Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at the antenna terminal:	<u>29.92</u> (dBm)
Maximum peak output power at the antenna terminal:	<u>981.747943</u> (mW)
Antenna gain(typical):	4.85 (dBi)
Maximum antenna gain:	3.054921113 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	902 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.601333 (mW/cm^2)
Power density at prediction frequency:	0.596664 (mW/cm^2)
Maximum allowable antenna gain:	4.883848931 (dBi)

Antenna Model: MT-262024/TLH/A Gain = 7dBic = (7-2.15)dBi = 4.85dBi

Unit meets FCC and IC RF radiation exposure limits for general population(uncontrolled exposure) as a mobile device.