12 AC power-line conducted emissions

12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

12.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Screen Room 2
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.2
EUT Channels:	5745 MHz
Deviations From Standard:	None
Measurement Detectors:	Quasi-Peak and Average

Environmental Conditions (Normal Environment)

Temperature: 21 °C	+15 °C to +35 °C (as declared)
Humidity: 40 % RH	20 % RH to 75 % RH (as declared)

12.3 Test Limit

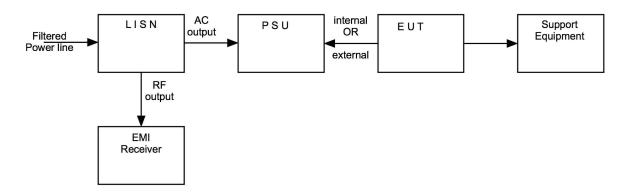
A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 – AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dBµV) Quasi-Peak Average [™]	
(11112)		
0.15 to 0.5	66 to 56 [*]	56 to 46 [*]
0.5 to 5	56	46
5 to 30	60	50

*The level decreases linearly with the logarithm of the frequency.

**A linear average detector is required.


12.4 Test Method

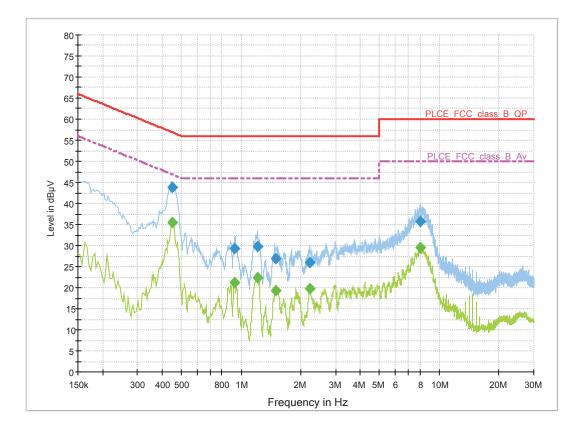
With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup

12.5 Test Set-up Photograph


12.6 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Measuring Receiver	R&S	ESHS10	RFG125	2021-01-22
LISN	R&S	ESH3-Z5	RFG732	2021-05-18
Pulse Limiter	R&S	ESH3-Z2	RFG680	2021-06-09

12.7 Test Results

AC power-line conducted emissions, Transmit mode						
	Results measured using the average detector					
Reference Number	Frequency (MHz)	Conductor	Result (dBuV)	Specification Limit (dBuV)	Margin (dB)	Result Summary
1	0.449	L1	35.5	46.9	11.4	PASS
2	0.929	L1	21.2	46.0	24.8	PASS
3	1.209	L1	22.5	46.0	23.6	PASS
4	1.501	L1	19.3	46.0	26.7	PASS
5	2.229	L1	19.8	46.0	26.2	PASS
6	8.005	L1	29.6	50.0	20.4	PASS

Results measured using the quasi-peak detector						
Reference Number	Frequency (MHz)	Conductor	Result (dBuV)	Specification Limit (dBuV)	Margin (dB)	Result Summary
1	0.449	L1	43.8	56.9	13.1	PASS
2	0.929	L1	29.3	56.0	26.7	PASS
3	1.209	L1	29.7	56.0	26.3	PASS
4	1.501	L1	26.9	56.0	29.1	PASS
5	2.229	L1	26.1	56.0	29.9	PASS
6	8.005	L1	35.7	60.0	24.3	PASS

13 Occupied Bandwidth

13.1 Definition

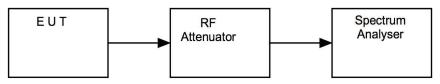
The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

13.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Wireless Laboratory 1
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.9
EUT Channel Bandwidths:	20 MHz, 40 MHz & 80 MHz
EUT Test Modulations:	802.11a/n/ac
Deviations From Standard:	None
Measurement BW:	390 kHz / 510 kHz / 1 MHz
Spectrum Analyzer Video BW:	4 MHz / 5 MHz / 8 MHz
Measurement Span:	40 MHz / 80 MHz / 160 MHz
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C	+15 °C to +35 °C (as declared)
Humidity: 42 %RH	20%RH to 75%RH (as declared)

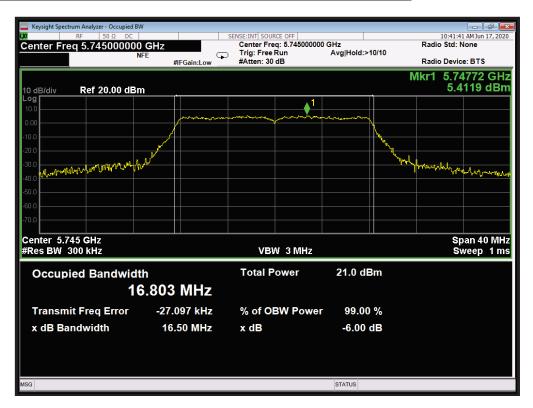

Test Limits

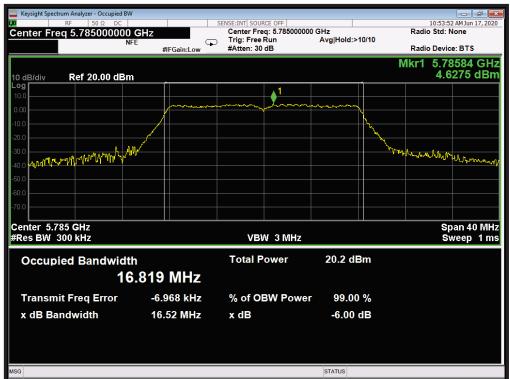
Within the 5.725–5.85 GHz band, the minimum 6 dB bandwidth of U–NII devices shall be at least 500 kHz.

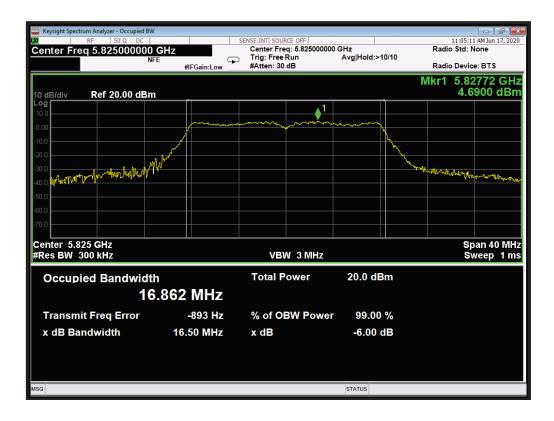
13.3 Test Method

With the EUT connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser. The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iii Test Setup

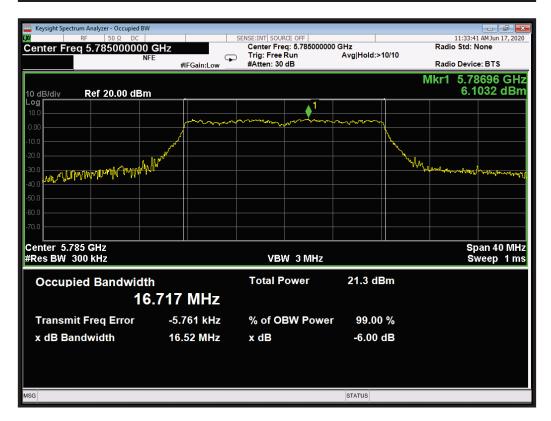


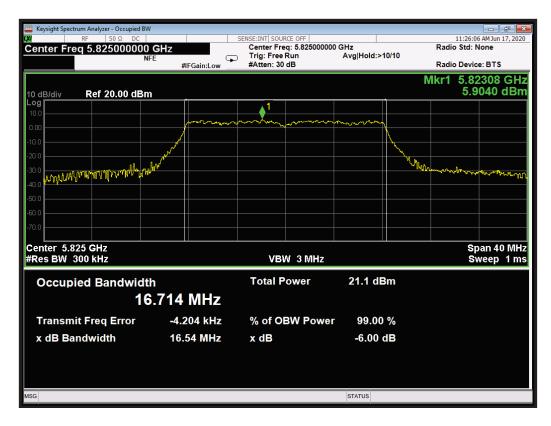

13.4 Test Equipment


Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	Agilent	N9030A	REF2167	2021-08-19
Power Supply	Farnell	LT30-2	RFG035	Cal with REF887
Multimeter	Agilent	34405A	REF887	2021-10-12

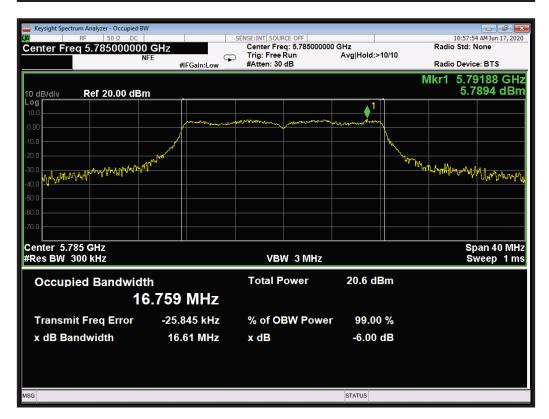
13.5 Test Results

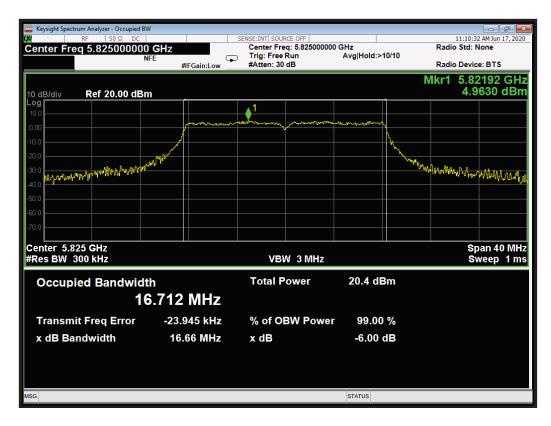
Modulation: 802.11a; Data rate: 6 Mbit/s; Main Antenna;						
Channel Frequency (MHz)	requency 6dB bandwidth 99% bandwidth Result					
5745	16.50	16.803	PASS			
5785	16.52	16.819	PASS			
5825	16.50	16.862	PASS			

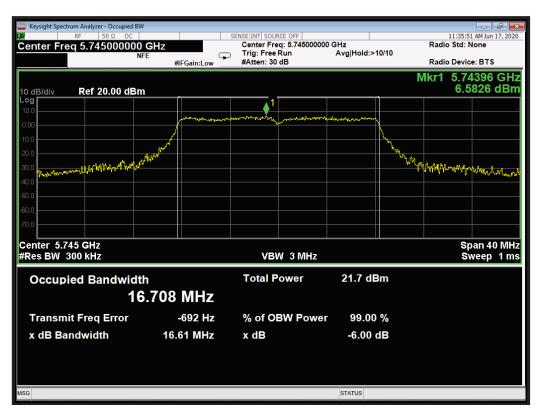


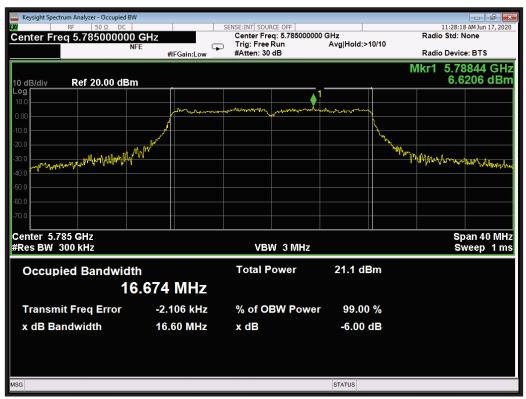


Modulation: 802.11a; Data rate: 6 Mbit/s; Aux Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5745	16.57	16.748	PASS		
5785	16.52	16.717	PASS		
5825	16.54	16.714	PASS		

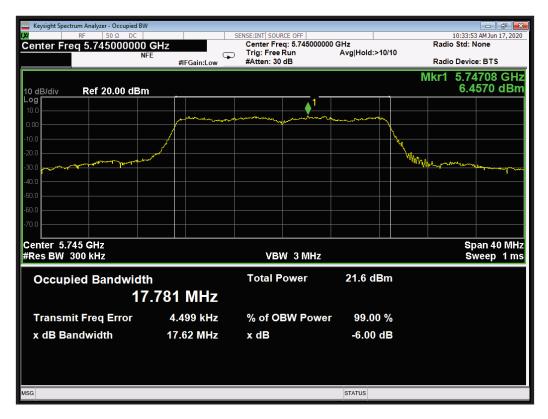

Keysight Spectrum Analyzer - Occupied BW RF 50 Ω DC		SENSE:INT SOURCE OFF			11:46:23 AM Jun 17, 202
enter Freq 5.74500000		Center Freq: 5.745000000 Trig: Free Run	GHz Avg Hold:>10/10		o Std: None
	#IFGain:Low	#Atten: 30 dB			o Device: BTS
0 dB/div Ref 20.00 dBm	I			Mkr1	5.74692 GH 6.5011 dBr
) g					
	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man and a second		
).0					
0.0	Berland I			Vin .	
0.0	r			VPI Production of the	approved and a second of a
).0					
).0					
).0					
J.O					
enter 5.745 GHz Res BW 300 kHz		VBW 3 MHz			Span 40 MH Sweep 1 m
Occupied Bandwidt	h	Total Power	22.0 dBm		
16	.748 MHz				
Transmit Freq Error	959 Hz	% of OBW Power	99.00 %		
	16.57 MHz	x dB	-6.00 dB		
x dB Bandwidth	10.37 WHZ				
x dB Bandwidth	10.57 MHZ				
x dB Bandwidth	10.37 MHZ				
x dB Bandwidth	10.37 MHZ				

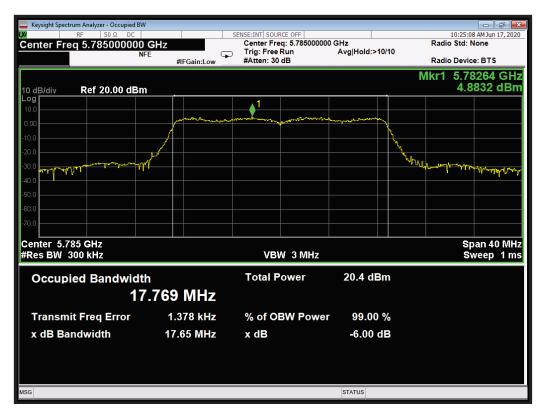


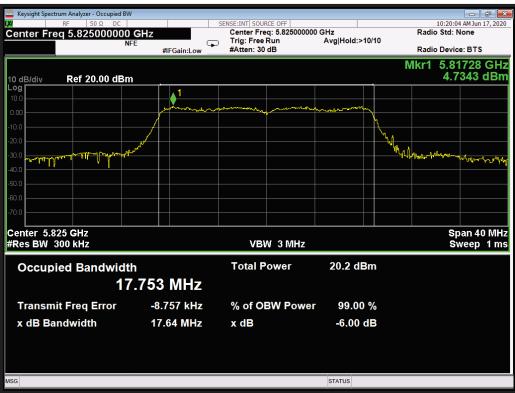

Modulation: 802.11a; Data rate: 54 Mbit/s; Main Antenna;					
Channel Frequency (MHz)	duency 6dB bandwidth 99% bandwidth (MHz) (MHz)		Result		
5745	16.65	16.720	PASS		
5785	16.61	16.759	PASS		
5825	16.66	16.712	PASS		


Keysight Spectrum Analyzer - Occupied BW	v	SENSE:INT SOURCE OFF		10:47:51 AM Jun 17, 202
enter Freq 5.74500000		Center Freq: 5.7450000	00 GHz Avg Hold:>10/10	Radio Std: None
N	FE #IFGain:Low	#Atten: 30 dB		Radio Device: BTS
0 dB/div Ref 20.00 dBn	n _			Mkr1 5.74804 GH 6.2034 dBr
.og 10.0				
0.00	promo	manner man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
0.0			¹ / ₂	
0.0	AND MARY AND		``` ``	harried a
0.0 Monthe Manual all	,			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.0				
0.0				
0.0				
enter 5.745 GHz Res BW 300 kHz		VBW 3 MHz		Span 40 MH Sweep 1 m
	I-	Total Power	21.7 dBm	
Occupied Bandwidt	n			
Occupied Bandwidt	n 6.720 MHz			
16	6.720 MHz	% of OBW Powe		
16 Transmit Freq Error	5.720 MHz -21.692 kHz	% of OBW Powe	r 99.00 %	
16 Transmit Freq Error	5.720 MHz -21.692 kHz	% of OBW Powe	r 99.00 %	
16 Transmit Freq Error	5.720 MHz -21.692 kHz	% of OBW Powe	r 99.00 %	

Modulation: 802.11a; Data rate: 54 Mbit/s; Aux Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	16.61	16.708	PASS		
5785	16.60	16.674	PASS		
5825	16.74	16.760	PASS		

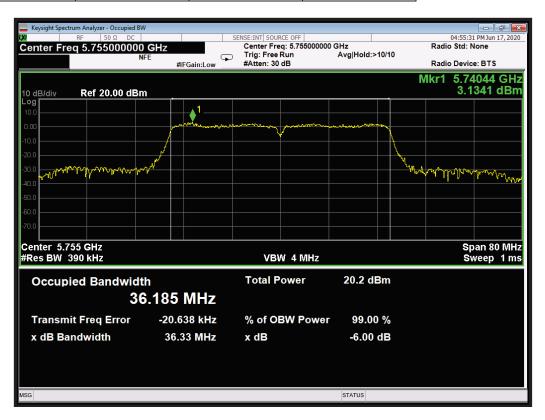


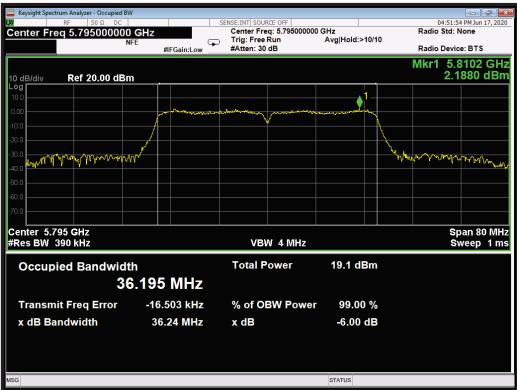



RF 50.2 DC Center Freq 5.825000000 N 10 dB/div Ref 20.00 dBr	IFE #IFGai	Cente	SOURCE OFF r Freq: 5.8250000 Free Run 1: 30 dB	000 GHz Avg Hold:>1		11:20:37 AM Jun 17, 202 Radio Std: None Radio Device: BTS
10 dB/div Ref 20.00 dBr	#IFGai			Avginoid:>1		
Log	n				Ν	/kr1 5 82748 GH
						6.1349 dBn
			1			
0.00		man and a second		mannen		
-10.0					La contra	
-20.0	M. M. M.				Joseph Contraction	Hump hand half man
-30.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						and we partille that the the
-50.0						
-60.0						
-70.0						
Center 5.825 GHz #Res BW 300 kHz		· · · · ·	VBW 3MHz			Span 40 MH Sweep 1 m
Occupied Bandwidt	th	Tota	l Power	21.7 dB	m	
16	6.760 M	Hz				
Transmit Freq Error	-33.238	kHz % of	OBW Powe	er 99.00	%	
x dB Bandwidth	16.74 I	VIHz x de	3	-6.00 c	IB	
MSG				STATUS		

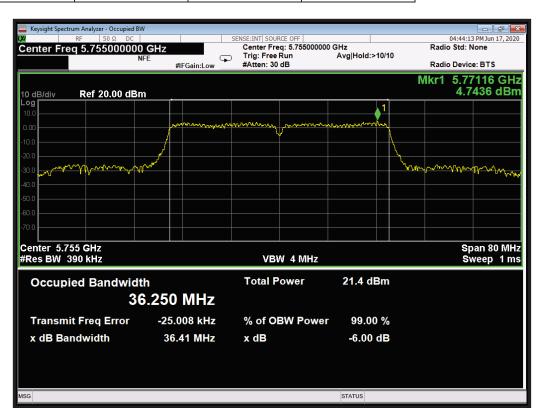
Limited 802.11n mode results are presented. The power setting for MCS0 is higher than for the corresponding 802.11ac modes which are otherwise equivalent. At higher data rates the power setting was the same for both 802.11n and 802.11ac modes so the measurements for the legacy (802.11n) modes have not been repeated.

Modulation: 802.11n-20; Data rate: MCS0; Main Antenna;					
Channel Frequency (MHz)	Frequency 6dB bandwidth 99		Result		
5745	17.62	17.781	PASS		
5785	17.65	17.769	PASS		
5825	17.64	17.753	PASS		

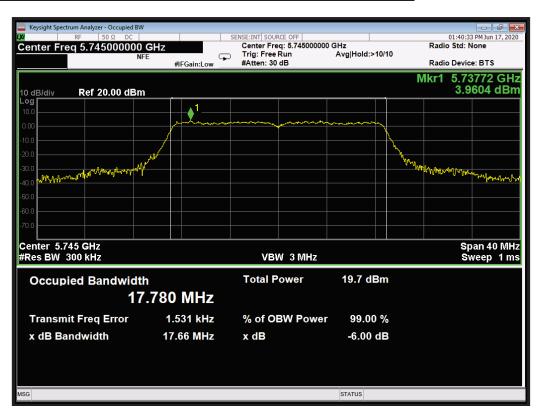

Modulation: 802.11n-20; Data rate: MCS0; Aux Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.69	17.739	PASS		
5785	17.74	17.739	PASS		
5825	17.73	17.725	PASS		

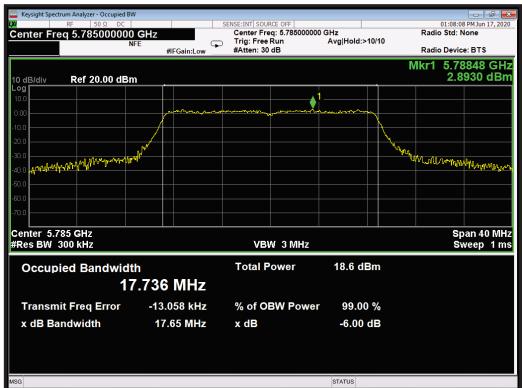

Keysight Spectrum Analyzer - Occupied B	W			
ে ৣে ৫০০ চে Marker 1 5.7476 GHz		SENSE:INT SOURCE OFF Center Freq: 5.745000000	GHz	10:01:07 AM Jun 17, 202 Radio Std: None
	NFE #IEGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
	#IFGall.LOW	#raten: 00 uB		Mkr1 5.7476 GH
dB/div Ref 20.00 dB	n			6.9376 dBr
og	<u> </u>	1		
0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	monumente	wpannen	
.00				
).0	م م م			
				harmon and the second s
0.0				
0.0				
enter 5.745 GHz Res BW 300 kHz		VBW 3 MHz		Span 40 MH Sweep 1 m
Occupied Bandwid	th	Total Power	22.3 dBm	
1	7.739 MHz			
Transmit Freq Error	-16.013 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	17.69 MHz	x dB	-6.00 dB	
3			STATUS	

Keysight Spectrum Analyzer - Occupied BV RF 50 Ω DC Center Freq 5.785000000 N		SENSE:INT SOURCE OFF Center Freq: 5.785000000 Trig: Free Run #Atten: 30 dB	GHz Avg Hold:>10/10	To:10:46 AMJun 17, 2020 Radio Std: None Radio Device: BTS
10 dB/div Ref 20.00 dBn	n			Mkr1 5.78248 GHz 5.8930 dBm
10.0	all and a second second second			
-10.0				
-30.0				Muran mar barren
-40.0				
-70.0				
Center 5.785 GHz #Res BW 300 kHz		VBW 3 MHz		Span 40 MHz Sweep 1 ms
Occupied Bandwidt	^h 7.739 MHz	Total Power	21.4 dBm	
Transmit Freq Error	-10.030 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	17.74 MHz	x dB	-6.00 dB	
MSG			STATUS	

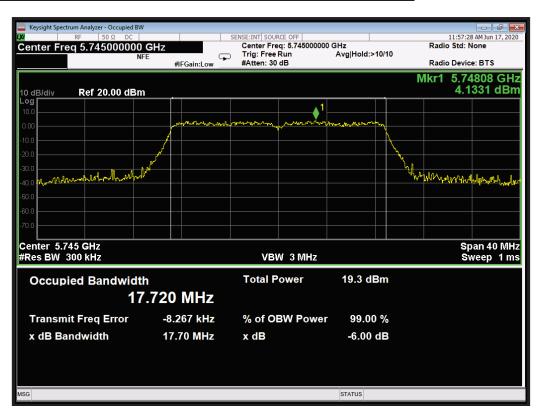

Keysight Spectrum Analyzer - Occupied BV	/			
₩ RF 50 Ω DC Center Freq 5.825000000		SENSE:INT SOURCE OFF Center Freq: 5.825000000	GH7	10:14:48 AM Jun 17, 2020 Radio Std: None
	FE 😱	Trig: Free Run	Avg Hold:>10/10	
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
				Mkr1 5.81736 GHz 5.4585 dBm
10 dB/div Ref 20.00 dBn	n			5.4585 aBm
10.0	 			
0.00	and the second second second	womphilis and the second	and the second s	
10.0	/			
20.0			__	
30.0 more that the second seco	~r			ᠧ᠕ᡙᠬᡊᠾᡊᡴ᠋᠆ᠬᠹᡀ᠓ᡇ᠆ᡟᠧ᠋᠋ᡢᡀᡢᡢᢛ᠆ᡁᡧᢑ
40.0				
50.0				
60.0				
.70.0				
Center 5.825 GHz #Res BW 300 kHz		VBW 3 MHz		Span 40 MH Sweep 1 ms
Res DW JUO KHZ				Sweep This
Occupied Bandwidt	h	Total Power	21.0 dBm	
17	7.725 MHz			
Transmit Freq Error	-16.306 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	17.73 MHz	x dB	-6.00 dB	
SG			STATUS	

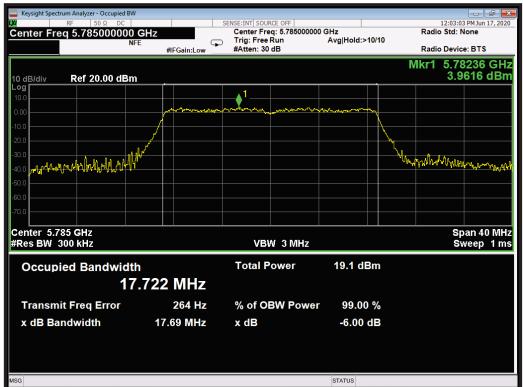
Modulat	Modulation: 802.11n-40; Data rate: MCS0; Main Antenna;				
Channel Frequency (MHz)	Frequency 6dB bandwidth 99% bandwidth Resul				
5755	36.33	36.185	PASS		
5795	36.24	36.195	PASS		

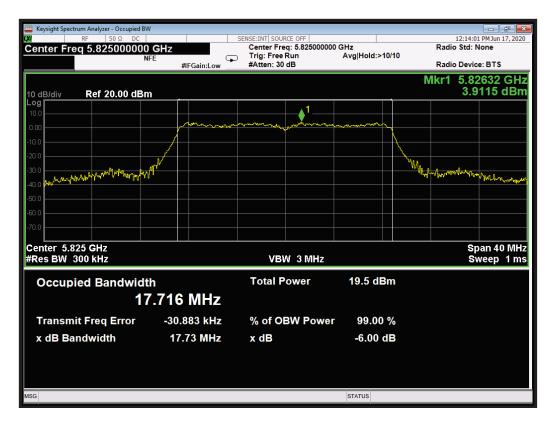



Modulation: 802.11n-40; Data rate: MCS0; Main Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5755	36.41	36.250	PASS		
5795	36.43	36.219	PASS		

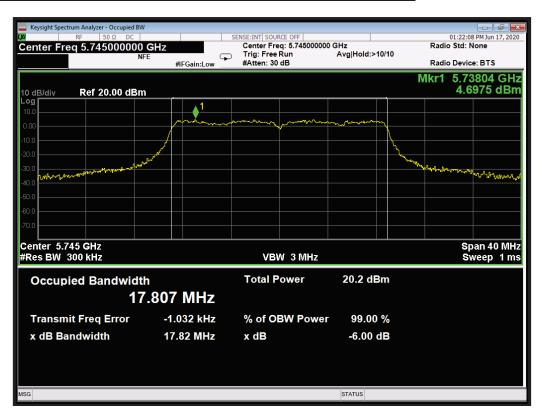
Keysight Spectrum Analyzer - Occupied BW				- 6 -
		SENSE:INT SOURCE OFF Center Freq: 5.795000000	CH-	04:48:29 PM Jun 17, 2020 Radio Std: None
Center Freq 5.795000000		🕤 Trig: Free Run	Avg Hold:>10/10	
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
10 dB/div Ref 20.00 dBm				Mkr1 5.79068 GHz 3.4726 dBm
Log 10.0		1		
0.00	when when	mannen mannen	willing	
-10.0		Y		
-20.0	No		\	
	Mari		`	helder have been and the second
40.0				1. 181 for free
-50.0				
60.0				
-70.0				
0				0
Center 5.795 GHz #Res BW 390 kHz		VBW 4 MHz		Span 80 MHz Sweep 1 ms
Occupied Bandwidth	ı	Total Power	20.6 dBm	
36	.219 MHz			
Transmit Freq Error	-9.654 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	36.43 MHz	x dB	-6.00 dB	

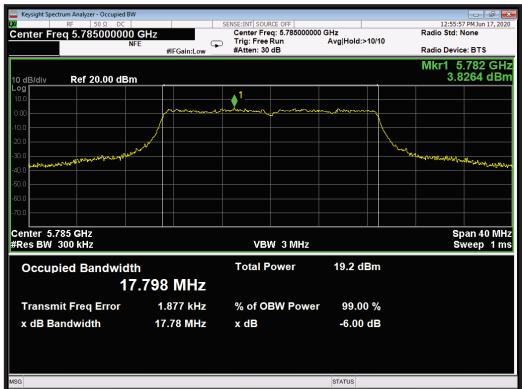

Modulation: 802.11ac-20; Data rate: MCS0 1SS; Main Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.66	17.780	PASS		
5785	17.65	17.736	PASS		
5825	17.74	17.788	PASS		

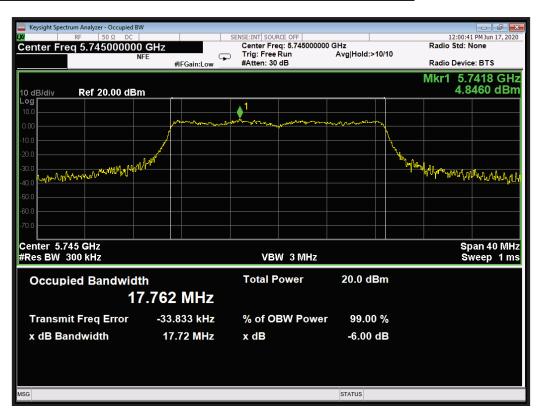


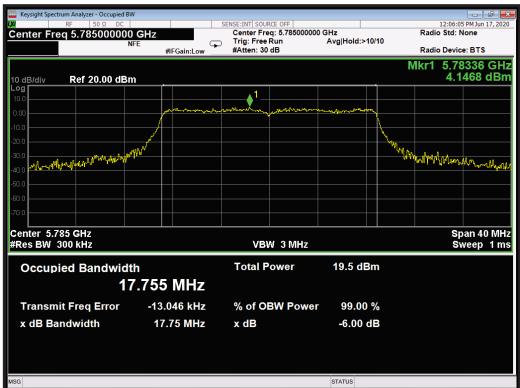


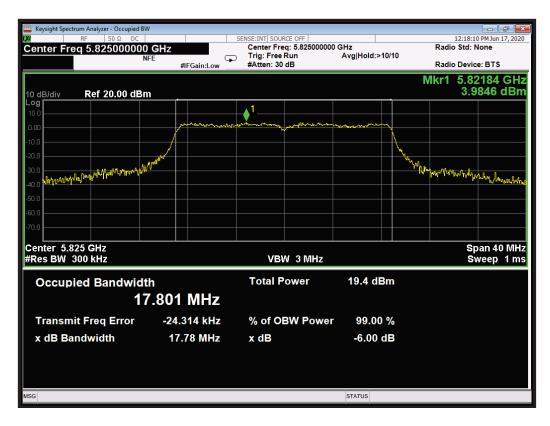
Keysight Spectrum Analyzer - Occupied BW				
RF 50 Ω DC Center Freq 5.825000000 GH NFE		SENSE:INT SOURCE OFF Center Freq: 5.825000000 Trig: Free Run #Atten: 30 dB	GHz Avg Hold:>10/10	12:33:34 PM Jun 17, 2020 Radio Std: None Radio Device: BTS
10 dB/div Ref 20.00 dBm	_			Mkr1 5.82296 GHz 3.3765 dBm
Log 10.0				
-10.0				
-30.0 -40.0 malywork Mark Mark Mark Mark				MAN Marken Marken and Charles
-50.0				
Center 5.825 GHz				Span 40 MHz
#Res BW 300 kHz		VBW 3 MHz		Sweep 1 ms
Occupied Bandwidth 17.7	88 MHz	Total Power	18.8 dBm	
Transmit Freq Error	-2.795 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	17.74 MHz	x dB	-6.00 dB	
MSG			STATUS	


Modulation: 802.11ac-20; Data rate: MCS0 1SS; Aux Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.70	17.720	PASS		
5785	17.69	17.722	PASS		
5825	17.73	17.716	PASS		

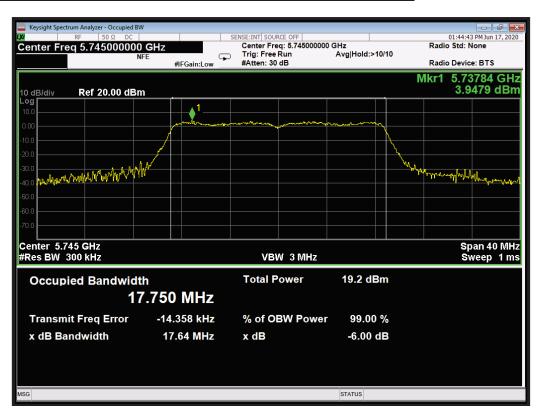


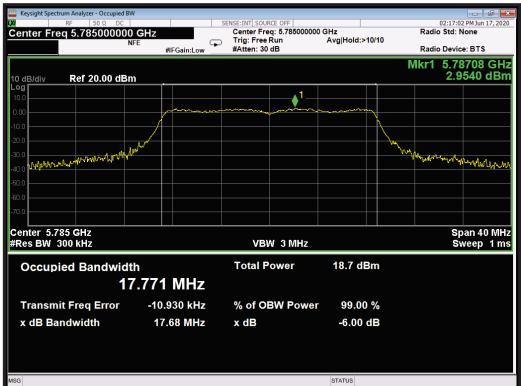

Modulation: 802.11ac-20; Data rate: MCS8 1SS; Main Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.82	17.807	PASS		
5785	17.78	17.798	PASS		
5825	17.74	17.793	PASS		

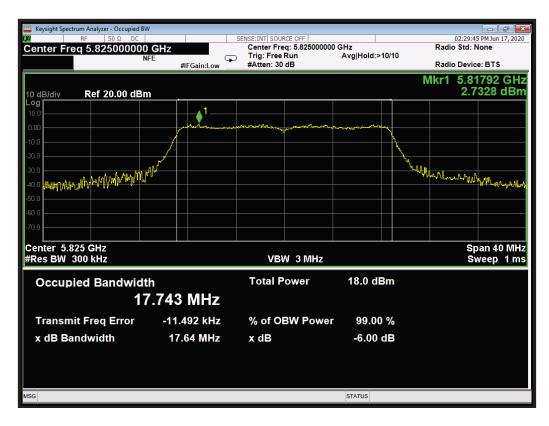


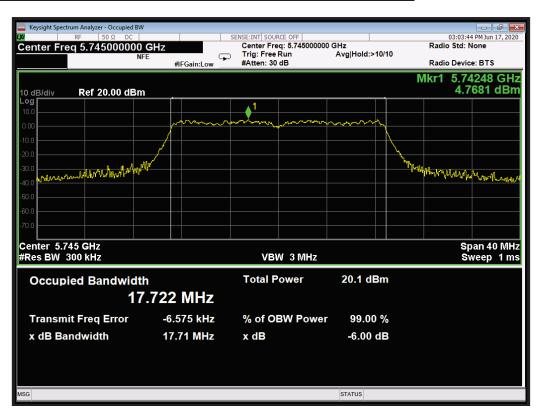


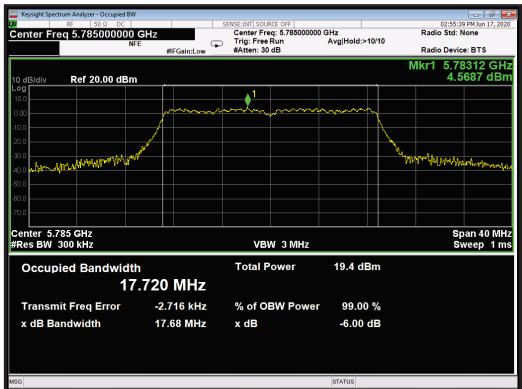
Keysight Spectrum Analyzer - Occupied Β\ K RF 50 Ω DC	N	SENSE:INT SOURCE OFF		12:25:22 PM Jun 17, 2020
Center Freq 5.82500000) GHz	Center Freq: 5.825000000 Trig: Free Run	GHz Avg Hold:>10/10	Radio Std: None
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
10 dB/div Ref 20.00 dBr	n			Mkr1 5.82296 GHz 3.3765 dBm
Log 10.0		1		
0.00		and the second		
-10.0			<u>\</u>	
-20.0				
-30.0 Alon Mark Mark Mark Hard Charles	yla ^m		`	Math M. Marin Manuf Mall and a strated
				Mut / James - and -
-50.0				
-70.0				
Center 5.825 GHz #Res BW 300 kHz		VBW 3 MHz		Span 40 MHz Sweep 1 ms
Occupied Bandwidt	th	Total Power	18.6 dBm	
17	7.793 MHz			
Transmit Freq Error	-5.147 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	17.74 MHz	x dB	-6.00 dB	
MSG			STATUS	

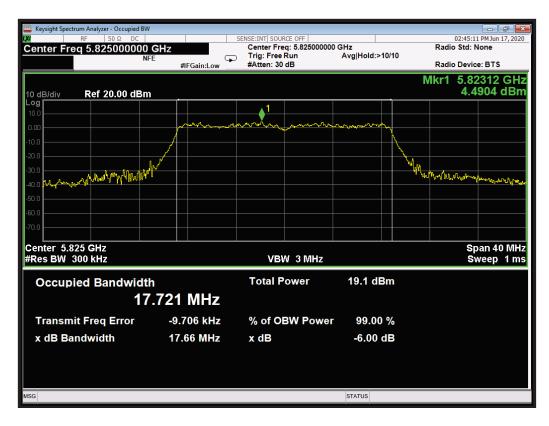

Modulation: 802.11ac-20; Data rate: MCS8 1SS; Aux Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.72	17.762	PASS		
5785	17.75	17.755	PASS		
5825	17.78	17.801	PASS		

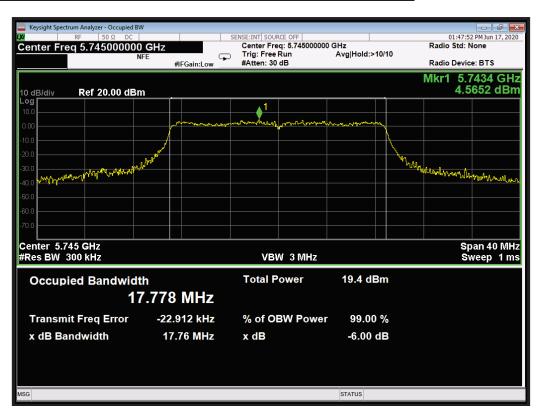


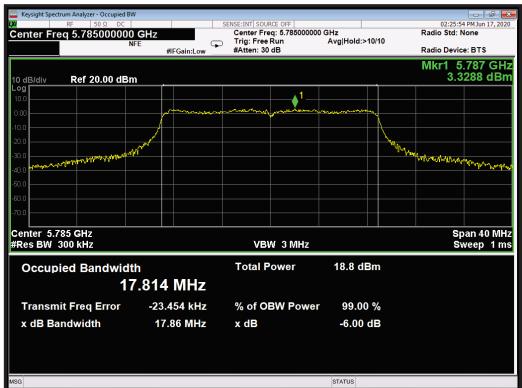


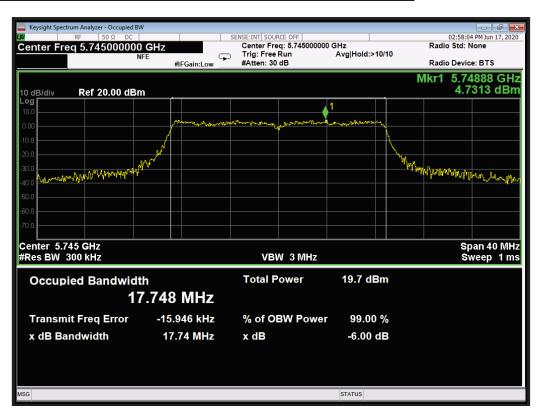

Modulation: 802.11ac-20; Data rate: MCS0 2SS; Main Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.64	17.750	PASS		
5785	17.68	17.771	PASS		
5825	17.64	17.743	PASS		

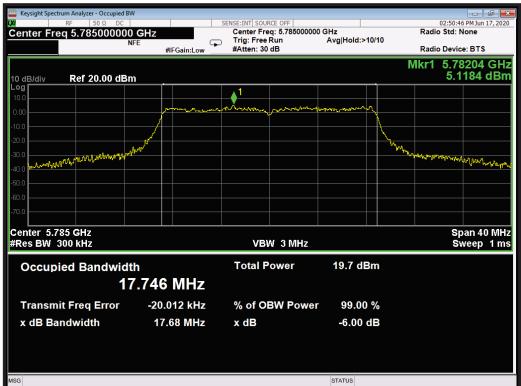


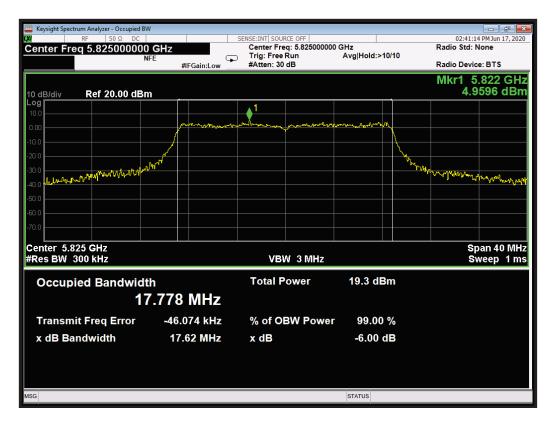



Modulation: 802.11ac-20; Data rate: MCS0 2SS; Aux Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.71	17.722	PASS		
5785	17.68	17.720	PASS		
5825	17.66	17.721	PASS		

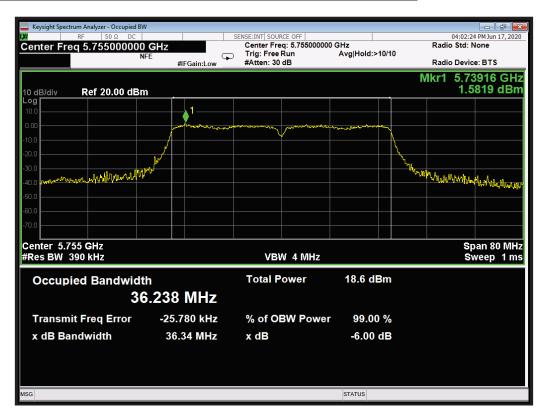


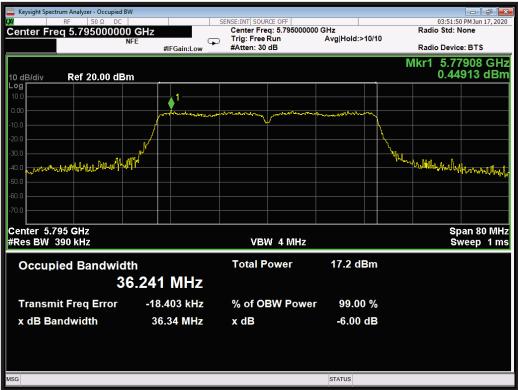

Modulation: 802.11ac-20; Data rate: MCS8 2SS; Main Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.76	17.778	PASS		
5785	17.86	17.814	PASS		
5825	17.82	17.808	PASS		

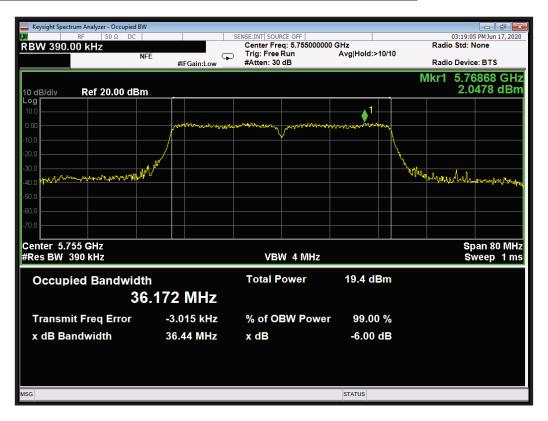


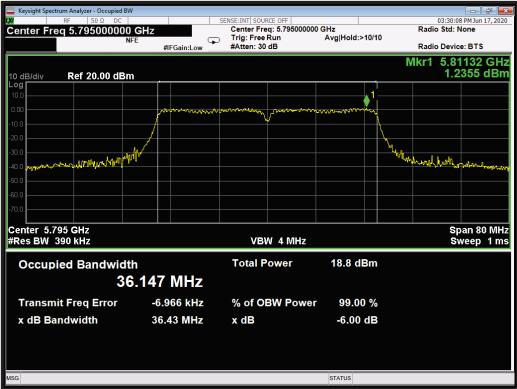


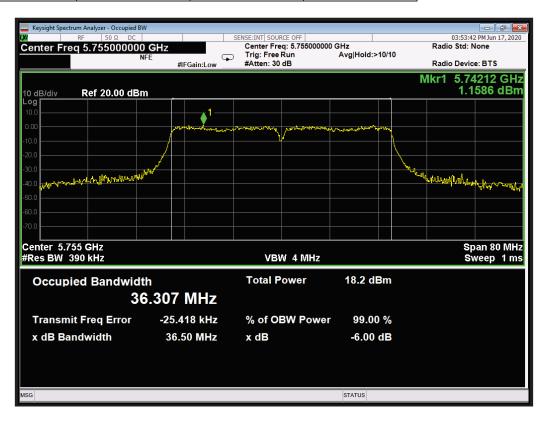
Keysight Spectrum Analyzer - Occupied BW Μ RF 50.Ω DC Center Freq 5.825000000 GH		SENSE:INT SOURCE OFF	GHz	02:36:39 PM Jun 17, 2020 Radio Std: None
NFE	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
10 dB/div Ref 20.00 dBm				Mkr1 5.82348 GHz 3.0764 dBm
Log 10.0		1		
-10.0	A A A A A A A A A A A A A A A A A A A			
-2000 -30.0 -40.0 2000/201/10/10/10/10/10/10/10/10/10/10/10/10/1			N _P	Markhan Markan Markan San San San San San San San San San S
-50.0				
-70.0				
Center 5.825 GHz #Res BW 300 kHz		VBW 3 MHz		Span 40 MHz Sweep 1 ms
Occupied Bandwidth 17.8	08 MHz	Total Power	18.5 dBm	
Transmit Freq Error	-24.538 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	17.82 MHz	x dB	-6.00 dB	
MSG			STATUS	

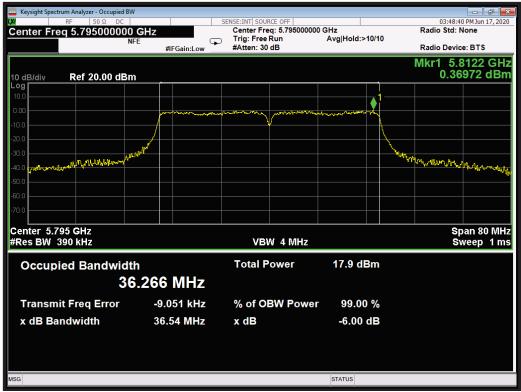

Modulation: 802.11ac-20; Data rate: MCS8 2SS; Aux Antenna;					
Channel Frequency (MHz)	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result		
5745	17.74	17.748	PASS		
5785	17.68	17.746	PASS		
5825	17.62	17.778	PASS		

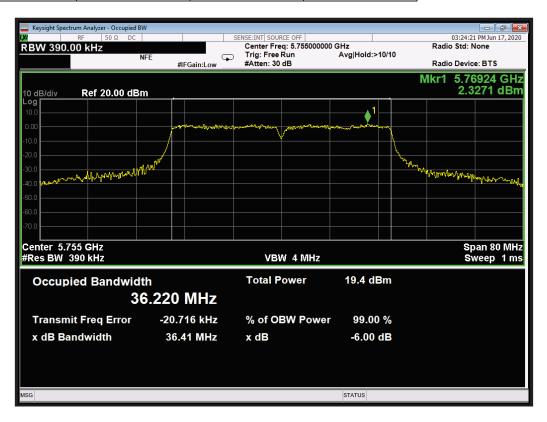


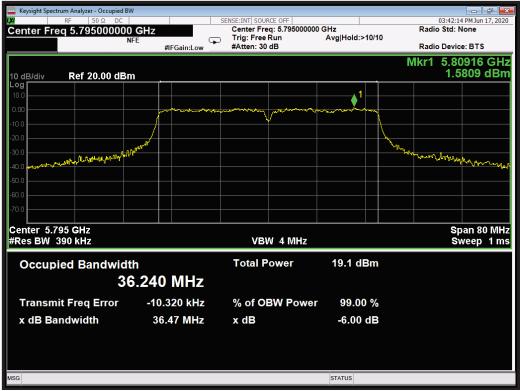


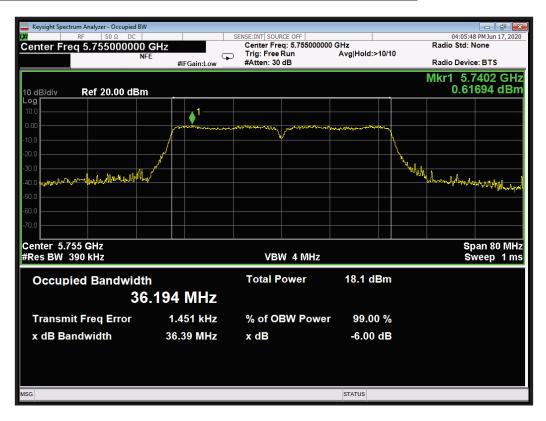

Modulation: 802.11ac-40; Data rate: MCS0 1SS; Main Antenna;					
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result					
5755	36.34	36.238	PASS		
5795	36.34	36.241	PASS		

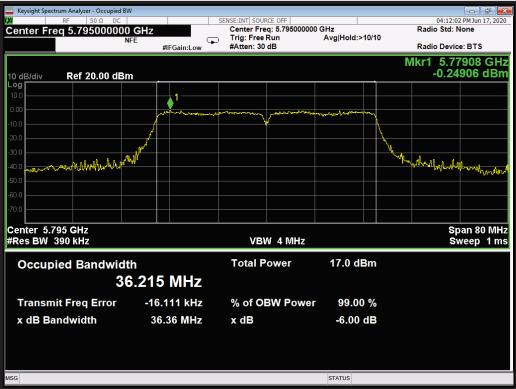


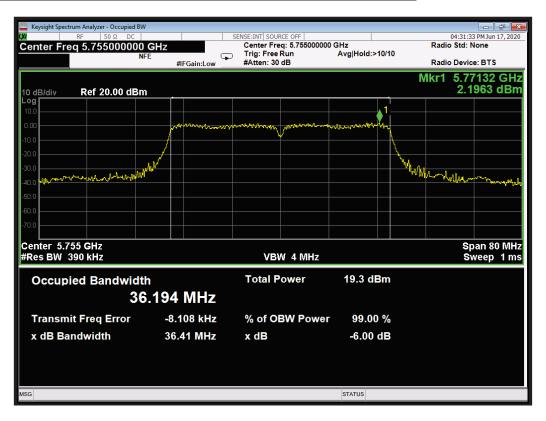

Modulation: 802.11ac-40; Data rate: MCS0 1SS; Aux Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5755	36.44	36.172	PASS	
5795	36.43	36.147	PASS	

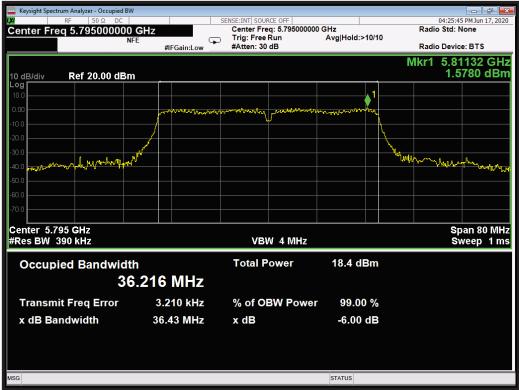


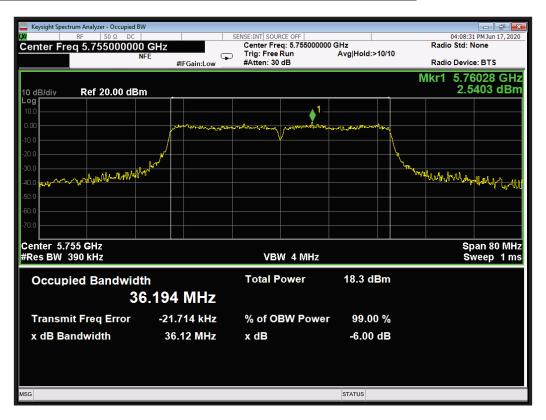

Modulation: 802.11ac-40; Data rate: MCS9 1SS; Main Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5755	36.50	36.307	PASS	
5795	36.54	36.266	PASS	

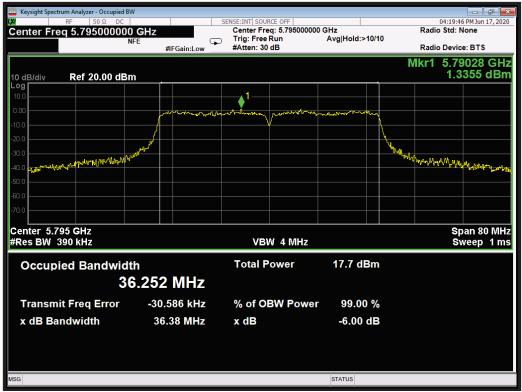


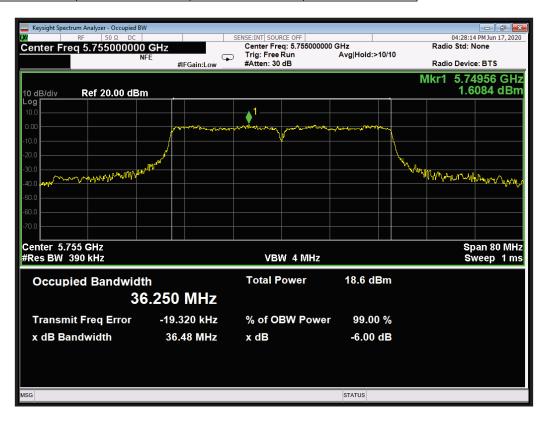

Modulation: 802.11ac-40; Data rate: MCS9 1SS; Aux Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5755	36.41	36.220	PASS	
5795	36.47	36.240	PASS	

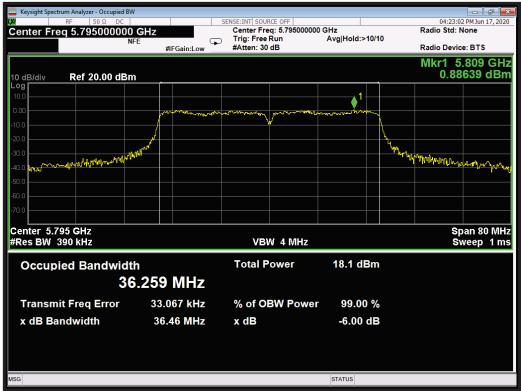


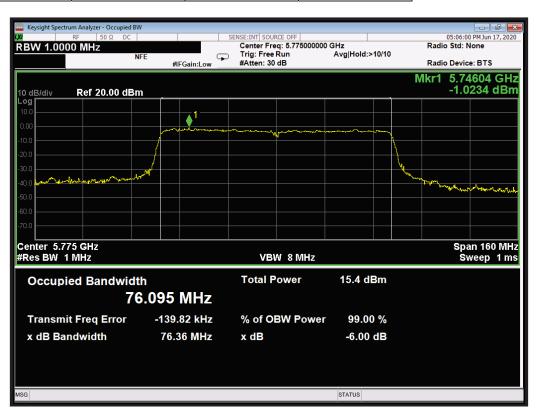

Modulation: 802.11ac-40; Data rate: MCS0 2SS; Main Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5755	36.39	36.194	PASS	
5795	36.36	36.215	PASS	



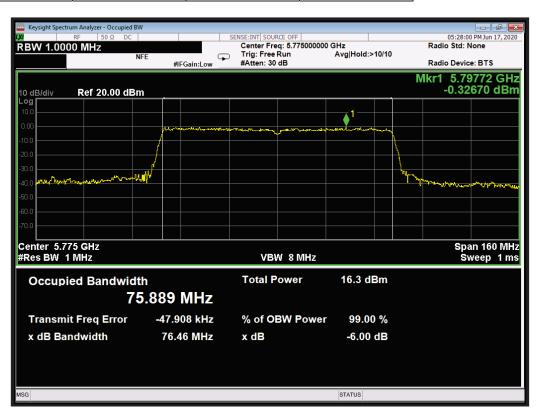

Modulation: 802.11ac-40; Data rate: MCS0 2SS; Aux Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5755	36.41	36.194	PASS	
5795	36.43	36.216	PASS	

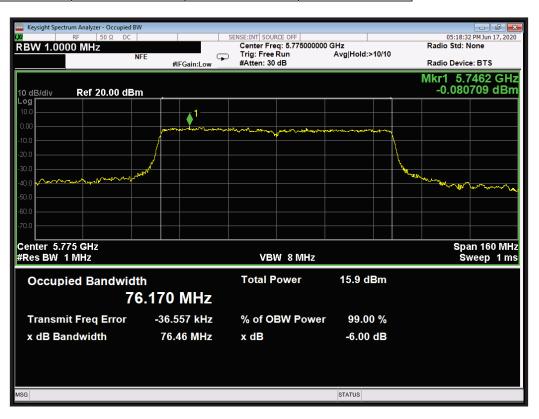


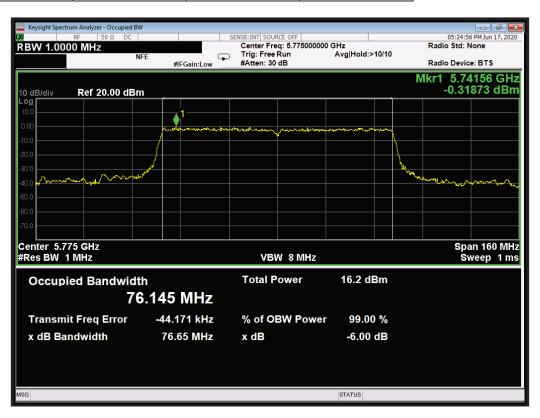

Modulation: 802.11ac-40; Data rate: MCS9 2SS; Main Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5755	36.12	36.194	PASS	
5795	36.38	36.252	PASS	

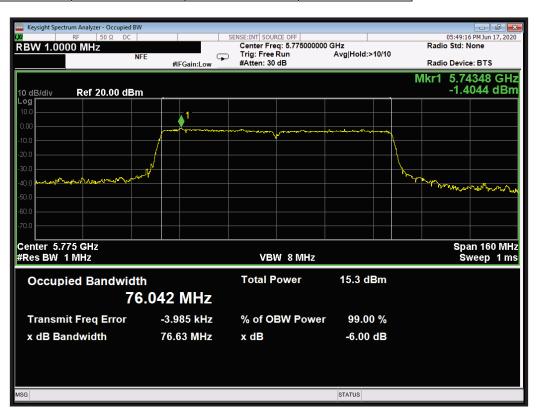


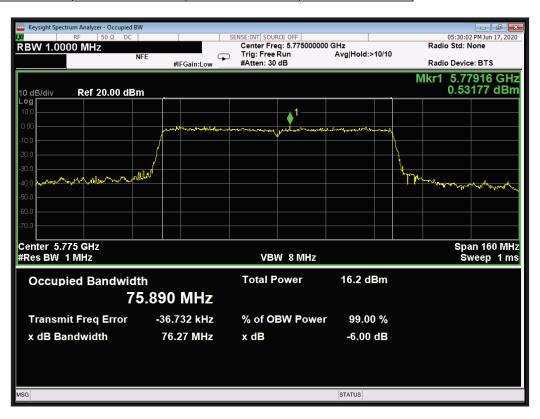
Modulation: 802.11ac-40; Data rate: MCS9 2SS; Aux Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5755	36.48	36.250	PASS	
5795	36.46	36.529	PASS	

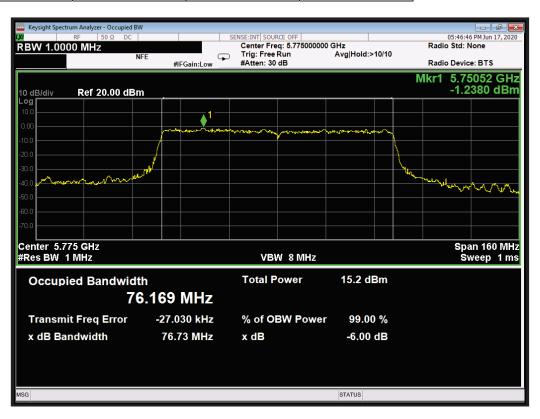


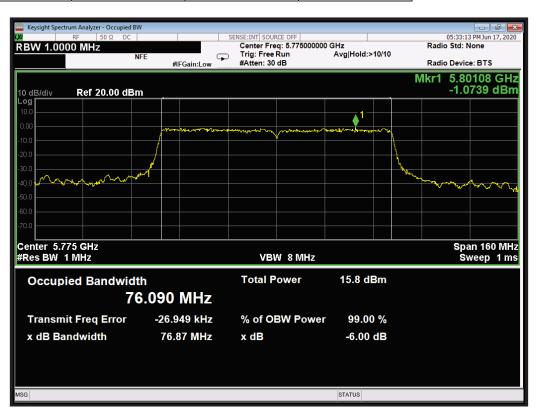

Modulation: 802.11ac-80; Data rate: MCS0 1SS; Main Antenna;				
Channel Frequency (MHz) 6dB bandwidth 99% bandwidth (MHz) Result				
5775	76.36	76.095	PASS	


Modulation: 802.11ac-80; Data rate: MCS0 1SS; Aux Antenna;				
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result				
5775	76.46	75.889	PASS	


Modulation: 802.11ac-80; Data rate: MCS9 1SS; Main Antenna;				
Channel Frequency (MHz) 6dB bandwidth 99% bandwidth (MHz) Result				
5775	76.46	76.170	PASS	


Modulation: 802.11ac-80; Data rate: MCS9 1SS; Aux Antenna;				
Channel Frequency (MHz) 6dB bandwidth 99% bandwidth (MHz) Result				
5775	76.65	76.145	PASS	


Modulation: 802.11ac-80; Data rate: MCS0 2SS; Main Antenna;				
Channel Frequency (MHz) 6dB bandwidth 99% bandwidth (MHz) Result				
5775	76.63	76.042	PASS	


Modulation: 802.11ac-80; Data rate: MCS0 2SS; Aux Antenna;						
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result						
5775	76.27	75.890	PASS			

Modulation: 802.11ac-80; Data rate: MCS9 2SS; Main Antenna;							
Channel Frequency (MHz)	Frequency (MHz) (MHz) Result						
5775	76.73	76.169	PASS				

Modulation: 802.11ac-80; Data rate: MCS9 2SS; Aux Antenna;						
Channel Frequency (MHz) 6dB bandwidth (MHz) 99% bandwidth (MHz) Result						
5775	76.87	76.090	PASS			

14 Maximum conducted output power

14.1 Definition

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

14.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Wireless Laboratory 1
Test Standard and Clause:	ANSI C63.10-2013, Clause 12.3
EUT Occupied Bandwidths:	20 MHz, 40 MHz & 80 MHz
Deviations From Standard:	None
Measurement BW:	Wideband power meter used
Measurement Span:	Wideband power meter used
Measurement Points:	Wideband power meter used
Measurement Detector:	RMS

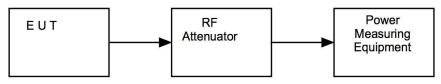
Environmental Conditions (Normal Environment)

Temperature: 23 °C	+15 °C to +35 °C (as declared)
Humidity: 43 %RH	20%RH to 75%RH (as declared)

Test Limits

For the 5.725–5.85 GHz band, the maximum conducted output power over the frequency bands of operation shall not exceed 1 W (30 dBm).

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


Number of antennas	2
Correlated signals	No
Maximum gain (dBi)	6.9
Exceeds 6 dBi by (dB)	0.9
Spec. limit (dBm)	30.0
Minimum 26 dB bandwidth (MHz)	20 MHz
Adjusted limit (dBm)	29.1

14.3 Test Method

With The EUT was connected as per Figure iv, the power was measured on the power meter, having taken account of all path losses.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure iv Test Setup

14.4 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Power Meter	ETS Lindgren	7002-006	REF2279	2022-03-18
Power Meter	ETS Lindgren	7002-006	REF2324	2022-01-29
Power Supply	Farnell	LT30-2	RFG035	Cal with REF887
Multimeter	Agilent	34405A	REF887	2021-10-12

14.5 Test Results

Modulation: 802.11a; Main and Aux ports measured simultaneously; Channel Bandwidth: 20 MHz					
Data Rate (Mbps)	Channel (MHz)	EUT power setting	Measured level (dBm)	Limit (dBm)	Result
6	5745	15	18.7	29.1	Pass
6	5785	15	18.4	29.1	Pass
6	5825	15	18.2	29.1	Pass
54	5745	15	18.8	29.1	Pass
54	5785	15	18.5	29.1	Pass
54	5825	15	18.2	29.1	Pass

Modulation: 802.11ac; Main and Aux ports measured simultaneously; Channel Bandwidth: 20 MHz; Spatial Streams: 1							
Data Rate (MCS)	Channel (MHz) EUT power setting Measured level (dBm) Limit (dBm) Result						
0	5745	13	16.9	29.1	Pass		
0	5785	13	16.6	29.1	Pass		
0	5825	13	16.4	29.1	Pass		
8	5745	13	16.9	29.1	Pass		
8	5785	13	16.6	29.1	Pass		
8	5825	13	16.4	29.1	Pass		

Modulation: 802.11ac; Main and Aux ports measured simultaneously; Channel Bandwidth: 20 MHz; Spatial Streams: 2								
Data Rate (MCS)	Channel (MHz)	ELIT power Measured level Limit						
0	5745	13	16.9	29.1	Pass			
0	5785	13	16.6	29.1	Pass			
0	5825	13	16.3	29.1	Pass			
8	5745	13	16.9	29.1	Pass			
8	5785	13	16.6	29.1	Pass			
8	5825	13	16.3	29.1	Pass			

	Modulation: 802.11ac; Main and Aux ports measured simultaneously; Channel Bandwidth: 40 MHz; Spatial Streams: 1					
Data Rate (MCS)	Data Rate Channel (MHz) EUT power Measured level Limit Result					
0	5755	12	15.7	29.1	Pass	
0	5795	12	15.4	29.1	Pass	
9	5755	12	15.8	29.1	Pass	
9	5795	12	15.5	29.1	Pass	

Modulation: 802.11ac; Main and Aux ports measured simultaneously; Channel Bandwidth: 40 MHz; Spatial Streams: 2						
Data Rate (MCS)	Rate Channel (MHz) EUT power Measured level Limit Posult					
0	5755	12	15.7	29.1	Pass	
0	5795	12	15.4	29.1	Pass	
9	5755	12	15.8	29.1	Pass	
9	5795	12	15.5	29.1	Pass	

Modulation: 802.11ac; Main and Aux ports measured simultaneously; Channel Bandwidth: 80 MHz; Spatial Streams: 1								
Data Rate (MCS)	(Channel (MHz) Result							
0	5775	8	12.0	29.1	Pass			
9	5775	8	12.2	29.1	Pass			

Modulation: 802.11ac; Main and Aux ports measured simultaneously; Channel Bandwidth: 80 MHz; Spatial Streams: 2								
Data Rate (MCS) Channel (MHz) EUT power setting Measured level (dBm) Limit (dBm) Result								
0	5775	8	12.0	29.1	Pass			
9	5775	8	12.2	29.1	Pass			

Measurements in 802.11n mode were only performed for channel and operating mode combinations where the EUT power setting was different from that used for 802.11ac mode. These additional measurements are presented in the tables below:

Modulation: 802.11n; Main and Aux ports measured simultaneously; Channel Bandwidth: 20 MHz									
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level (dBm)	Limit (dBm)	Result				
0	5745	15	18.9	29.1	Pass				
0	5785	15	18.6	29.1	Pass				
0	5825	15	18.3	29.1	Pass				

Modulation: 802.11n; Main and Aux ports measured simultaneously; Channel Bandwidth: 40 MHz								
Data Rate (MCS) Channel (MHz) EUT power setting Measured level (dBm) Limit (dBm)								
0	5755	14	17.7	29.1	Pass			
0	5795	14	17.4	29.1	Pass			

15 Power spectral density

15.1 Definition

The power spectral density is the total energy output per unit bandwidth from a pulse or sequence of pulses for which the transmit power is at its maximum level, divided by the total duration of the pulses.

15.2 Test Parameters

Test Location:	Element Hull
Test Chamber:	Wireless Laboratory 1
Test Standard and Clause:	ANSI C63.10-2013, Clause 12.5
EUT Channel Bandwidths:	20 MHz, 40 MHz & 80 MHz
Deviations From Standard:	None
Measurement BW:	1 MHz
Spectrum Analyzer Video BW:	3 MHz
Measurement Span:	30 MHz, 60 MHz & 90 MHz
Measurement Detector:	RMS

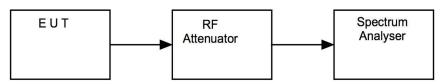
Environmental Conditions (Normal Environment)

Temperature: 21 °C	+15 °C to +35 °C (as declared)
Humidity: 42 %RH	20%RH to 75%RH (as declared)

Test Limits

For the 5.725–5.85 GHz band, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


Number of antennas	2
Correlated signals	No
Maximum Gain (dBi)	6.9
Exceeds 6 dBi by (dB)	0.9
Spec. limit (dBm/500 kHz)	30
Adjusted limit (dBm/500 kHz)	29.1

15.3 Test Method

With the EUT connected as per Figure v, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure v Test Setup

15.4 Test Equipment

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Spectrum Analyser	Agilent	N9030A	REF2167	2021-08-19
Power Supply	Farnell	LT30-2	RFG035	Cal with REF887
Multimeter	Agilent	34405A	REF887	2021-10-12

15.5 Test Results

	Modulation: 802.11a; Main and Aux ports measured separately and combined; Channel Bandwidth: 20 MHz										
Data Rate (Mbps)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured level Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result				
6	5745	15	1.9	2.2	5.1	29.1	Pass				
6	5785	15	1.0	2.3	4.7	29.1	Pass				
6	5825	15	1.2	2.1	4.7	29.1	Pass				
54	5745	15	1.3	2.2	4.8	29.1	Pass				
54	5785	15	0.9	2.3	4.7	29.1	Pass				
54	5825	15	0.6	2.0	4.4	29.1	Pass				

	Modulation: 802.11ac; Main and Aux ports measured separately and combined; Channel Bandwidth: 20 MHz; Spatial Streams: 1									
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured level Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result			
0	5745	13	-0.7	0.0	2.7	29.1	Pass			
0	5785	13	-0.4	-0.2	2.7	29.1	Pass			
0	5825	13	-0.9	-0.4	2.4	29.1	Pass			
8	5745	13	-0.6	-0.1	2.7	29.1	Pass			
8	5785	13	-1.0	-0.1	2.5	29.1	Pass			
8	5825	13	-0.7	-0.2	2.6	29.1	Pass			

	Modulation: 802.11ac; Main and Aux ports measured separately and combined; Channel Bandwidth: 20 MHz; Spatial Streams: 2									
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured Ievel Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result			
0	5745	13	-0.4	0.0	2.8	29.1	Pass			
0	5785	13	-0.7	-0.1	2.6	29.1	Pass			
0	5825	13	-1.2	-0.3	2.3	29.1	Pass			
8	5745	13	-0.4	0.2	2.9	29.1	Pass			
8	5785	13	-0.8	0.1	2.7	29.1	Pass			
8	5825	13	-1.3	-0.2	2.3	29.1	Pass			

Modulation: 802.11ac; Main and Aux ports measured separately and combined; Channel Bandwidth: 40 MHz; Spatial Streams: 1									
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured level Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result		
0	5755	12	-4.3	-4.0	-1.1	29.1	Pass		
0	5795	12	-4.7	-4.2	-1.4	29.1	Pass		
9	5755	12	-4.0	-4.0	-1.0	29.1	Pass		
9	5795	12	-4.8	-4.1	-1.4	29.1	Pass		

Modulation: 802.11ac; Main and Aux ports measured separately and combined; Channel Bandwidth: 40 MHz; Spatial Streams: 2									
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured Ievel Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result		
0	5755	12	-4.4	-4.0	-1.2	29.1	Pass		
0	5795	12	-4.8	-4.2	-1.5	29.1	Pass		
9	5755	12	-4.1	-3.5	-0.8	29.1	Pass		
9	5795	12	-4.7	-3.9	-1.3	29.1	Pass		

Modulation: 802.11ac; Main and Aux ports measured separately and combined; Channel Bandwidth: 80 MHz; Spatial Streams: 1								
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured Ievel Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result	
0	5775	8	-11.2	-11.1	-8.1	29.1	Pass	
9	5775	8	-10.5	-10.7	-7.6	29.1	Pass	

Modulation: 802.11ac; Main and Aux ports measured separately and combined; Channel Bandwidth: 80 MHz; Spatial Streams: 2								
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured level Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result	
0	5775	8	-11.4	-10.9	-8.1	29.1	Pass	
9	5775	8	-11.0	-10.3	-7.6	29.1	Pass	

Measurements in 802.11n mode were only performed for channel and operating mode combinations where the EUT power setting was different from that used for 802.11ac mode. These additional measurements are presented in the tables below:

Modulation: 802.11n; Main and Aux ports measured separately and combined; Channel Bandwidth: 20 MHz									
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured Ievel Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result		
0	5785	15	0.9	1.9	4.4	29.1	Pass		
0	5825	15	0.5	1.7	4.2	29.1	Pass		

Modulation: 802.11n; Main and Aux ports measured separately and combined; Channel Bandwidth: 40 MHz									
Data Rate (MCS)	Channel (MHz)	EUT power setting	Measured level Main (dBm/500 kHz)	Measured Ievel Aux (dBm/500 kHz)	Combined PSD (dBm/500 kHz)	Limit (dBm/500 kHz)	Result		
0	5755	14	-2.3	-1.9	0.9	29.1	Pass		
0	5795	14	-2.9	-2.1	0.5	29.1	Pass		

16 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz - 1 GHz) = **4.6 dB** Uncertainty in test result (1 GHz - 18 GHz) = **4.7 dB**

[2] AC power line conducted emissions

Uncertainty in test result = 3.4 dB

[3] Occupied bandwidth

Uncertainty in test result = 15.5%

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = 1.08 dB

[5] Conducted / radiated RF power out-of-band

Uncertainty in test result – Up to 8.1 GHz = 3.31 dBUncertainty in test result – 8.1 GHz - 15.3 GHz = 4.43 dBUncertainty in test result (30 MHz - 1 GHz) = 4.6 dBUncertainty in test result (1 GHz - 18 GHz) = 4.7 dB

[6] Power spectral density

Uncertainty in test result (Spectrum Analyser) = 2.48 dB

[7] AC Power Line conducted emissions

Uncertainty in test result (Spectrum Analyser) = 3.42 dB