

# FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

# FOR

# **BLUETOOTH MODULE**

# MODEL NUMBER: 3e-250

# BRAND NAME: 3e-250 BLUETOOTH TO RS232 CORDLESS ADAPTER

# FCC ID: QVT250-01

# **REPORT NUMBER: 03U1756-1**

# **ISSUE DATE: JANUARY 30, 2003**

Prepared for 3E TECHNOLOGIES INTERNATIONAL INC. 700 KING FARM BLVD, SUITE 600 ROCKVILLE, MD 20850, USA.

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

# TABLE OF CONTENTS

| 1. | TEST RESULT CERTIFICATION                          | . 3      |
|----|----------------------------------------------------|----------|
| 2. | EUT DESCRIPTION                                    | . 4      |
| 3. | TEST METHODOLOGY                                   | . 5      |
| 4. | FACILITIES AND ACCREDITATION                       | . 5      |
| 4  | .1. FACILITIES AND EQUIPMENT                       | . 5      |
| 4  | 2.2. LABORATORY ACCREDITATIONS AND LISTINGS        | . 5      |
| 4  | .3. TABLE OF ACCREDITATIONS AND LISTINGS           | . 6      |
| CA | LIBRATION AND UNCERTAINTY                          | .7       |
| 4  | .4. MEASURING INSTRUMENT CALIBRATION               | . 7      |
| 4  | .5. MEASUREMENT UNCERTAINTY                        | . 7      |
| 4  | .6. TEST AND MEASUREMENT EQUIPMENT                 | . 8      |
| 5. | SETUP OF EQUIPMENT UNDER TEST                      | . 9      |
| 6. | APPLICABLE RULES                                   | 12       |
| 7. | TEST SETUP, PROCEDURE AND RESULT                   | 16       |
| 7  | .1. TEST SETUPS FOR ANTENNA PORT MEASUREMENTS      | 16       |
|    | 7.1.1. Relative Amplitude Measurements             | 16       |
| _  | 7.1.2. Absolute Amplitude Measurements             | 16       |
| 7  | .2. 20 dB BANDWIDTH                                | 18       |
| 7  | 3. HOPPING FREQUENCY SEPARATION                    | 22       |
| 7  | .4. NUMBER OF HOPPING FREQUENCIES                  | 24       |
| 7  | 7.5. TIME OF OCCUPANCY                             | 29       |
| 7  | .6. PEAK POWER                                     | 32       |
| 7  | 7. PEAK POWER SPECTRAL DENSITY                     | 36       |
| 7  | .8. MAXIMUM PERMISSIBLE EXPOSURE                   | 40       |
| 7  | .9. SPURIOUS EMISSIONS                             | 42       |
|    | 7.9.1. Semi-Anechoic Chamber Measurements          | 43       |
| _  | 1.9.2. Open Sile Measurements                      | 05       |
| /  | .10. UNDESIKABLE EMISSIONS – KADIATED MEASUREMENTS | 99<br>99 |
| 7  | .11. POWERLINE CONDUCTED EMISSIONS                 | 82       |
| 8. | SETUP PHOTOS                                       | 85       |

Page 2 of 90

# **1. TEST RESULT CERTIFICATION**

FCC PART 15 SUBPART C

| STANDAR          | D TEST RESULTS                                                                              |  |  |  |
|------------------|---------------------------------------------------------------------------------------------|--|--|--|
|                  | APPLICABLE STANDARDS                                                                        |  |  |  |
| DATE TESTED:     | JANUARY 20 – JANUARY 30, 2003                                                               |  |  |  |
| MODEL NAME:      | 3e-250                                                                                      |  |  |  |
| EUT DESCRIPTION: | BLUETOOTH TO RS232 CORDLESS ADAPTER                                                         |  |  |  |
| COMPANY NAME:    | 3E TECHNOLOGIES INTERNARIONAL INC.<br>700 KING FARM BLVD., SUITE 600<br>ROCKVILLE, MD 20850 |  |  |  |

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

M to

MIKE HECKROTTE CHIEF ENGINEER COMPLIANCE CERTIFICATION SERVICES

Chin Pany

NO NON-COMPLIANCE NOTED

CHIN PANG EMC TECHNICIAN COMPLIANCE CERTIFICATION SERVICES

Page 3 of 90

# 2. EUT DESCRIPTION

The 3e-250 Bluetooth to RS232 Cordless Adapter is a Plug and Play adapter that allows you to use your RS232 (Serial) Port to communicate wirelessly between multiple pieces of equipment.

In itself, the 3e-250 required no installation of software or drivers on the host machine. It doesn't initiate communications, but simply direct communication between equipment such as data recorders, computers, handheld devoices, test electronics equipment devices and the like.

It enables users to connect measurement device wirelessly to a central analysis and recording area, eliminating the need to download information from an unconnected measurement device.

The adapter incorporates a Bluetooth solution containing a BT 1.1 complaint transceiver operating in the 2.4GHz range using frequency hopping at 1600 times/sec among the available frequency ranges.

The operating rang of the 3e-250 is up to 30m or 100feet. It provides link control functionality and supports operation within a Bluetooth piconet in a slave mode. It supports all Bluetooth data rates of up to 723 Kbits/sec.

The following technical description details apply to the EUT project

Modulation: Frequency Hopping Spread Spectrum Operating Frequency Range: 2402 MHz – 2480 MHz EUT has a peak output power 6.8dBm and a max antenna gain of 2dBi.

Page 4 of 90

# 3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, and 15.247.

# 4. FACILITIES AND ACCREDITATION

# 4.1. FACILITIES AND EQUIPMENT

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

# 4.2. LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2)).

Page 5 of 90

## 4.3. TABLE OF ACCREDITATIONS AND LISTINGS

| Country | Agency             | Scope of Accreditation                                                                                                                                                                                                                            | Logo                                |
|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| USA     | NVLAP*             | FCC Part 15, CISPR 22, AS/NZS 3548,IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC                                                                                                                                                               | QAIVN                               |
|         |                    | 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11, CNS 13438                                                                                                                                                                                | 200065-0                            |
| USA     | FCC                | 3/10 meter Open Area Test Sites to perform<br>FCC Part 15/18 measurements                                                                                                                                                                         | <b>FC</b>                           |
| Japan   | VCCI               | CISPR 22 Two OATS and one conducted Site                                                                                                                                                                                                          | <b>VCCI</b><br>R-1014, R-619, C-640 |
| Norway  | NEMKO              | EN50081-1, EN50081-2, EN50082-1,<br>EN50082-2, IEC61000-6-1, IEC61000-6-2,<br>EN50083-2, EN50091-2, EN50130-4,<br>EN55011, EN55013, EN55014-1, EN55104,<br>EN55015, EN61547, EN55022, EN55024,<br>EN61000-3-2, EN61000-3-3, EN60945,<br>EN61326-1 | N <sub>ELA 117</sub>                |
| Norway  | NEMKO              | EN60601-1-2 and IEC 60601-1-2, the<br>Collateral Standards for Electro-Medical<br>Products. MDD, 93/42/EEC, AIMD<br>90/385/EEC                                                                                                                    | N <sub>ELA-171</sub>                |
| Taiwan  | BSMI               | CNS 13438                                                                                                                                                                                                                                         | (四)<br>SL2-IN-E-1012                |
| Canada  | Industry<br>Canada | RSS210 Low Power Transmitter and Receiver                                                                                                                                                                                                         | Canada<br>IC2324 A,B,C, and F       |

\* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 6 of 90

# **CALIBRATION AND UNCERTAINTY**

# 4.4. MEASURING INSTRUMENT CALIBRATION

The measurement instruments utilized to perform the tests documented in this report have been calibrated in accordance with the manufacturer's recommendations, and are traceable to national standards.

# 4.5. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Radiated Emission             |             |  |  |  |  |  |
|-------------------------------|-------------|--|--|--|--|--|
| 30MHz – 200 MHz               | +/- 3.3dB   |  |  |  |  |  |
| 200MHz – 1000MHz              | +4.5/-2.9dB |  |  |  |  |  |
| 1000MHz – 2000MHz             | +4.6/-2.2dB |  |  |  |  |  |
| Power Line Conducted Emission |             |  |  |  |  |  |
| 150kHz – 30MHz                | +/-2.9      |  |  |  |  |  |

Any results falling within the above values are deemed to be marginal.

Page 7 of 90

# 4.6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENT LIST                 |                      |                 |            |          |  |  |  |  |
|-------------------------------------|----------------------|-----------------|------------|----------|--|--|--|--|
| Name of Equipment                   | Manufacturer         | Model No.       | Serial No. | Due Date |  |  |  |  |
| Quasi-Peak Detector                 | HP9K - 1GHz          | 85650A          | 3145A01654 | 6/1/03   |  |  |  |  |
| Spectrum Display                    | HP                   | 85662A          | 2152A03066 | 6/1/03   |  |  |  |  |
| Spectrum Analyzer                   | HP100Hz - 22GHz      | 8566B           | 3014A06685 | 6/1/03   |  |  |  |  |
| Pre-Amplifier, 25 dB                | HP 0.1 - 1300MHz     | 8447D (P_1M)    | 2944A06833 | 8/22/03  |  |  |  |  |
| Antenna, Bicon                      | Eaton30 - 200MHz     | 94455-1         | 1197       | 3/30/03  |  |  |  |  |
| Antenna, LP                         | EMCO200 - 2000MHz    | 3146            | 2120       | 3/30/03  |  |  |  |  |
| EMI Test Receiver                   | Rohde & Schwarz      | ESHS 20         | 827129/006 | 4/17/03  |  |  |  |  |
| LISN                                | Fischer 9k - 100MHz  | C-LISN-50/250-2 | 114        | 9/6/03   |  |  |  |  |
| LISN                                | Solar Elec. Co.      | 012-50-R-24-BN  | 837990     | 9/6/03   |  |  |  |  |
| Line Filter                         | Lindgren 10k - 10GHz | LMF-3489        | <b>497</b> | N.C.R.   |  |  |  |  |
| Pre-amplifier,35.5 dB (1 - 26.5GHz) | HP                   | 8449B           | 3008A00369 | 6/30/03  |  |  |  |  |
| Horn ( 1-18GHz )                    | EMCO                 | 3115            | 6717       | 1/31/03  |  |  |  |  |
| Spectrum Analyzer                   | Agilent              | E4440A          | US42221737 | 9/24/03  |  |  |  |  |
| Horn (18-26.5GHz)                   | ARA                  | 3115            | 1264       | 11/1/03  |  |  |  |  |
| High Pass Filter (4.57GHz)          | FSY Microwave        | FM-4570-9SS     | 3          | N.C.R.   |  |  |  |  |
| Spectrum Analyzer                   | HP                   | 8593EM          | 3710A00205 | 6/11/03  |  |  |  |  |

Page 8 of 90

# 5. SETUP OF EQUIPMENT UNDER TEST

#### SETUP INFORMATION FOR TRANSMITTER TESTS

#### SUPPORT EQUIPMENT

| TEST PERIPHERALS                                           |           |              |                 |            |  |  |  |  |  |  |
|------------------------------------------------------------|-----------|--------------|-----------------|------------|--|--|--|--|--|--|
| Device Type Manufacturer Model Number Serial Number FCC ID |           |              |                 |            |  |  |  |  |  |  |
| PRINTER                                                    | HP        | 2225C        | 2930852614      | DSI6XU2225 |  |  |  |  |  |  |
| Laptop                                                     | China     | N34058       | PB3445811902382 | DoC        |  |  |  |  |  |  |
| AC Adapter                                                 | CUI Inc   | DSA-0151A-06 | DPS060200-PS    | NA         |  |  |  |  |  |  |
| USB Mouse                                                  | Microsoft | X03-46340    | 0070536-0000    | DoC        |  |  |  |  |  |  |
| AC Adapter                                                 | Li Shin   | LSE9802A206  | 10810241        | NA         |  |  |  |  |  |  |
|                                                            |           |              |                 |            |  |  |  |  |  |  |

#### I/O CABLES

|       | TEST I / O CABLES |      |         |                    |        |         |         |                             |  |  |  |
|-------|-------------------|------|---------|--------------------|--------|---------|---------|-----------------------------|--|--|--|
| Cable |                   |      |         |                    |        |         |         |                             |  |  |  |
| No    | Port              | Port | Туре    | Cable              | Length | Traffic | Bundled | Remark                      |  |  |  |
| 1     | AC                | 3    | US 115V | Un-shielded        | 2m     | No      | No      | Bundle AC Cable for LC Test |  |  |  |
| 2     | Mouse             | 1    | USB     | Un-shielded        | 2m     | Yes     | No      | N/A                         |  |  |  |
| 3     | Parallel          | 1    | DB25    | Shielded           | 2m     | Yes     | Yes     | N/A                         |  |  |  |
| 4     | DB9               |      | RS232   | <b>Un-shielded</b> | 2m     | Yes     | Yes     | NA                          |  |  |  |
|       |                   |      |         |                    |        |         |         |                             |  |  |  |
|       |                   |      |         |                    |        |         |         |                             |  |  |  |

#### TEST SETUP

The EUT was connected to the laptop via an RS232 Cable.

Page 9 of 90

#### **SETUP DIAGRAM FOR TRANSMITTER TESTS**



Page 10 of 90

#### SETUP DIAGRAM FOR DIGITAL DEVICE TESTS



Page 11 of 90

# 6. APPLICABLE RULES

## §15.247 (a) – HOPPING FREQUENCY SEPARATION

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

## <u>§15.247 (a) (1) (iii) – NUMBER OF HOPPING FREQUENCIES</u>

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 non-overlapping channels.

### <u>§15.247 (a) (1) (iii) – TIME OF OCCUPANCY</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non overlapping channels are used.

### <u>§15.247 (b)- POWER OUTPUT</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and b(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

### §15.247 (b)- RADIO FREQUENCY EXPOSURE

(5) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See \$1.1307(b)(1) of this chapter.

Page 12 of 90

### §15.247 (c)- SPURIOUS EMISSIONS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

### §15.247 (d) and §15.247 (f) - PEAK POWER SPECTRAL DENSITY

(d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

(f) The digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

Page 13 of 90

### §15.205- RESTRICTED BANDS OF OPERATIONS

| MHz                        | MHz                   | MHz             | GHz              |
|----------------------------|-----------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138             | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.7 - 156.9         | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 322 - 335.4           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              |                       |                 |                  |

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 14 of 90

### <u>§15.207- CONDUCTED LIMITS</u>

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

| Frequency of Emission (MHz) | Conducted Limit (dBuV) |          |  |  |
|-----------------------------|------------------------|----------|--|--|
|                             | Quasi-peak             | Average  |  |  |
| 0.15-0.5                    | 66 to 56               | 56 to 46 |  |  |
| 0.5-5                       | 56                     | 46       |  |  |
| 5-30                        | 60                     | 50       |  |  |

Decreases with the logarithm of the frequency.

### §15.209- RADIATED EMISSION LIMITS

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance (meters) |
|--------------------|--------------------------------------|-------------------------------|
| 30 - 88            | 100 **                               | 3                             |
| 88 - 216           | 150 **                               | 3                             |
| 216 - 960          | 200 **                               | 3                             |
| Above 960          | 500                                  | 3                             |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges.

Page 15 of 90

# 7. TEST SETUP, PROCEDURE AND RESULT

# 7.1. TEST SETUPS FOR ANTENNA PORT MEASUREMENTS

The EUT utilizes an integral antenna therefore it does not have a means of making a direct coaxial connection to the transmitter output antenna port. The antenna port measurements were made using the following test setups.

## 7.1.1. Relative Amplitude Measurements

In-band measurements such as timing and bandwidth that require relative amplitudes are measured as follows.

### TEST SETUP



### TEST PROCEDURE

The transmitter output is coupled to the spectrum analyzer via a near-field pickup antenna. The spectrum analyzer is adjusted as required for the particular measurement.

## 7.1.2. Absolute Amplitude Measurements

In-band measurements such as power and power density that require absolute amplitudes are measured as follows.

### TEST SETUP

The EUT is set up on an open area test site and radiated measurements are made as described in Section 7.9, Spurious Emissions Radiated Measurements.

### TEST PROCEDURE

All spectrum analyzer settings except for reference level offset are set as required for the particular measurement. The reference level offset is set as follows.

Page 16 of 90

### **DERIVATION OF REFERENCE LEVEL OFFSET**

The calculation of power is derived from the following equation:

 $E = (\sqrt{(30 * P * G)}) / d$ 

Where:

**E** is the measured maximum fundamental field strength in V/m.

**P** is the power in watts.

G is the numeric gain of the transmitting antenna with reference to an isotropic radiator. d is the distance in meters from which the field strength was measured.

Rearranging the equation to express power in terms of the remaining variables:  $P = ((E * d)^{2}) / (30 * G)$ 

In logarithmic form, at a measuring distance of 3 meters: Power (dBm) = E (dBuV/m at 3 meters) - G (dBi) - 95.2 Equation 1

Field strength is calculated by:

E (dBuV/m) = Measured Voltage (dBuV) + Measuring Antenna Factor (dBuV/m) - Amplifier Gain (dB) + Cable Loss (dB)

Converting amplitude units from dBuV to dBm, E (dBuV/m) = Measured Voltage (dBm) + 107 + Measuring Antenna Factor (dBuV/m) - Amplifier Gain (dB) + Cable Loss (dB) Equation 2

Combining equations 1 and 2 yields:

Power (dBm) = Measured Voltage (dBm) + 107 + Measuring Antenna Factor (dBuV/m) - Amplifier Gain (dB) + Cable Loss (dB) - EUT Antenna Gain (dBi) - 95.2

Rearranging terms yields: Power (dBm) - Measured Voltage (dBm) = 107 + Measuring Antenna Factor (dBuV/m) - Amplifier Gain (dB) + Cable Loss (dB) - EUT Antenna Gain (dBi) - 95.2 Equation 3

Power (dBm) is the transmitter power, and Measured Voltage (dBm) is the spectrum analyzer reading with the Measuring Antenna located 3 meters from the EUT, therefore the difference between these two parameters is the spectrum analyzer reference level offset required to read transmit power directly Power (dBm) - Measured Voltage (dBm).

Equation 3 is used to calculate the Spectrum Analyzer Reference Level Offset.

Page 17 of 90

## 7.2. 20 dB BANDWIDTH

### TEST SETUP

See 7.1.1.

### TEST PROCEDURE

The transmitter output is coupled to the spectrum analyzer via a pickup antenna. The hopping function is turned off and the transmitter is set to a fixed frequency. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW and VBW are set to 10 kHz.

#### **RESULTS**

Reporting requirement only; No non-compliance noted:

| Channel | Frequency | 20 dB Bandwidth |
|---------|-----------|-----------------|
|         | (MHz)     | (kHz)           |
| Low     | 2402      | 958             |
| Middle  | 2441      | 825             |
| High    | 2480      | 725             |

Page 18 of 90

| 🔆 Agi                         | ilent 15         | :58:40         | Jan 24        | <b>,</b> 2003 |                    |         |        |            |              |                      | Marker                                              |
|-------------------------------|------------------|----------------|---------------|---------------|--------------------|---------|--------|------------|--------------|----------------------|-----------------------------------------------------|
| Ref 90.<br>Norm               | .99 dB           | ٧u             | Atten         | 10 dB         |                    |         |        | ۵          | Mkr1         | 958 kHz<br>0.80 dB   | <b>Select Marker</b><br><u>1</u> 2 3 4              |
| Log<br>10<br>dB/              |                  |                |               |               | Au                 | ۸Å.     |        |            |              | *                    | Normal                                              |
| DI                            | _Mar             | ker (          | Δ             | 1             | .,,,₩ <sup>₩</sup> | YW<br>M | >      |            |              |                      | Delta                                               |
| 56.9<br>dB <b>µ</b> V<br>LgAv | _958<br>0        | 3.000<br>.80 c | kHz<br>B مهره | matter N      |                    |         | WWWWWW | "White May | anthe        | Annall               | <b>Delta Pair</b><br>(Tracking Ref)<br>Ref <u>▲</u> |
| V1 S2<br>S3 FC<br>AA          | × 100 × 1        |                |               |               |                    |         |        |            |              | When                 | <b>Span Pair</b><br>Span <u>Center</u>              |
| <b>£</b> (f):<br>f>50k<br>Swp |                  |                |               |               |                    |         |        |            |              |                      | Off                                                 |
| Center<br>#Res B              | 2.402<br>W 10 ki | 000 Gł<br>Hz   | Ηz            | VB            | 3W 10 k            | Hz      | Sweep  | 60.32      | Spa<br>ms (8 | an 5 MHz<br>301 pts) | More<br>1 of 2                                      |
| Copyri                        | ght 2€           | 100-20         | 302 Agi       | llent T       | echnol             | ogies   |        |            |              |                      |                                                     |

Page 19 of 90

| 🔆 Ag                  | jilent 14           | :56:04        | Jan 20      | ), 2003 |         |         |            |                                                       |              |                    | Marker                                 |
|-----------------------|---------------------|---------------|-------------|---------|---------|---------|------------|-------------------------------------------------------|--------------|--------------------|----------------------------------------|
| Ref 90<br>#Peak       | ).99 dBj            | ٧V            | Atten       | 10 dB   |         |         |            | Δ                                                     | Mkr1         | 825 kHz<br>0.86 dB | Select Marker<br><u>1</u> 234          |
| Log<br>10<br>dB/      |                     |               |             |         |         |         |            |                                                       |              |                    | Normal                                 |
| DI                    | Mark                | er ۵          |             |         |         | W       |            |                                                       |              |                    | Delta                                  |
| dB <b>µ</b> V<br>LgAv | -825.<br>Ø.{        | .000<br>36 de | kHz—<br>3   | J       |         | ) IQ    | Ч.         |                                                       |              |                    | Delta Pair<br>(Tracking Ref)<br>Ref    |
| V1 S2<br>S3 FC<br>AA  | my my where         | martanaa      | NH M. Marth | rand N  |         |         | ****www.ty | n ferge an and an | -uprolewing  | newser al hereing  | <b>Span Pair</b><br>Span <u>Center</u> |
| £(†):<br>f>50k<br>Swp |                     |               |             |         |         |         |            |                                                       |              |                    | Off                                    |
| Center<br>#Res B      | - 2.441<br>3W 10 ki | 000 GH<br>Hz  | Iz          | VE      | 3W 10 k | Hz      | Sweep      | 60.32                                                 | Spa<br>ms (6 | n 5 MHz<br>01 pts) | More<br>1 of 2                         |
| File 0                | peratio             | in Stat       | us, A:`     | SCREN   | 243.G   | IF file | saved      |                                                       |              |                    |                                        |

Page 20 of 90

| 🔆 Aç                  | <b>jilent</b> 15  | :00:10        | Jan 20         | ), 2003 |         |                         |             |            |               |                    | Marker                                      |
|-----------------------|-------------------|---------------|----------------|---------|---------|-------------------------|-------------|------------|---------------|--------------------|---------------------------------------------|
| Ref 90<br>#Peak       | ).99 dBj          | ų۷            | Atten          | 10 dB   |         |                         |             | ۵          | Mkr1          | 725 kHz<br>0.60 dB | Select Marker<br><u>1</u> 234               |
| Log<br>10<br>dB/      |                   |               |                |         |         |                         |             |            |               |                    | Normal                                      |
| DI<br>44.1            | Mark              | er Δ          |                |         | 18      | M                       |             |            |               |                    | Delta                                       |
| dBµV<br>LgAv          | -725.<br>Ø.(      | .000<br>50 dE | kHz—<br>}<br>⊨ | ]       | N       | . <mark>Д</mark> б<br>М | *           |            |               |                    | <b>Delta Pair</b><br>(Tracking Ref)<br>Ref▲ |
| V1 S2<br>S3 FC<br>AA  | w.                | www.naa       | ny years and   | woodl   |         |                         | You William | WWV-476000 | ngert hylynno | "hamphotyllow      | <b>Span Pair</b><br>Span <u>Center</u>      |
| £(†):<br>f>50k<br>Swp |                   |               |                |         |         |                         |             |            |               |                    | Off                                         |
| Center<br>#Res E      | 2.480<br>3W 10 ki | 000 GH<br>Hz  | łz             | VE      | 3W 10 k | Hz                      | Sweep       | 60.32      | Spa<br>ms (6  | n 5 MHz<br>01 pts) | <b>More</b><br>1 of 2                       |
| File 0                | peratio           | in Stat       | us, A:`        | SCREN   | 244.G   | IF file                 | saved       |            |               |                    |                                             |

Page 21 of 90

# 7.3. HOPPING FREQUENCY SEPARATION

### TEST SETUP

See 7.1.1.

### TEST PROCEDURE

The transmitter output is coupled to the spectrum analyzer via a pickup antenna. The RBW and VBW are set to 100 kHz, the frequency span is set to 10 MHz and the trace function to max hold. The EUT is allowed to complete the pseudorandom hopping sequence, then the separation between two adjacent hopping frequencies is measured.

### <u>LIMIT</u>

The 20 dB bandwidth is 958 kHz, therefore the limit is 1 MHz.

### **RESULTS**

No non-compliance noted:

Page 22 of 90

#### **HOPPING MODE**



Page 23 of 90

# 7.4. NUMBER OF HOPPING FREQUENCIES

### TEST SETUP

See 7.1.1.

### TEST PROCEDURE

The transmitter output is coupled to the spectrum analyzer via a pickup antenna. The RBW and VBW are set to 1 MHz, the frequency span is set to 100 MHz and the trace function to max hold. The EUT is allowed to complete the pseudorandom hopping sequence, then the number of hopping frequencies is counted.

### **RESULTS**

No non-compliance noted:

| Mode    | Number of Frequencies | Limit                      |
|---------|-----------------------|----------------------------|
| Inquiry | 32                    | Reporting Requirement Only |
| Data    | 79                    | 75 Minimum                 |

Page 24 of 90

#### **INQUIRY MODE**



Page 25 of 90

#### DATA MODE



Page 26 of 90

| 🔆 Agilent 13:49:45 Jan                | n 30, 2003                                                | Marker                                              |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|
| Ref90 dB <b>µ</b> V Atto<br>Peak      | en 10 dB                                                  | <b>Select Marker</b><br><u>1</u> 2 3 4              |
| Log<br>10<br>dB/                      |                                                           | Normal                                              |
| νηγνγηγ                               |                                                           | Delta                                               |
| LgAv                                  |                                                           | <b>Delta Pair</b><br>(Tracking Ref)<br>Ref <u>▲</u> |
| M1 S2<br>S3 FC<br>AA                  |                                                           | <b>Span Pair</b><br>Span <u>Center</u>              |
| €(f):<br>FTun<br>Swp                  |                                                           | Off                                                 |
| Start 2.430 00 GHz<br>#Res BW 300 kHz | Stop 2.460 00 GHz<br>VBW 300 kHz #Sweep 40.2 ms (601 pts) | <b>More</b><br>1 of 2                               |

Page 27 of 90

| 🔆 Ag                         | <b>jilent</b> 13  | :51:14       | Jan 30  | 0,2003 |         |                                                                                                                                       |       |                |              |                                         | Marker                                              |
|------------------------------|-------------------|--------------|---------|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--------------|-----------------------------------------|-----------------------------------------------------|
| Ref 90<br>Peak               | ) dB <b>µ</b> V   |              | Atten   | 10 dB  |         |                                                                                                                                       |       |                |              |                                         | <b>Select Marker</b><br><u>1</u> 2 3 4              |
| Log<br>10<br>dB/             |                   |              |         |        |         |                                                                                                                                       |       |                |              |                                         | Normal                                              |
|                              |                   |              | γγγγ    |        |         |                                                                                                                                       |       |                |              |                                         | Delta                                               |
| LgAv                         | 1 * *             | ų r 1        | •••     | 1 1 1  |         | 1 * 1                                                                                                                                 |       |                |              |                                         | <b>Delta Pair</b><br>(Tracking Ref)<br>Ref <u>▲</u> |
| M1 S2<br>S3 FC<br>AA         |                   |              |         |        |         |                                                                                                                                       |       | hardenterstors | ****         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <b>Span Pair</b><br>Span <u>Center</u>              |
| <b>£</b> (f):<br>FTun<br>Swp |                   |              |         |        |         |                                                                                                                                       |       |                |              |                                         | Off                                                 |
| Start 2<br>#Res B            | 2.460 0<br>3W 300 | 0 GHz<br>kHz |         | VB     | W 300 I | <hz< td=""><td>#Swee</td><td>Stop<br/>p 40.2</td><td>2.490 ms (60</td><td>00 GHz<br/>1 pts)</td><td><b>More</b><br/>1 of 2</td></hz<> | #Swee | Stop<br>p 40.2 | 2.490 ms (60 | 00 GHz<br>1 pts)                        | <b>More</b><br>1 of 2                               |
| File 0                       | peratio           | n Stat       | us, A:' | SCREN  | 001.G   | IF file                                                                                                                               | savec |                |              |                                         |                                                     |

Page 28 of 90

# 7.5. TIME OF OCCUPANCY

### TEST SETUP

See 7.1.1.

### TEST PROCEDURE

The transmitter output is coupled to the spectrum analyzer via a pickup antenna. The EUT is set to the normal hopping mode. The spectrum analyzer is tuned to 2.441 GHz and zero span. The sweep time is adjusted to accurately measure the width of a single pulse. Then the sweep time is changed to the required period and the occupancy is recorded.

The time of occupancy in the data mode is independent of the packet type (packet length). The calculation is a follows:

Time of Occupancy = Time Slot Length \* Hop Rate / Number Of Hopping Channels \* Period

For multi-slot packets the hopping rate is reduced by the length of the packet.

### <u>LIMIT</u>

79 hopping frequencies are used, therefore the Period is 31.6 s and the limit is 0.4 s in 31.6 s.

### **RESULTS**

No non-compliance noted:

The Bluetooth Hop Rate is 1600 / s.

For a DH1 packet (with a maximum length of one time slot): Time of Occupancy =  $105 \ \mu s \ * \ 1600 \ / \ s \ / \ 79 \ * \ 31.6 \ s = 0.067 \ s$ 

For a DH5 packet (with a maximum length of five time slots): Time of Occupancy =  $105 \ \mu s \approx 1600 \ / \ s \approx 1/5 \ / \ 79 \approx 31.6 \ s = 0.067 \ s$ 

Page 29 of 90

#### PULSE WIDTH



Page 30 of 90

### **OCCUPANCY IN 31.6 SECOND PERIOD**



Page 31 of 90

## 7.6. PEAK POWER

### TEST SETUP

See 7.1.2.

### TEST PROCEDURE

The spectrum analyzer reference level offset is set as described in Section 7.1.2. RBW is set > EBW, RBW is set > VBW, and peak detection is used.

The hopping function is turned off.

#### <u>LIMIT</u>

At least 75 hopping frequencies are used and the maximum antenna gain = 2.0 dBi, therefore the limit is 30 dBm.

#### **RESULTS**

No non-compliance noted:

| Channel | Frequency | Peak Power | Limit | Margin |
|---------|-----------|------------|-------|--------|
|         | (MHz)     | (dBm)      | (dBm) | (dB)   |
| Low     | 2402      | 5.66       | 30    | -24.34 |
| Middle  | 2441      | 4.54       | 30    | -25.46 |
| High    | 2480      | 2.7        | 30    | -27.3  |

Page 32 of 90

| 🔆 Ag                 | jilent 11       | :52:34        | Jan 25       | 5,2003  |        |       |      |       |                  |                  | Peak Search    |
|----------------------|-----------------|---------------|--------------|---------|--------|-------|------|-------|------------------|------------------|----------------|
| Ref 26<br>Peak       | .5 dBm          |               | Atten        | 10 dB   |        |       |      | Mkr1  | 2.401<br>5.6     | 80 GHz<br>6 dBm  | Next Peak      |
| Log<br>10<br>dB/     |                 |               |              |         | 1      |       |      |       |                  |                  | Next Pk Right  |
| 32.5<br>dB           | Mar             | ker_          |              |         |        |       |      |       |                  |                  | Next Pk Left   |
| LgAv                 | _2.4<br>5       | 0180<br>.66 c | 10000<br>18m | GHz     |        |       |      |       |                  |                  | Min Search     |
| M1 S2<br>S3 FC<br>AA |                 |               |              |         |        |       |      |       |                  |                  | Pk-Pk Search   |
| €(f):<br>FTun<br>Swp |                 |               |              |         |        |       |      |       |                  |                  | Mkr → CF       |
| Center<br>#Res B     | 2.402<br>W 3 MH | 00 GHz<br>z   | 2            | #V      | BW 5 M | Hz    | #Swe | ep 20 | Span 1<br>ms (60 | .0 MHz<br>1 pts) | More<br>1 of 2 |
| Copyr                | ight 20         | 000-20        | 002 Ag       | ilent T | echnol | ogies |      |       |                  |                  |                |

Page 33 of 90

| 🔆 Ag                      | <b>jilent</b> 12 | :16:18        | Jan 25     | 5, 2003 |        |         |       |       |                  |                  | Peak Search    |
|---------------------------|------------------|---------------|------------|---------|--------|---------|-------|-------|------------------|------------------|----------------|
| Ref 26<br>Peak            | .6 dBm           |               | Atten      | 10 dB   |        |         |       | Mkr1  | 2.440<br>4.5     | 77 GHz<br>4 dBm  | Next Peak      |
| Log<br>10<br>dB/<br>Offet |                  |               |            |         |        |         |       |       |                  |                  | Next Pk Right  |
| 32.6<br>dB                | Mar              | ker_          |            |         |        |         |       |       |                  |                  | Next Pk Left   |
| LgAv                      | _2.4<br>4        | 4077<br>.54 c | 0000<br>Bm | GHz     |        |         |       |       |                  |                  | Min Search     |
| M1 S2<br>S3 FC<br>AA      |                  |               |            |         |        |         |       |       |                  |                  | Pk-Pk Search   |
| €(f):<br>FTun<br>Swp      |                  |               |            |         |        |         |       |       |                  |                  | Mkr → CF       |
| Center<br>#Res B          | 2.441<br>3W 3 MH | 00 GHz<br>z   | 2          | #V      | BW 5 M | Hz      | #Swe  | ep 20 | Span 1<br>ms (60 | .0 MHz<br>1 pts) | More<br>1 of 2 |
| File 0                    | peratio          | in Stat       | us, A:'    | SCREN   | 363.6  | IF file | saved |       |                  |                  |                |

Page 34 of 90

| 🔆 Ag                         | <b>jilent</b> 12 | :24:15        | Jan 25     | 5,2003 |        |         |       |       |                  |                  | Peak Search    |
|------------------------------|------------------|---------------|------------|--------|--------|---------|-------|-------|------------------|------------------|----------------|
| Ref 26<br>Peak               | .6 dBm           |               | Atten      | 10 dB  |        |         |       | Mkr1  | 2.480<br>2.7     | 05 GHz<br>0 dBm  | Next Peak      |
| Log<br>10<br>dB/             |                  |               |            |        |        | 1       |       |       |                  |                  | Next Pk Right  |
| dB                           | Mar              | Vor           |            |        |        | o       |       |       |                  |                  | Next Pk Left   |
| LgAv                         | _2.4<br>_2.2     | 8005<br>.70 c | 0000<br>Bm | GHz    |        |         |       |       |                  |                  | Min Search     |
| M1 S2<br>S3 FC<br>AA         |                  |               |            |        |        |         |       |       |                  |                  | Pk-Pk Search   |
| <b>£</b> (f):<br>FTun<br>Swp |                  |               |            |        |        |         |       |       |                  |                  | Mkr→CF         |
| Center<br>#Res B             | 2.480<br>W 3 MH  | 00 GHz<br>z   | Z          | #V     | BW 5 M | Hz      | #Swe  | ер 20 | Span 1<br>ms (60 | .0 MHz<br>1 pts) | More<br>1 of 2 |
| File 0                       | peratio          | n Stat        | us, A:Y    | SCREM  | 367.6  | IF file | saved |       |                  |                  |                |

Page 35 of 90

# 7.7. PEAK POWER SPECTRAL DENSITY

### TEST SETUP

See 7.1.2.

### TEST PROCEDURE

The spectrum analyzer reference level offset is set as described in Section 7.1.2. The hopping function is turned off. The spectrum analyzer RBW = 3 kHz, VBW = 10 kHz, the sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

#### RESULTS

No non-compliance noted:

| Channel | Frequency | PPSD  | Limit | Margin |
|---------|-----------|-------|-------|--------|
|         | (MHz)     | (dBm) | (dBm) | (dB)   |
| Low     | 2402      | -14.5 | 8     | -22.5  |
| Middle  | 2441      | -10.2 | 8     | -18.2  |
| High    | 2480      | -13.4 | 8     | -21.4  |

Page 36 of 90



Description: Blutetooth to RS232 Cordless Adapter. Power Spectrum Density ,Lo Ch. Data Mode.

Page 37 of 90



Description: Blutetooth to R5232 Cordless Adapter. Power Spectrum Density, Mid Ch. Data Mode.

Page 38 of 90



Description: Bluetooth to RS232 Cordless Adapter. Hi Ch, Power Spectrum Density, Data Mode

Page 39 of 90

## 7.8. MAXIMUM PERMISSIBLE EXPOSURE

### **CALCULATIONS**

Given

and

 $E = \sqrt{(30 * P * G)} / d$ 

 $S = E^{2}/3770$ 

where

E = Field Strength in Volts / meter
P = Power in Watts
G = Numeric antenna gain
d = distance in meters
S = Power Density in milliwatts / square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$ 

Changing to units of mW and cm, using:

P(mW) = P(W) / 1000 and

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ 

 $d = 0.282 * \sqrt{(P * G / S)}$ 

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW / cm^2

Page 40 of 90

Equation (1)

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10 \wedge (P(dBm) / 10)$  and

 $G (numeric) = 10 \wedge (G (dBi) / 10)$ 

yields

 $d = 0.282 * 10 \wedge ((P + G) / 20) / \sqrt{S}$ 

where

d = MPE safe distance in cm P = Power in dBm G = Antenna Gain in dBi S = Power Density Limit in mW / cm^2

### **RESULTS**

No non-compliance noted:

EUT output power = +5.66 dBm Antenna Gain = 2 dBi S = 1.0 mW / cm^2 from 1.1310 Table 1

Substituting these parameters into Equation (1) above:

MPE Safe Distance = 0.68 cm

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 41 of 90

## 7.9. SPURIOUS EMISSIONS

RF measurements of the transmitter output were made to confirm that the EUT spurious emissions meet the specified limit.

### TEST PROTOCOL: SEMI-ANECHOIC CHAMBER

The EUT is set up in a semi-anechoic chamber and radiated measurements are made as described in Section 7.10. Measurements are made over the 30 MHz to 26.5 GHz range with the transmitter set to the low, middle, and high channels, and with the transmitter set to the hopping mode.

Plots of the in-band fundamental level and the out-of-band spurious level are made. Since these chamber measurements are made using the worst case antenna factor, amplifier gain, and cable loss over the selected span (thus the calculated field strength will be greater than or equal to the actual field strength) these plots constitute a frequency list and are used to determine those emissions that require fully calibrated measurements at an Open Area Test Site.

### TEST PROTOCOL: OPEN AREA TEST SITE

The EUT is set up on an open area test site and radiated measurements are made as described in Section 7.10.

Spurious emissions that are outside restricted bands, and the most significant spurious emissions measured in the chamber below 1 GHz, are documented in section 7.9.2. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Undesirable emissions that are within restricted bands are documented in section 7.10.

#### **RESULTS**

No non-compliance noted:

Page 42 of 90

## 7.9.1. Semi-Anechoic Chamber Measurements

### LOW CHANNEL IN-BAND REFERENCE



Page 43 of 90

#### LOW CHANNEL SPURIOUS



Page 44 of 90

| Company                | Name:       |           |          |        | Project No | .:      | Time & Date                 |         |            |    |  |  |
|------------------------|-------------|-----------|----------|--------|------------|---------|-----------------------------|---------|------------|----|--|--|
| 3E Techr               | nologies Ir | iternatio | nal, Inc |        | 03U1756-1  |         | 5:43:35 PM January 22, 2003 |         |            |    |  |  |
| REF 111.               | 50 dBµV     | ATTEN     | NO dB    |        |            |         | MKR 1.736                   | 500 GHz | 48.58 dBµV |    |  |  |
| PEAK<br>LOG 10<br>dB/  |             |           |          |        |            |         |                             | 1       |            | -  |  |  |
| DL<br>78.8<br>dBµV     |             |           |          |        |            |         |                             |         |            |    |  |  |
| RL<br>OFFST<br>20.9 dB | munderste   |           | male.    | Marcul | Ingram     | mul     | uniyana kata                | Am      | yman       | mm |  |  |
| START 1.               | 00000 GH:   |           | -        |        |            | 0.1/11- |                             | STOP 2  | .90000 G   | Hz |  |  |

Description: Bluetooth to RS232 Cordless Adapter,Lo Ch, Data Mode,Spurious, 1-2.9GHz, -20dBc

Page 45 of 90