hearing Aid M-category is defined according to the category limits of C63.19 - 2006.

		Limits for RF-parameters <960MHz			Limits	for RF-para	meters >9	60MHz	
Catagoni	AWF	E-field	[V/m]	H-field	[A/m]	E-field	[V/m]	H-field	l [A/m]
Category	[dB]	Min	Max	Min	Max	Min	Max	Min	Max
M1	0	631.0	1122.0	1.91	3.39	199.5	354.8	0.6	1.07
M1	-5	473	841.4	1.43	2.54	149.6	266.1	0.45	0.8
M2	0	354.8	631.0	1.07	1.91	112.2	199.5	0.34	0.6
M2	-5	266.1	473.2	0.80	1.43	84.1	149.6	0.25	0.45
M3	0	199.5	354.8	0.60	1.07	63.1	112.2	0.19	0.34
M3	-5	149.6	266.1	0.45	0.80	47.3	84.1	0.14	0.25
M4	0		<199.5		<0.60		<63.1		<0.19
M4	-5		<149.6		<0.45		<47.3		<0.14

6. MEASUREMENT UNCERTAINTY

Source of Uncertainty	Tolerance	Probability	Div.	ci	ci	Standard	Standard	Remark
	±%	Distribution		E	н	Uncertainty	Uncertainty	
						±%, E	±%, H	
MEASUREMENT SYSTEM								
Probe Calibration	5.1	N	1	1	1	5.1	5.1	
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7	
Sensor Displacement	16.5	R	√3	1	0.145	9.5	1.4	
Boundary Effect	2.4	R	√3	1	1	1.4	1.4	
Linearity	4.7	R	√3	1	1	2.7	2.7	SAR
Scaling to Peak Envelope Power	2.0	R	√3	1	1	1.2	1.2	
System Detection Limit	1.0	R	√3	1	1	0.6	0.6	
Readout Electronics	0.3	N	1	1	1	0.3	0.3	SAR
Response Time	0.8	R	√3	1	1	0.5	0.5	
Integration Time	2.6	R	√3	1	1	1.5	1.5	SAR
RF Ambient Conditions	3.0	R	√3	1	1	1.7	1.7	SAR
RF Reflections	12.0	R	√3	1	1	6.9	6.9	
Probe Positioner	1.2	R	√3	1	0.67	0.7	0.5	
Probe Positioning	4.7	R	√3	1	0.67	2.7	1.8	
Extrapolation and Interpolation	1.0	R	√3	1	1	0.6	0.6	SAR
TEST SAMPLE RELATED								
Device Positioning Vertical	4.7	R	√3	1	0.67	2.7	1.8	
Device Positioning Lateral	1.0	R	√3	1	1	0.6	0.6	
Device Holder and Test Arch	2.4	R	√3	1	1	1.4	1.4	
Power Drift	5.0	R	√3	1	1	2.9	2.9	SAR
TEST ARCH AND SETUP RELATED								
Test Arch Thickness	2.4	R	√3	1	0.67	1.4	0.9	
COMBINED STANDARD UNCERTAINTY						14.7	10.9	
Expanded Uncertainty on Power						29.4	21.8	
Expanded Uncertainty on Field						14.7	10.9	

7. RESULTS

The calculated maximum field values for the test device are tabulated below:

GSM1900, E and H RF emissions results

Mode	Flip option	Test configuration	Ch 512 1850.2MHz	Ch 661 1880.0MHz	Ch 810 1909.8MHz
		E-field [V/M]	57.2	58.3	64.2
GSM1900	Flip open	H-field [A/m]	0.124	0.134	0.157
		Category	M3(-5dB)	M3(-5dB)	M3(-5dB)

Plots of the measurement scans are shown in **Appendix B.** Excluded cells are colored orange.

APPENDIX A: SYSTEM VALIDATION SCAN

Date/Time: 2007-10-11 15:04:42 Test Laboratory: TCC Nokia Type: CD1880V3; Serial: 1003	Date/Time: 2007-10-11 12:27:30 Test Laboratory: TCC Nokia Type: CD1880V3; Serial: 1003		
Communication System: CW Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air; Medium Notes: Not Specified Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1000 kg/m ³ Phantom section: E Dipole Section	Communication System: CW Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air; Medium Notes: Not Specified Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³ Phantom section: H Dipole Section		
DASY4 Configuration: - Probe: ER3DV6 - SN2333; Probe Notes: - ConvF(1, 1, 1); Calibrated: 2007-02-13 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172	DASY4 Configuration: - Probe: H3DV6 - SN6053; Probe Notes: -; Calibrated: 2007-02-13 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172		
E Scan - ER probe center 10mm above CD1880 Dipole/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 132.5 V/m Probe Modulation Factor = 1.00 Reference Value = 140.6 V/m; Power Drift = -0.019 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)	H Scan - H3DV6 probe center 10mm above CD1880 Dipole/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.473 A/m Probe Modulation Factor = 1.00 Reference Value = 0.501 A/m; Power Drift = 0.013 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)		
Grid 1 Grid 2 Grid 3 130.8 130.9 121.6 Grid 4 Grid 5 Grid 6 85.4 85.4 78.8 Grid 7 Grid 8 Grid 9 132.5 132.5 115.1	Grid 1 Grid 2 Grid 3 0.412 0.440 0.423 Grid 4 Grid 5 Grid 6 0.443 0.473 0.456 Grid 7 Grid 8 Grid 9 0.391 0.421 0.406		

HAC RF Emissions Report Salo_HAC_0742_06 Applicant: Nokia Corporation

Copyright © 2007 TCC Nokia

Type: RM-156

APPENDIX B: MEASUREMENT SCANS

MEASUREMENT DATA GSM1900, CHANNEL LOW (1850.2 MHz) Date/Time: 2007-10-12 18:49:05 Date/Time: 2007-10-12 14:33:17 **Test Laboratory: TCC Nokia** Test Laboratory: TCC Nokia Type: RM-156; Serial: 353248/01/095608/2 Type: RM-156; Serial: 353248/01/095608/2 Communication System: GSM1900 (ER3DV6) Communication System: GSM1900 (H3DV6) Frequency: 1850.2 MHz; Duty Cycle: 1:7.8 Frequency: 1850.2 MHz; Duty Cycle: 1:4.16 Medium: Air; Medium Notes: Not Specified Medium: Air; Medium Notes: Not Specified Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: E Device Section Phantom section: H Device Section **DASY4 Configuration: DASY4 Configuration:** - Probe: ER3DV6 - SN2333; Probe Notes: - Probe: H3DV6 - SN6053; Probe Notes: - ConvF(1, 1, 1); Calibrated: 2007-02-13 -; Calibrated: 2007-02-13 - Sensor-Surface: (Fix Surface) - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: Not - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: Not Specified Specified - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172 SEMCAD, V1.8 Build 172 H Scan - H3DV6 - measurement distance from the closest probe E Scan - ER3DV6 - measurement distance from the closest probe sensor part to the Device = 10mm (low)/Hearing Aid sensor part to the Device = 10mm (Low)/Hearing Aid Compatibility Test (101x101x1): Compatibility Test (101x101x1): Measurement grid: dx=5mm, Measurement grid: dx=5mm, dy=5mm dv=5mm Maximum value of peak Total field = 60.0 V/m Maximum value of peak Total field = 0.129 A/m Probe Modulation Factor = 2.82 Probe Modulation Factor = 2.03 Reference Value = 13.8 V/m; Power Drift = -0.038 dB Reference Value = 0.047 A/m; Power Drift = -0.012 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB) Hearing Aid Near-Field Category: M4 (AWF -5 dB) 0.129 52.0 0.113 44.0 0.097 36.1 0.081 28.1 0.065 Grid 1 Grid 2 Grid 3 Grid 1 Grid 2 Grid 3 52.1 46.4 51.9 0.129 0.128 0.103 Grid 4 Grid 5 Grid 6 Grid 4 Grid 5 Grid 6 53.3 55.3 59.5 0.105 0.105 0.091 Grid 8 Grid 9 Grid 8 Grid 9 Grid 7 Grid 7 0.124 | 0.115 | 0.077 48.1 57.2 60.0

MEASUREMENT DATA GSM1900, CHANNEL MIDDLE (1880 MHz) Date/Time: 2007-10-12 18:25:08 Date/Time: 2007-10-12 14:01:26 **Test Laboratory: TCC Nokia** Test Laboratory: TCC Nokia Type: RM-156; Serial: 353248/01/095608/2 Type: RM-156; Serial: 353248/01/095608/2 Communication System: GSM1900 (ER3DV6) Communication System: GSM1900 (H3DV6) Frequency: 1880 MHz; Duty Cycle: 1:7.8 Frequency: 1880 MHz; Duty Cycle: 1:4.16 Medium: Air; Medium Notes: Not Specified Medium: Air; Medium Notes: Not Specified Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: E Device Section Phantom section: H Device Section DASY4 Configuration: **DASY4 Configuration:** - Probe: ER3DV6 - SN2333; Probe Notes: - Probe: H3DV6 - SN6053; Probe Notes: - ConvF(1, 1, 1); Calibrated: 2007-02-13 -; Calibrated: 2007-02-13 - Sensor-Surface: (Fix Surface) - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: Not - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: Not - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172 SEMCAD, V1.8 Build 172 E Scan - ER3DV6 - measurement distance from the closest probe H Scan - H3DV6 - measurement distance from the closest sensor part to the Device = 10mm (Middle)/Hearing Aid Compatibility probe sensor part to the Device = 10mm (middle)/Hearing Aid Compatibility Test (101x101x1): Measurement grid: Test (101x101x1): Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 62.6 V/m dx=5mm, dy=5mm Probe Modulation Factor = 2.82 Maximum value of peak Total field = 0.146 A/m Reference Value = 15.2 V/m; Power Drift = -0.033 dB Probe Modulation Factor = 2.03 Hearing Aid Near-Field Category: M3 (AWF -5 dB) Reference Value = 0.054 A/m; Power Drift = -0.108 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB) 0.146 54.5 0.128 46.4 0.110 38.3 0.092 0.074 30.2 Grid 1 Grid 2 Grid 3 Grid 1 Grid 2 Grid 3 53.5 52.9 58.5 0.146 0.141 0.107 Grid 4 Grid 5 Grid 6 Grid 4 Grid 5 Grid 6 0.097 55.0 58.3 62.6 0.122 0.120 Grid 9 Grid 7 Grid 8 Grid 7 Grid 8 Grid 9 0.134 | 0.128 | 0.087 51.2 57.0 61.2

MEASUREMENT DATA GSM1900, CHANNEL HIGH (1909.8 MHz) Date/Time: 2007-10-12 14:15:39 Date/Time: 2007-10-12 18:31:30 **Test Laboratory: TCC Nokia** Test Laboratory: TCC Nokia Type: RM-156; Serial: 353248/01/095608/2 Type: RM-156; Serial: 353248/01/095608/2 Communication System: GSM1900 (ER3DV6) Communication System: GSM1900 (H3DV6) Frequency: 1909.8 MHz; Duty Cycle: 1:4.16 Frequency: 1909.8 MHz; Duty Cycle: 1:7.8 Medium: Air; Medium Notes: Not Specified Medium: Air; Medium Notes: Not Specified Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 1 kg/m³ Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: E Device Section Phantom section: H Device Section DASY4 Configuration: DASY4 Configuration: - Probe: ER3DV6 - SN2333; Probe Notes: - Probe: H3DV6 - SN6053: Probe Notes: - ConvF(1, 1, 1); Calibrated: 2007-02-13 -; Calibrated: 2007-02-13 - Sensor-Surface: (Fix Surface) - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Electronics: DAE4 Sn555; Calibrated: 2007-03-15 - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: Not - Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: Not Specified Specified - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: - Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172 SEMCAD, V1.8 Build 172 E Scan - ER3DV6 - measurement distance from the closest probe H Scan - H3DV6 - measurement distance from the closest probe sensor part to the Device = 10mm (High)/Hearing Aid sensor part to the Device = 10mm (High)/Hearing Aid Compatibility Test (101x101x1): Measurement grid: dx=5mm, Compatibility Test (101x101x1): Measurement grid: dx=5mm, dy=5mm dy=5mm Maximum value of peak Total field = 69.8 V/m Maximum value of peak Total field = 0.169 A/m Probe Modulation Factor = 2.82 Probe Modulation Factor = 2.03 Reference Value = 15.7 V/m; Power Drift = -0.071 dB Reference Value = 0.062 A/m; Power Drift = -0.026 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB) Hearing Aid Near-Field Category: M3 (AWF -5 dB) 69.8 0.169 60.4 0.149 51.1 0.128 41.7 0.108 32.4 0.087 Grid 1 Grid 2 Grid 1 Grid 2 Grid 3 Grid 3 63.8 0.157 | 0.156 | 0.123 57.1 57.0 Grid 4 Grid 5 Grid 6 Grid 4 Grid 5 Grid 6 58.3 69.8 0.143 0.140 0.112 64.2 Grid 7 Grid 8 Grid 9 Grid 8 Grid 9 Grid 7

HAC RF Emissions Report Salo_HAC_0742_06 Applicant: Nokia Corporation

54.2

63.7

68.7

Copyright © 2007 TCC Nokia

0.169 0.161

0.108

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

E-field probe ER3DV6, SN: 2333 H-field probe H3DV6, SN: 6053

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdlenst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

C

S

Client

Nokia Salo TCC

Certificate No: ER3-2333 Feb07

CALIBRATION CERTIFICATE ER3DV6 - SN:2333 Object QA CAL-02.v4 Calibration procedure(s) Calibration procedure for E-field probes optimized for close near field evaluations in air February 13, 2007 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration ID# Power meter E4419B GB41293874 5-Apr-06 (METAS, No. 251-00557) Apr-07 Apr-07 Power sensor E4412A MY41495277 5-Apr-06 (METAS, No. 251-00557) Power sensor E4412A MY41498087 5-Apr-06 (METAS, No. 251-00557) Apr-07 Reference 3 dB Attenuator SN: S5054 (3c) 10-Aug-06 (METAS, No. 217-00592) Aug-07 Reference 20 dB Attenuator SN: \$5086 (20b) 4-Apr-06 (METAS, No. 251-00558) Apr-07 Reference 30 dB Attenuator SN: \$5129 (30b) 10-Aug-06 (METAS, No. 217-00593) Aug-07 Reference Probe ER3DV6 SN: 2328 2-Oct-06 (SPEAG, No. ER3-2328 Oct06) Oct-07 DAE4 SN: 654 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Jun-07 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C U\$3642U01700 4-Aug-99 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E HS37390585 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Function Name Signature Calibrated by: Katja Pokovic Technical Manager Niels Kuster Quality Manager Approved by: Issued: February 13, 2007

Certificate No: ER3-2333 Feb07

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY - Parameters of Probe: ER3DV6 SN:2333

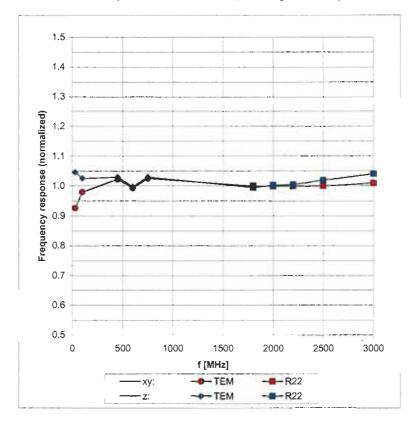
Sensiti	Sensitivity in Free Space [μV/(V/m) ²]			mpression ^A
	NormX	1.44 ± 10.1 % (k=2)	DCP X	94 mV
	NormY	1.50 ± 10.1 % (k=2)	DCP Y	94 mV
	NormZ	1.46 ± 10.1 % (k=2)	DCP Z	99 mV

Frequency Correction

X	0.0
Υ	0.0
Z	0.0

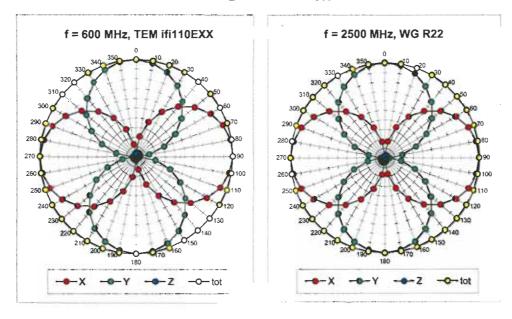
Sensor Offset (Probe Tip to Sensor Center)

X 2.5 mm Y 2.5 mm Z 2.5 mm

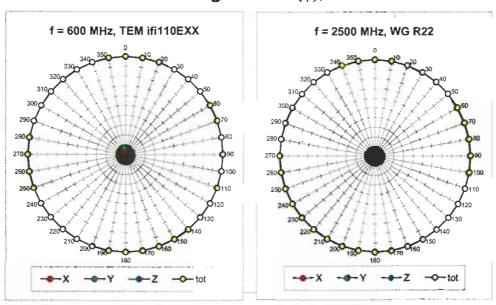

Connector Angle -74 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A numerical linearization parameter: uncertainty not required

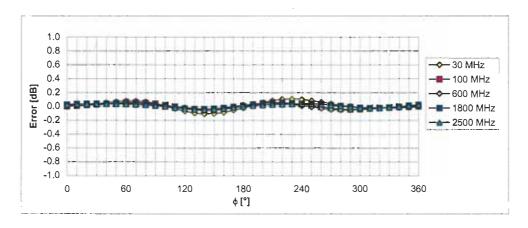

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide R22)

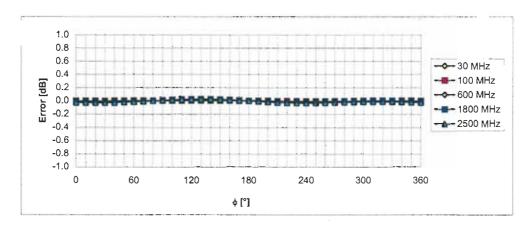


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

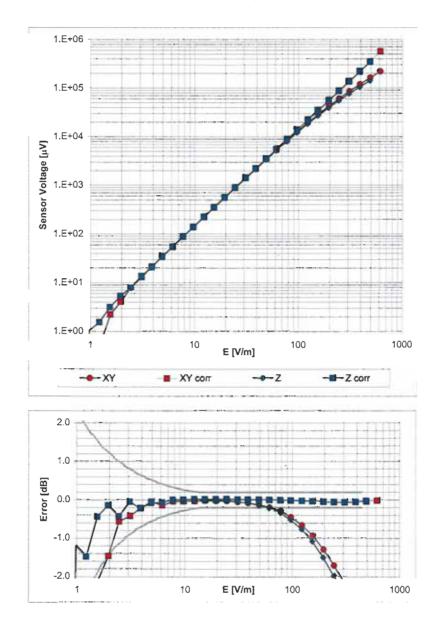

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Certificate No: ER3-2333_Feb07


Page 6 of 9

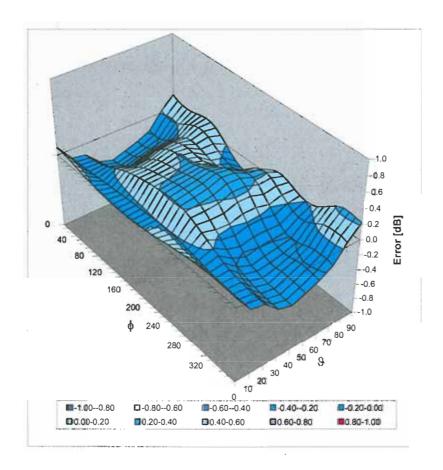
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Receiving Pattern (ϕ), ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(E-field)


(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ER3-2333_Feb07

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

С

S

Client

Nokia Salo TCC

Certificate No: H3-6053_Feb07

Object	H3DV6 - SN:60	53	
Calibration procedure(s)	QA CAL-03.v4 Calibration proceevaluations in a	edure for H-field probes optimized for ir	r close near field
Calibration date:	February 13, 20	07	of registion
Condition of the calibrated item	In Tolerance		
All calibrations have been conduc	cted in the closed laborate	ory facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power meter E4419B	ID# GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Primary Standards Power meter E4419B Power sensor E4412A	ID# GB41293874 MY41495277	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277 MY41498087	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592)	Apr-07 Apr-07 Apr-07 Aug-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 6182	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 6182 SN: 654	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07 Jun-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 6182 SN: 654	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07 Jun-07 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 6182 SN: 654 ID # US3642U01700 US37390585 Name	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07 Jun-07 Scheduled Check In house check: Nov-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 6182 SN: 654 ID # US3642U01700 US37390585	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe H3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 6182 SN: 654 ID # US3642U01700 US37390585 Name	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Oct-06 (SPEAG, No. H3-6182_Oct06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Oct-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07

DASY - Parameters of Probe: H3DV6 SN:6053

Sensitivity in Free Space [A/m / $\sqrt{(\mu V)}$]

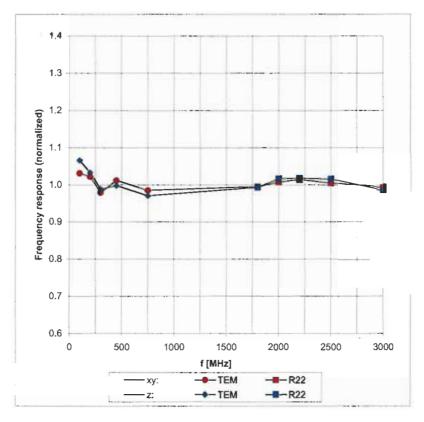
a0 a1 a2 X 2.724E-03 -8.535E-5 -3.619E-5 ± 5.1 % (k=2) Y 2.567E-03 -2.007E-4 7.239E-5 ± 5.1 % (k=2) Z 2.914E-03 -3.715E-4 5.754E-5 ± 5.1 % (k=2)

Diode Compression¹

DCP X 85 mV DCP Y 85 mV DCP Z 85 mV

Sensor Offset (Probe Tip to Sensor Center)

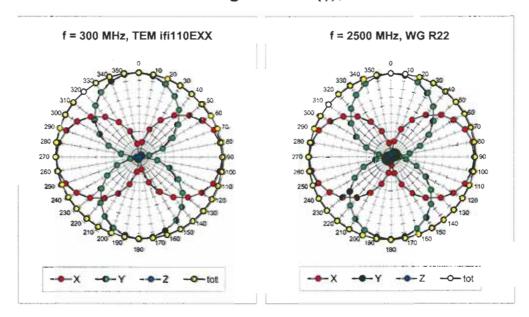
X 3.0 mm Y 3.0 mm Z 3.0 mm

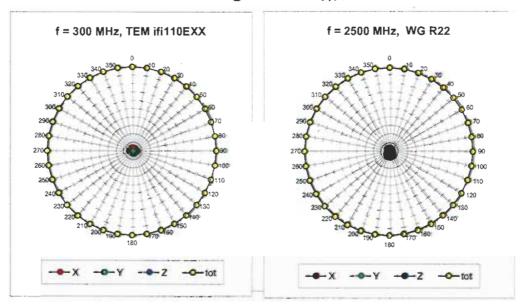

Connector Angle 37 °

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

¹ numerical linearization parameter: uncertainty not required

Frequency Response of H-Field

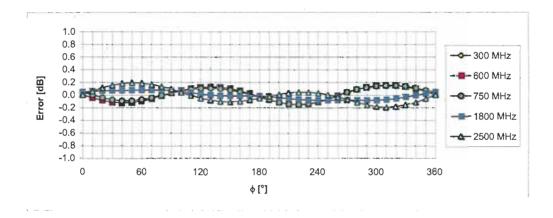

(TEM-Cell:ifi110, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

H3DV6 SN:6053 February 13, 2007

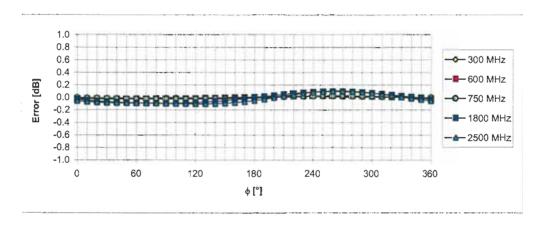
Receiving Pattern (ϕ), ϑ = 90°

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Certificate No: H3-6053_Feb07

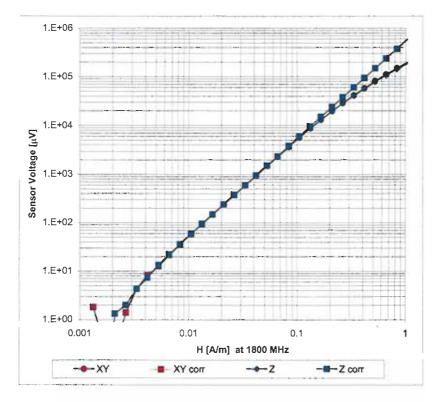
Page 6 of 8

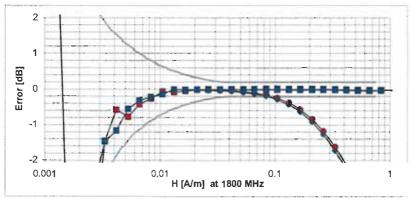

H3DV6 SN:6053 February 13, 2007

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), ϑ = 0°




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: H3-6053_Feb07

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

1880MHz dipole CD1880V3, SN: 1003

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kafibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

S

Client

Nokia Salo TCC

Certificate No: CD1880V3-1003 Feb07

CALIBRATION CERTIFICATE CD1880V3 - SN: 1003 Object QA CAL-20.v4 Calibration procedure(s) Calibration procedure for dipoles in air February 12, 2007 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Calibrated by, Certificate No.) Primary Standards ID# Scheduled Calibration DAE4 SN: 660 1-Mar-06 (SPEAG, No. DAE4-660_Mar06) Calibration, Mar-07 Probe ER3DV6 SN: 2336 27-Dec-06 (SPEAG, No. ER3-2336_Dec06) Calibration, Dec-07 Probe H3DV6 SN: 6065 27-Dec-06 (SPEAG, No. H3-6065-Dec06) Calibration, Dec-07 1D# Check Date (in house) Scheduled Check Secondary Standards Power meter EPM-4419B GB43310788 12-Aug-03 (SPEAG, in house check Oct-06) In house check: Oct-07 Power sensor HP 8481A MY41093312 10-Aug-03 (SPEAG, in house check Oct-06) In house check: Oct-08 Power sensor HP 8481A MY41093315 10-Aug-03 (SPEAG, in house check Oct-06) In house check: Oct-08 Network Analyzer HP 8753E US37390585 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 RF generator R&S SMT06 SN: 100005 26-Jul-04 (SPEAG, in house check Nov-05) In house check: Nov-07 Name Function Mike Meili Calibrated by: Laboratory Technician Fin Bomholt Approved by: **Technical Director** Issued: February 14, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B53
DASY PP Version	SEMCAD	V1.8 B172
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.452 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	130.9 V/m
Maximum measured above low end	100 mW forward power	126.7 V/m
Averaged maximum above arm	100 mW forward power	128.8 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	19.0 dB	(49.8 + j11.3) Ohm
1880 MHz	19.9 dB	(53.7 + j9.9) Ohm
1900 MHz	19.8 dB	(56.3 + j9.0) Ohm
1950 MHz	23.7 dB	(57.0 – j0.7) Ohm
2000 MHz	26.2 dB	(45.4 + j0.7) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1003_Feb07

Date/Time: 2/12/2007 4:55:48 PM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1003

Communication System; CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

DASY4 Configuration:

• Probe: H3DV6 - SN6065; ; Calibrated: 12/27/2006

• Sensor-Surface: (Fix Surface)

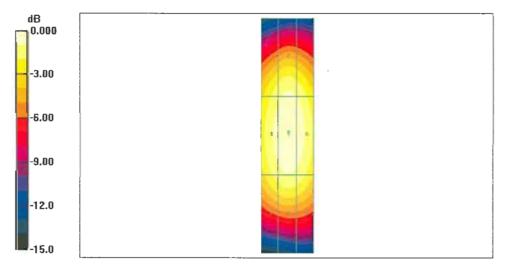
Electronics: DAE4 Sn660; Calibrated: 3/1/2006

Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

H Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.452 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.476 A/m; Power Drift = 0.007 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.392	0.419	0.404
Grid 4	Grid 5	Grid 6
0.425	0.452	0.437
0.425 Grid 7	0.452 Grid 8	0.437 Grid 9

0 dB = 0.452A/m

Certificate No: CD1880V3-1003_Feb07

Page 5 of 6

Date/Time: 2/12/2007 2:59:33 PM

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1003

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: E Dipole Section

DASY4 Configuration:

• Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 12/27/2006

Sensor-Surface: (Fix Surface)

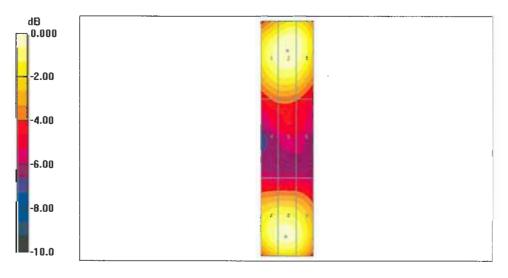
Electronics: DAE4 Sn660; Calibrated: 3/1/2006

• Phantom: HAC Test Arch 4.6; Type: SD HAC P01 BA; Serial: 1002

Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

E Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 130.9 V/m

Probe Modulation Factor = 1.00

Reference Value = 139.0 V/m; Power Drift = 0.015 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
126.8	130.9	127.9
Grid 4	Grid 5	Grid 6
86.2	87.1	84.0
86.2 Grid 7	87.1 Grid 8	84.0 Grid 9

0 dB = 130.9 V/m

Certificate No: CD1880V3-1003_Feb07

Page 6 of 6