

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power input to the antenna

G = antenna gain

R = distance

Conducted output power:	13.21	(dBm)
	21	(mW)
	0.021	(W)
Antenna gain:	0.5	(dBi)
Maximum antenna gain:	1.122	(numeric)
EIRP	0.0235	(W)
Distance:	20	(cm)
Duty Cycle:	100	(%)
Frequency:	2400	(MHz)
MPE Limit:	1	(mW/cm^2)
Power density:	0.00467	(mW/cm^2)
	0.0467	(W/m^2)
Margin	23.3	(dB)